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Abstract

Electric charges may have mass in part or in full because they are charged. The explanation here
avoids charge distribution models by associating the charge’s mass with intrinsic quantum mechanical
quantities, similar to the way spin angular momentum dispenses with mechanical models. Inhomogeneous
Lorentz, i.e. ‘Poincaré’, dual fermion, 8-spinor fields are needed. Poincaré fields have a probability current
that acts as an intrinsic vector potential. The potential obeys a Maxwell-like equation which identifies
the charged source. Intrinsic gauge freedom allows the chosen intrinsic gauge to provide the charged
source with mass, which is, therefore, ‘electromagnetic mass’. One of the two fermions obeys the Dirac
equation for a massless, chargeless particle while the other is charged and massive. These conventional
equations describe neutrinos and electrons and similar lepton pairs with well-known accuracy.
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1 Introduction

As the only long-range, fairly strong force that can vanish when positive and negative charges balance,
electromagnetism is perhaps the best studied of the four fundamental forces. Yet a classical problem persists.
If the interaction of electric charges is mediated by an electromagnetic field and if the electromagnetic field
has energy, then carrying the electromagnetic field should act as a drag on a charge’s motion, an inertia.

The problem is called “electromagnetic mass” and its explanations in terms of charge distributions are
controversial. There is a vast literature. Some charge distributions are solid structures, often described
with special relativity. There are gravity-bound hydrodynamic models and many others. See, for example,
Ref. [1, 6, 7, 10, 17]. Electromagnetic mass is frequently presented as an unsolved problem in introductory
textbooks. [2, 5]

The proposed solution here avoids charge distributions. We show how a charge may have mass due to
its being charged, but in a way that is related to intrinsic quantities. Electromagnetic field energy does not
enter into the process.

Consider angular momentum. Given enough grease and quality bearings, a large flywheel rotating about
a stationary axis can maintain a constant angular momentum. To keep the flywheel intact, forces are needed.
Failing flywheels can do impressive damage.

Now consider quantum effects. An electron whether at rest or in motion has ‘intrinsic’ or ‘spin’ angular
momentum. It is widely accepted that, with spin, “a consistent mechanical model doesn’t exist”. See, for
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example, page 374 of [12]. The physical description of intrinsic electron spin does not have a place for the
forces that prevent rotating matter flying apart like a crumbling flywheel.

If electromagnetic mass could be explained as an intrinsic quantum effect, then one would not need to
introduce non-electromagnetic forces to counter the repulsion of like-charges in order to hold an extended
charge distribution model together. There simply would not be an extended charge distribution model.

To begin, note that physics is locally invariant under spacetime rotations, i.e. spacial rotations and
boosts, as well as translations. Also consider that the quantum fields of the Standard Model, ‘Lorentz fields’,
transform with the (homogeneous) Lorentz group of spacetime rotations, but not with translations. [11, 16]

It may, therefore, be interesting to investigate fields, “Poincaré fields”, that transform non-trivially under
both spacetime rotations and translations, so-named because the Poincaré group is the Lorentz group plus
translations.

As one might expect, the probability current density Jµ(x, y) for a Poincaré field is more complicated
than the Lorentz field probability density jµ(x), where µ ∈ {1, 2, 3, 4} with 4 = t the time index. For
example, arbitrary parameters associated with the translations introduce an intrinsic spacetime’s worth of
new parameters, yµ. We take the intrinsic coordinates yµ to be independent of spacetime coordinates xµ,
for simplicity.

Assuming Jµ(x, y) is sufficiently smooth, there are derivatives of Jµ(x, y) with respect to yν . A surprising
identity is found: The Poincaré probability density Jµ(x, y) satisfies a Maxwell-like equation in intrinsic
coordinates yν . Thus, the probability density Jµ(x, y) becomes an intrinsic vector potential, labeled “Aµi ”
with i for ‘intrinsic’. And there is intrinsic gauge invariance of the Maxwell-like equation. One can freely
choose an intrinsic gauge χ(y), a matrix function of intrinsic coordinates yµ.

Intrinsic gauge freedom allows one to purpose the intrinsic gauge χ(y) to introduce a mass term into a
lagrangian for otherwise massless fields. But the intrinsic vector potential sits in the interaction lagrangian
with a charge current density. And that current density is also determined by the Maxwell-like equation for
the probability density Jµ(x, y). The mass is thus associated with that charge current density. These facts
support the claim that the particle has acquired mass because it is charged.

