The Navier-Stokes problem

Daniel Thomas Hayes

September 2, 2020
A proposed solution to the millennium problem on the existence and smoothness of the Navier-Stokes equations.

1. Introduction

The Navier-Stokes equations are thought to govern the motion of a fluid in \mathbb{R}^{d} where $d \in \mathbb{N}$, see $[1,3,7]$. Let $\mathbf{u}=\mathbf{u}(\mathbf{x}, t) \in \mathbb{R}^{d}$ be the fluid velocity and let $p=p(\mathbf{x}, t) \in \mathbb{R}$ be the fluid pressure, each dependent on position $\mathbf{x} \in \mathbb{R}^{d}$ and time $t \geqslant 0$. I take the externally applied force acting on the fluid to be identically zero. The fluid is assumed to be incompressible with constant viscosity $v>0$ and to fill all of \mathbb{R}^{d}. The Navier-Stokes equations can then be written as

$$
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u} & =\nu \nabla^{2} \mathbf{u}-\nabla p \tag{1}\\
\nabla \cdot \mathbf{u} & =0 \tag{2}
\end{align*}
$$

with initial condition

$$
\begin{equation*}
\mathbf{u}(\mathbf{x}, 0)=\mathbf{u}_{0} \tag{3}
\end{equation*}
$$

where $\mathbf{u}_{0}=\mathbf{u}_{0}(\mathbf{x}) \in \mathbb{R}^{d}$. In these equations

$$
\begin{equation*}
\nabla=\left(\frac{\partial}{\partial \mathbf{x}_{1}}, \frac{\partial}{\partial \mathbf{x}_{2}}, \ldots, \frac{\partial}{\partial \mathbf{x}_{d}}\right) \tag{4}
\end{equation*}
$$

is the gradient operator and

$$
\begin{equation*}
\nabla^{2}=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial \mathbf{x}_{i}^{2}} \tag{5}
\end{equation*}
$$

is the Laplacian operator. Solutions of (1), (2), (3) are to be found with

$$
\begin{equation*}
\mathbf{u}_{0}\left(\mathbf{x}+L e_{i}\right)=\mathbf{u}_{0}(\mathbf{x}) \tag{6}
\end{equation*}
$$

for $1 \leqslant i \leqslant d$ where e_{i} is the $i^{\text {th }}$ unit vector in \mathbb{R}^{d} and $L>0$ is a constant [7]. The initial condition \mathbf{u}_{0} is a given C^{∞} divergence-free vector field on \mathbb{R}^{d}. A solution of (1), (2), (3) is then accepted to be physically reasonable [3] if

$$
\begin{equation*}
\mathbf{u}\left(\mathbf{x}+L e_{i}, t\right)=\mathbf{u}(\mathbf{x}, t), \quad p\left(\mathbf{x}+L e_{i}, t\right)=p(\mathbf{x}, t) \tag{7}
\end{equation*}
$$

on $\mathbb{R}^{d} \times[0, \infty)$ for $1 \leqslant i \leqslant d$ and

$$
\begin{equation*}
\mathbf{u}, p \in C^{\infty}\left(\mathbb{R}^{d} \times[0, \infty)\right) \tag{8}
\end{equation*}
$$

2. Solution to the Navier-Stokes problem

I provide a proof of the following theorem [2,3,6,7].
Theorem. Let \mathbf{u}_{0} be any smooth, divergence-free vector field satisfying (6). Then there exist smooth functions \mathbf{u}, p on $\mathbb{R}^{d} \times[0, \infty$) that satisfy (1), (2), (3), (7), (8). Proof. Let the Galerkin approximation of \mathbf{u}, p be

$$
\begin{gather*}
\tilde{\mathbf{u}}=\sum_{\mathbf{L}=-\infty}^{\infty} \mathbf{u}_{\mathbf{L}} \mathrm{e}^{\mathrm{i} \mathbf{L} \mathbf{L} \cdot \mathbf{x}}, \tag{9}\\
\tilde{p}=\sum_{\mathbf{L}=-\infty}^{\infty} p_{\mathbf{L}} \mathrm{e}^{\mathrm{i} \mathrm{k} \cdot \mathbf{x}} \tag{10}
\end{gather*}
$$

respectively. Here $\mathbf{u}_{\mathbf{L}}=\mathbf{u}_{\mathbf{L}}(t) \in \mathbb{C}^{d}, p_{\mathbf{L}}=p_{\mathbf{L}}(t) \in \mathbb{C}, \mathrm{i}=\sqrt{-1}, k=2 \pi / L$, and $\sum_{\mathbf{L}=-\infty}^{\infty}$ denotes the sum over all $\mathbf{L} \in \mathbb{Z}^{d}$. The initial condition \mathbf{u}_{0} is a Fourier series [2] of which is convergent for all $\mathbf{x} \in \mathbb{R}^{d}$. Substituting $\mathbf{u}=\tilde{\mathbf{u}}, p=\tilde{p}$ into (1) gives