Intrinsic matrix translations have previously been used to obtain a universal fermion mass in the context
of the Poincaré gauge theory of gravitation. [4,15] The intrinsic momenta there mix components of a 4-spinor
fermion, while we mix components of one 4-spinor with those of another. Thus, while somewhat similar in
ingredients, the 8-spinor scheme here and the 4-spinor formalism there are distinct approaches with distinct
outcomes.

The Higgs mechanism [13], explains how massless particles in gauge theory acquire mass. The properties
of a candidate Higgs boson are being studied in on-going experiments, for a recent example of such an
experiment see Ref. [14]. Alternate explanations may be sought if, as tentatively considered in Ref. [13],
there is some “unresolved paradox” or if the recently discovered particle fails to have the properties of a
Higgs boson. The nascent scheme in this article would need significant development to become a serious
alternative to the Higgs mechanism.

Section 2 briefly covers Lorentz and Poincaré quantum fields and their probability current densities.
The probability current density of the Poincaré field is shown to satisfy a Maxwell-like equation in intrinsic
coordinates. That equation is the foundation of the article. The Maxwell-like equation distinguishes the
charged from the uncharged 4-spinor fermion. Gauge invariance and parity are also discussed in Sec. 2.

An Appendix describes the 8-spinor Poincaré representation (rep) and includes notation and conventions
such as the spacetime metric.

Section 3 sets up the lagrangian using the choice of intrinsic gauge to produce traditional field equations.
Among the results is the standard Maxwell equation with the charged fermion as the source. The equations
for the 8-spinor field describe a charged massive Dirac fermion and, independently, a massless 4-spinor
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fermion. Since there is no deviation from standard equations, verification is provided the well-documented
agreement with experiment of predictions based on these standard equations. The essential difference with
standard equations is the non-phenomenological explanation of the charged fermion’s mass.

Concluding remarks are collected in Sec. 4.

2 Currents and the intrinsic E-M vector potential

‘Poincaré fields’ transform with translations as well as spacetime rotations. Otherwise, they are like the
‘Lorentz fields’ of the Standard Model. In this section, the probability current density of a Poincaré field is
shown to be the intrinsic vector potential.

Let ψ0 be an 8-spinor Lorentz quantum field that is constructed from the annihilation and creation
operators for a massless spin 1/2 particle. By the properties of quantum fields, when spacetime undergoes
the Poincaré transformation (Λ, b), there is a unitary transformation U(Λ, b), for the operators. The Lorentz
field ψ0 transforms by the in general non-unitary matrix D−1(Λ, 0). This requirement largely determines the
coefficients of the operators in the sum that makes up the field ψ0. See, for example, Ref. [16].

Define the associated Poincaré field Φ0 by

Φ0 ≡ D(1, y)ψ0(x) , (1)

where the coordinate-like set of parameters yµ are arbitrary, assumed, for simplicity, to be independent of
spacetime coordinates xµ. Proper behavior of D(1, y) requires that the yµ transform just like coordinates,
y → Λy + b, with the spacetime Poincaré transformation (Λ, b).

Applying the unitary transformation U(Λ, b) of operators to the Lorentz field ψ0 yields, by assumption,
[16]

U(Λ, b)ψ0(x)U−1(Λ, b) = D−1(Λ, 0)ψ0(Λx+ b) . (2)

For the Poincaré field, one finds that

U(Λ, b)Φ0(x, y)U−1(Λ, b) = D−1(Λ, b)Φ0(Λx+ b,Λy + b) . (3)

To show that (3) follows from (1) and (2), note that the field transformation D(1, y) commutes with the
operator transformation U(Λ, b). One uses the well-known rule for successive Poincaré transformation, A
followed by B, (ΛB , bB)(ΛA, bA) = (ΛBΛA,ΛBbA + bB), to show that

D−1(Λ, b)D(1,Λy + b) = D(1, y)D−1(Λ, 0) , (4)

which gives (3) from (2).
In this article, the Lorentz field ψ0 is the direct sum of two free massless 4-spinor fields ψ01 and ψ02, and

it transforms with 8 × 8 matrix D(Λ, b) of the Poincaré rep in the Appendix. Thus its probability current
density jµ is the sum of the current densities of the two 4-spinor fields. One has

jµ = ψ̄0γ
µψ0 = ψ̄01γ

µ
11ψ01 + ψ̄02γ

µ
22ψ02 = jµ1 + jµ2 , (5)

where normalization constants are dropped for brevity. Here jµi ≡ ψ̄0iγ
µψ0i are the currents for the two

4-spinors ψ01 and ψ02 in the 8-spinor field.
By the definition of Φ0, (1), the current Jµ of the Poincaré field can be written in terms of the Lorentz

field ψ0 as
Jµ ≡ Φ̄0γ

µΦ0 = −ψ̄0(x)γtD†(1, y)γtγµD(1, y)ψ0(x) = a−1ψ̄0 α
µ ψ0 , (6)
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where the constant a is introduced now to be determined later. Comparing (5) and (6) shows that the αµ

in Jµ replaces the γµ in the current jµ.
One sees from (6) that αµ(y) is the combination

αµ(y) = −aγtD†(1, y)γtγµD(1, y) . (7)

We can work with this expression using the details of the 8-spinor Poincaré rep in the Appendix. By (A.7),
the products of the off-diagonal linear momentum generators vanish, πµπν = 0. Thus the translation matrix
D(1, y) = exp (−iyσπσ) = 1− iyσπσ. And D†(1, y) is also linear in y. By various gamma identities, one finds
that the matrix αµ in (7) is

αµ(y) = a
[
γµ − ikyρ (γρ12γ

µ
22 + γµ22γ

ρ
21) + k2y2γµ11 − 2k2yµyργ

ρ
11

]
, (8)

where, see the Appendix, γρ12 has the 4-spinor Dirac matrix γρD in the 12-block and vanishes elsewhere. In
(8), y2 = yρy

ρ and one sees that αµ(y) is a matrix quadratic in y.
Since αµ(y) is quadratic in y, second order partial derivatives of αµ(y) with respect to y are constant.

One finds an identity,
∂ λ ′∂ ′λα

µ − ∂ µ ′∂ ′κακ = 12ak2γµ11 , (9)

where the primed partial derivatives are with respect to the ys, ∂ ′λα
µ ≡ ∂αµ/∂yλ. Unprimed partials,

∂ρf(x) ≡ ∂f/∂xρ, are saved for later with xµ.
The current Jµ(x, y) = a−1ψ̄0α

µψ0 has its y-dependence confined to αµ(y) and the identity (9) implies
that

∂ λ ′∂ ′λ(aJµ)− ∂ µ ′∂ ′κ(aJκ) = 12ak2ψ̄0γ
µ
11ψ0 = 12ak2jµ1 , (10)

since spacetime and intrinsic coordinates are independent, ∂xµ/∂yν = 0.
Compare (10) with one of Maxwell’s equations,

∂λ∂λA
µ
q − ∂µ∂κAκq = ρµ , (11)

where ∂λA
µ
q ≡ ∂Aµq /∂x

λ and Aµq is the vector potential due to a charged current density ρµ. Clearly, the
two equations (10) and (11) have the same form. We say that (9) and (10) are ‘Maxwell-like’ with ‘current
density’ proportional to jµ1 .

Based on this comparison, we identify Aµi = aJµ as the “intrinsic vector potential” and αµ as the “intrinsic
vector potential matrix” or “matrix vector potential.” Thus (10) becomes the Maxwell-like equation

∂ λ ′∂ ′λA
µ
i − ∂

µ ′∂ ′κA
κ
i = qjµ1 , (12)

where the constant a has been chosen to be
a =

q

12k2
(13)

Note that the intrinsic vector potential Aµi does not satisfy Maxwell’s equation (11) because the parameters
yµ introduced with the Poincaré field Φ in (1) are not spacetime coordinates x. Unlike the matrix quantity
αµ(y), the vector potential Aµq (x) is a function of the same coordinates x as the current density ρµ = qjµ1 (x).

However, that is all right because no intrinsic quantity can be a function of x. The intrinsic quantity
would then have “mechanical” properties, which is like proposing a rotating mass with a density function of
x as the source of the electron’s spin. No mechanical model accounts for electron spin and no mechanical
model should exist for the intrinsic vector potential. Hence, such considerations suggest that the intrinsic
vector potential Aµi should be a function of intrinsic coordinates y, not spacetime coordinates x.
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The Maxwell-like equation (12) is our justification for characterizing the first 4-spinor as charged and the
second 4-spinor as uncharged.