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t} \mathrm{e}^{\mathrm{i} k \mathbf{L} \cdot \mathbf{x}}+\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left(\mathbf{u}_{\mathbf{L}} \cdot \mathrm{i} k \mathbf{M}\right) \mathbf{u}_{\mathbf{M}} \mathrm{e}^{\mathrm{i} k(\mathbf{L}+\mathbf{M}) \cdot \mathbf{x}} \\
& =-\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}|\mathbf{L}|^{2} \mathbf{u}_{\mathbf{L}} \mathrm{e}^{\mathrm{i} \mathbf{L} \mathbf{L} \cdot \mathbf{x}}-\sum_{\mathbf{L}=-\infty}^{\infty} \mathrm{i} k \mathbf{L} p_{\mathbf{L}} \mathrm{e}^{\mathrm{i} \mathbf{k L} \cdot \mathbf{x}} . \tag{11}
\end{align*}
$$

Equating like powers of the exponentials in (11) yields

$$
\begin{equation*}
\frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \mathrm{i} k \mathbf{M}\right) \mathbf{u}_{\mathbf{M}}=-v k^{2}|\mathbf{L}|^{2} \mathbf{u}_{\mathbf{L}}-\mathrm{i} k \mathbf{L} p_{\mathbf{L}} \tag{12}
\end{equation*}
$$

on using the Cauchy product type formula [4]

$$
\begin{equation*}
\sum_{l=-\infty}^{\infty} a_{l} x^{l} \sum_{m=-\infty}^{\infty} b_{m} x^{m}=\sum_{l=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_{l-m} b_{m} x^{l} \tag{13}
\end{equation*}
$$

Substituting $\mathbf{u}=\tilde{\mathbf{u}}$ into (2) gives

$$
\begin{equation*}
\sum_{\mathbf{L}=-\infty}^{\infty} \mathrm{i} k \mathbf{L} \cdot \mathbf{u}_{\mathbf{L}} \mathrm{e}^{\mathrm{i} k \mathbf{L} \cdot \mathbf{x}}=0 \tag{14}
\end{equation*}
$$

Equating like powers of the exponentials in (14) yields

$$
\begin{equation*}
\mathbf{L} \cdot \mathbf{u}_{\mathbf{L}}=0 . \tag{15}
\end{equation*}
$$

Applying $\mathbf{L} \cdot$ to (12) and noting (15) leads to

$$
\begin{equation*}
p_{\mathbf{L}}=-\sum_{\mathbf{M}=-\infty}^{\infty}\left(\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \hat{\mathbf{L}}\right)\left(\mathbf{u}_{\mathbf{M}} \cdot \hat{\mathbf{L}}\right) \tag{16}
\end{equation*}
$$

where p_{0} is arbitrary and $\hat{\mathbf{L}}=\mathbf{L} /|\mathbf{L}|$ is the unit vector in the direction of \mathbf{L}. Then substituting (16) into (12) gives

$$
\begin{equation*}
\frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t}=-\sum_{\mathbf{M}=-\infty}^{\infty}\left(\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \mathrm{i} k \mathbf{M}\right) \mathbf{u}_{\mathbf{M}}-v k^{2}|\mathbf{L}|^{2} \mathbf{u}_{\mathbf{L}}+\sum_{\mathbf{M}=-\infty}^{\infty} \mathrm{i} k \mathbf{L}\left(\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \hat{\mathbf{L}}\right)\left(\mathbf{u}_{\mathbf{M}} \cdot \hat{\mathbf{L}}\right) \tag{17}
\end{equation*}
$$

where $\mathbf{u}_{\mathbf{0}}=\mathbf{u}_{\mathbf{0}}(0)$. Without loss of generality [2], I take $\mathbf{u}_{\mathbf{0}}=\mathbf{0}$. This is due to the Galilean invariance property of solutions to the Navier-Stokes equations. The equations for $\mathbf{u}_{\mathbf{L}}$ are to be solved for all $\mathbf{L} \in \mathbb{Z}^{d}$.
Let

$$
\begin{gather*}
\mathbf{u}_{\mathbf{L}}=\mathbf{a}_{\mathbf{L}}+\mathrm{i} \mathbf{b}_{\mathbf{L}}, \tag{18}\\
p_{\mathbf{L}}=c_{\mathbf{L}}+\mathrm{i} d_{\mathbf{L}} \tag{19}
\end{gather*}
$$