Intrinsic gauge invariance is a property of the Maxwell-like equation (12), meaning that the equation is
unchanged when the intrinsic vector potential αµ undergoes an ‘intrinsic gauge transformation’,

α̃µ = αµ + ∂µχ , (14)

where the gauge function χ(y) is a matrix whose 64 components must have symmetric second partials,
∂ ν ′∂ µ ′χ = ∂ µ ′∂ ν ′χ.

Intrinsic gauge freedom could be used to make the intrinsic vector potential divergence-free. Instead we
find a gauge that makes a mass term and simplifies a lagrangian.

3 Gauge, mass term, field equations

In this section, field equations are determined by a lagrangian built traditionally, but with the intrinsic
momentum and intrinsic vector potential from Sec. 2.

To start with, combine the free-field and interaction lagrangians Lψ = ψ̄pλγ
λψ, LA = −F 2/4, and Lint

= −qAµjµ1 for the particles, electromagnetism and the electromagnetic interaction. Then one includes the
intrinsic momentum πµ with the momentum pµ and the intrinsic vector potential αµ with the vector potential
Aµ. Putting all this together yields the initial lagrangian L1,

L1 ≡ ψ̄
[
(i∂λ + πλ) γλ − q (Aλ + αλ) γλ11

]
ψ − 1

4
FµνF

µν , (15)

where pλ = i∂λ is the momentum, Fµν is the electromagnetic field, Fµν ≡ ∂νAµ−∂µAν , with vector potential
Aµ. The charge current is qjµ1 = qψ̄γλ11ψ,

The interaction lagrangian, i.e. Lint = −qAµjµ1 , does not include jµ2 because we interpret the Maxwell-
like equation (12) as showing that jµ1 , not jµ2 , carries electromagnetic current. The functions of spacetime
coordinates x are ψ, Aµ, and Fµν . The intrinsic vector potential αµ is the only function of the intrinsic
coordinates y.

The field equations depend on the choice of intrinsic gauge. The intrinsic gauge χ is a matrix function of
the ys constrained only by having symmetric second partial derivatives. The gauge transformation replaces
the intrinsic potential αµ by αµ → α̃µ = αµ + ∂µ′χ. Let the intrinsic gauge χ be

χ =
m

4q
yλγ

λ − a
[
yλγ

λ + iky2 (112 + 121) +
k2

3
y2yλγ

λ
11

]
+

1

q
yλπ

λ , (16)

where the constant a is given by (13), a = q/(12k2), and 1ij is the 4× 4 identity matrix in the ij-block. The
intrinsic gauge χ simplifies the lagrangian and introduces the mass term.

With the expressions for the intrinsic gauge χ in (16) and the intrinsic vector potential αµ in (8), the
lagrangian L1 in (15) becomes the lagrangian L that gives field equations. One finds

L(φ, ∂φ) = ψ̄
(
i∂λγ

λ −m111 − qAλγλ11
)
ψ − 1

4
FµνF

µν , (17)

where the placeholder φ indicates the fields ψ̄, ψ,Aµ. All these functions depend on spacetime coordinates
x.
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The intrinsic gauge χ removed the functions of intrinsic coordinates y in αλ from the Lagrangian L1.
By (15), this means that the y-dependence of the expression αλγ

λ
11 is in the form ∂ ′λχγ

λ
11. In one sense, the

scalar product ‘vanishes’, αλγ
λ
11 ≈ 0, because the y-dependence can be gauged away.

The choice of χ in (16) also made the intrinsic momentum term πµ disappear. This is possible because
πµ is the gradient πµ = ∂µ ′

(
yλπ

λ
)

and, therefore, can be absorbed by the gauge. By (A.8), including πµ

would have mixed the components of the two four spinors, which are not mixed without it.
The field equations are found by the Euler-Lagrange equations,

∂L

∂φ
− ∂λ

[
∂L

∂(∂λφ)

]
= 0 , (18)

with suitable boundary conditions, i.e. the fields vanish properly at infinity.
The field equations for the vector potential, φ → Aµ(x), are Maxwell’s equations for a current source

qjµ1 ,
∂λF

µλ = ∂λ∂λA
µ − ∂µ∂λAλ = qjµ1 . (19)

As discussed previously, one can trace the assignment of qjµ1 as the source to the identity (9), a Maxwell-like
equation, obeyed by the intrinsic vector potential matrix αµ.

Varying L with φ→ ψ̄(x) gives a field equation for the 8-spinor ψ,(
i∂λγ

λ − qAλγλ11
)
ψ = m111ψ , (20)

where m111 is written in the block notation defined in the Appendix,

m111 =

(
m 0
0 0

)
. (21)

With the parity matrix β in the Appendix and applying spacial inversion to the partial derivative and vector
potential, the field equation (20) can be shown to be parity-invariant.

Finally, varying φ→ ψ(x) in L gives equations for the 8-spinor field ψ̄(x),

−i∂λψ̄γλ − qAλψ̄γλ11 = mψ̄111 . (22)

While this looks nothing like the equation for ψ, (20), there is a standard process to manipulate it and show
that the two equations are almost identical.

By work shown in the Appendix, with the charge conjugation matrix C, i.e. C = iγ2γt, we have γµT =
−CγµC−1 and since ψ̄ = ψ†γt = ψ∗Tγt, we find that (ψ̄γλ)T = CγλγtC−1ψ∗ = Cγλψc, where the “charge
conjugate” 8-spinor field ψc is the combination

ψc = γtC−1ψ∗ . (23)

Thus the transpose of (22) can be restated to look like (20),(
i∂λγ

λ + qAλγ
λ
11

)
ψc = m111ψ

c . (24)

Comparing (20) and (24), one sees that ψ and ψc satisfy the same equation aside from the sign of the charge
q.

By (20) and (A.2), the first 4-spinor ψ1 obeys the Dirac equation for a charged, massive particle,

(i∂λ − qAλ) γλDψ1 = m1ψ1 . (25)
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See, for example, Ref. [8], Chapter XX.9 for a discussion. And, the second 4-spinor ψ2 obeys the Dirac
equation

γλD∂λψ2 = 0 . (26)

The second fermion ψ2 has neither electromagnetic charge nor mass and obeys free-particle field equations.
Since we recognize the field equation (25) as the traditional 4-spinor Dirac equation, it known to be

invariant under the continuous rep Poincaré group with Dirac formalism rep of the Lorentz group. [8]
Likewise, the field equation (26) has the well-known symmetries of a massless free spin 1/2 particle. For the
symmetries of these traditional equations, see Ref. [3] .

4 Concluding remarks

The field equations do not reflect the underlying 8-spinor translation rep. Just as a displacement shifts all
points in spacetime equally, the 8-spinor translation, i.e. D(1, y) in (A.8), adds portions of one 4-spinor to
the other. Since the field equations (20,22) that are written with the Lorentz field ψ, where ψ = {ψ1, ψ2},
keep ψ1 and ψ2 well separated and independent, the field equations can not be written easily in terms of the
Poincaré field Φ which mixes components when translated.

Indeed, the arbitrary parameter space introduced with the Poincaré field Φ in (1), i.e. the vast intrinsic
spacetime yµ, vanishes from the lagrangian by the choice of intrinsic gauge in (16). All trace of the 8-spinor
translation rep is lost in the lagrangian L in (17), aside from the mass term which does not depend on yµ.
Supplying that mass term for the charged fermion was the goal of the exercise.

A The 8-spinor Rep of the Poincaré group

The 8-spinor matrix rep of the Poincaré group of spacetime rotations and translations is used throughout
the text. Terms like ‘the first 4-spinor’ are keyed to this Appendix. Functions of spacetime also occur and
these transform by the usual “continuous rep” of the Poincaré group with momentum proportional to the
divergence.

Label the points of 3 + 1 Minkowski spacetime with coordinates xµ, where µ ∈ {1, 2, 3, 4}. The time
component is x4 = xt. The Kronecker delta δab is unity for equal indices a = b and vanishes otherwise, a unit
matrix. The spacetime metric ηµν is diagonal with η11 = η22 = η33 = +1 and η44 = −1. Repeated indices
are summed, as in vν ≡ ηµνv

µ.
The 8× 8 matrices in the rep are conveniently split into four 4× 4 blocks. Write Mij for a matrix that

has nonzero components only in the ij block, i, j ∈ {1, 2}. It follows that MijMkl = δjkNil, where matrix
Nil has nonzero components confined to the il block.

The nonzero 4× 4 blocks of each generator are multiples of standard 4× 4 Dirac gamma matrices γµD,

γµD = i

(
0 −τµ
τµ 0

)
; τµ = {

(
0 1
1 0

)
,

(
0 −i

+i 0

)
,

(
1 0
0 −1

)
,

(
1 0
0 1

)
} , (A.1)

with 2× 2 Pauli matrices τµ.
Define γµij to be the 8× 8 matrix with γµD in the ij-block and which vanishes elsewhere. These matrices

satisfy the defining requirement of Dirac gammas [8] in the form γµijγ
ν
kl + γνijγ

µ
kl = 2δjkη

µν1il, where 1il is
null everywhere except for a 4× 4 identity matrix in the il block.
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Write (Λ, b) for any Poincaré transformation reorganized, if needed, to be the spacetime rotation Λ
followed by the translation along the displacement b. A spacetime rotation matrix D(Λ, 0) is generated by
angular momentum matrices σµν and linear momentum matrices πµ generate the translation matrix D(1, b).

The ‘8-spinor gamma matrices’ γµ are the block diagonal matrices

γµ ≡ γµ11 + γµ22 . (A.2)

For the algebra’s generators, angular momentum matrices σµν and the linear momentum matrices πµ, choose

σµν = − i
4

(γµγν − γνγµ) ; πµ = kγµ21 . (A.3)

The generators σµν and πµ obey the commutation relations,

i
[
σµν , σρλ

]
= ηνρσµλ − ηµρσνλ − ηνλσµρ + ηµλσνρ , (A.4)

i [σµν , πρ] = ηνρπµ − ηµρπν and i [πµ, πν ] = 0 , (A.5)

which is the Poincaré algebra.
Space inversion, i.e. parity, changes the sign of spacial vector components, xi → −xi, where i ∈ {1, 2, 3}

now indicates 3D space coordinates. Thus, we can say that xµ → −xµ since −ηii = −1 for our choice of
metric. Also, left and right-handed quantities are switched. [9, 16] In the matrix rep, applying the parity
matrix β, with β = iγt, to the gammas has the form βγµβ−1 = −γµ. For the generators, Parity lowers the
indices of σµν , i.e. βσµνβ−1 = σµν , and the πµ transform like the gammas.

The so-called ‘charge-conjugation’ matrix C, with C = iγ2γt, is needed for the discussion of the adjoint
Dirac equation (24). The matrix C produces block-wise transposes. These are true transposes for block-
diagonal matrices like the gammas γµ, CγµC−1 = −γµT. But, for example with the momentum, charge
conjugation gives an in-block-transpose. The result

(
CπµC−1

)
(21)

= − (πµ)
T
(21) remains in the 21-block.

Compare the preceding 8-spinor Dirac formalism with, for example, the 4-spinor Dirac formalism in [16,18].
Generators combine with real-valued parameters to make transformations. For a spacetime rotation

with parameters ωµν , = −ωνµ, let Λ be the transformation of spacetime tensors in the continuous rep and
let D(Λ, 0) denote the 8 × 8 matrix transformation for 8-spinors. A translation along a displacement bµ

transforms spacetime coordinates by xµ → xµ + bµ, in the continuous rep. In the matrix rep, denote the
translation as D(1, b). Let D(Λ, b) be the matrix for the Poincaré transformation (Λ, b). One has

D(Λ, b) = D(1, b)D(Λ, 0) = e−ibµπ
µ

eiωµνσ
µν/2 , (A.6)

with matrix exponentiation understood.
By definition in (A.3), the nonzero components of the momentum matrices πµ are confined to the 21-

block. It follows that their products vanish, simplifying many expressions,

πµπν = 0 and D(1, b) = e−ibµπ
µ

= 1− ibµπµ , (A.7)

so the translation matrix D(1, b) is linear in bµ. Applied to an 8-spinor ψ, a linear combination of the first
4-spinor’s components is added to the second 4-spinor. We have

D(1, b)ψ =

(
ψ1

ψ2

)
− ibµ

(
0 0
kγµD 0

)(
ψ1

ψ2

)
=

(
ψ1

ψ2 − ikbµγµDψ1

)
. (A.8)

The first 4-spinor ψ1 is the “donor” and the second 4-spinor ψ2 is the “receiver”.
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This additive behavior is in keeping with the inhomogeneous nature of translations. No eigenspinors nor
any eigenvalues of intrinsic translations are possible because there is no 8-spinor ψ with D(1, b)ψ proportional
to ψ. No translation eigenvalues for translations means no contributions to linear momentum. Unlike spin,
which does contribute to the total angular momentum, intrinsic translations do not contribute to the observed
linear momentum of a quantum system.
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