where $\mathbf{a}_{\mathbf{L}}=\mathbf{a}_{\mathbf{L}}(t) \in \mathbb{R}^{d}, \mathbf{b}_{\mathbf{L}}=\mathbf{b}_{\mathbf{L}}(t) \in \mathbb{R}^{d}, c_{\mathbf{L}}=c_{\mathbf{L}}(t) \in \mathbb{R}$, and $d_{\mathbf{L}}=d_{\mathbf{L}}(t) \in \mathbb{R}$. Substituting (18), (19) into (12) gives

$$
\begin{align*}
& \frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t}+\mathrm{i} \frac{\partial \mathbf{b}_{\mathbf{L}}}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}}+\mathrm{i} \mathbf{b}_{\mathbf{L}-\mathbf{M}}\right) \cdot \mathrm{i} k \mathbf{M}\right)\left(\mathbf{a}_{\mathbf{M}}+\mathrm{i} \mathbf{b}_{\mathbf{M}}\right) \\
& =-v k^{2}|\mathbf{L}|^{2}\left(\mathbf{a}_{\mathbf{L}}+\mathrm{i} \mathbf{b}_{\mathbf{L}}\right)-\mathrm{i} k \mathbf{L}\left(c_{\mathbf{L}}+\mathrm{i} d_{\mathbf{L}}\right) \tag{20}
\end{align*}
$$

Equating real and imaginary parts in (20) gives

$$
\begin{align*}
& \frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(-\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}\right)=-v k^{2}|\mathbf{L}|^{2} \mathbf{a}_{\mathbf{L}}+k \mathbf{L} d_{\mathbf{L}} \tag{21}\\
& \frac{\partial \mathbf{b}_{\mathbf{L}}}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}\right)=-v k^{2}|\mathbf{L}|^{2} \mathbf{b}_{\mathbf{L}}-k \mathbf{L} c_{\mathbf{L}} \tag{22}
\end{align*}
$$

Substituting (18) into (15) gives

$$
\begin{equation*}
\mathbf{L} \cdot\left(\mathbf{a}_{\mathbf{L}}+i \mathbf{b}_{\mathbf{L}}\right)=0 \tag{23}
\end{equation*}
$$

Equating real and imaginary parts in (23) gives

$$
\begin{align*}
& \mathbf{L} \cdot \mathbf{a}_{\mathbf{L}}=0, \tag{24}\\
& \mathbf{L} \cdot \mathbf{b}_{\mathbf{L}}=0 . \tag{25}
\end{align*}
$$

From (21) and in light of (24) it is possible to write

$$
\begin{equation*}
\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} \cdot \hat{\mathbf{a}}_{\mathbf{L}}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(-\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}\right) \cdot \hat{\mathbf{a}}_{\mathbf{L}}=-v k^{2}|\mathbf{L}|^{2} \mathbf{a}_{\mathbf{L}} \cdot \hat{\mathbf{a}}_{\mathbf{L}} \tag{26}
\end{equation*}
$$

where $\hat{\mathbf{a}}_{\mathbf{L}}=\mathbf{a}_{\mathbf{L}} /\left|\mathbf{a}_{\mathbf{L}}\right|$ is the unit vector in the direction of $\mathbf{a}_{\mathbf{L}}$. Then (26) implies

$$
\begin{equation*}
\frac{\partial\left|\mathbf{a}_{\mathbf{L}}\right|}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(-\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}\right) \cdot \hat{\mathbf{a}}_{\mathbf{L}}=-v k^{2}|\mathbf{L}|^{2}\left|\mathbf{a}_{\mathbf{L}}\right| \tag{27}
\end{equation*}
$$

From (27) it is possible to write

$$
\begin{equation*}
\frac{\partial\left|\mathbf{a}_{\mathbf{L}}\right|}{\partial t} \leqslant \sum_{\mathbf{M}=-\infty}^{\infty}\left(\left|\mathbf{a}_{\mathbf{L}-\mathbf{M}}\right| k|\mathbf{M}|\left|\mathbf{b}_{\mathbf{M}}\right|+\left|\mathbf{b}_{\mathbf{L}-\mathbf{M}}\right| k\left|\mathbf{M} \| \mathbf{a}_{\mathbf{M}}\right|\right)-v k^{2}|\mathbf{L}|^{2}\left|\mathbf{a}_{\mathbf{L}}\right| \tag{28}
\end{equation*}
$$

on using the Cauchy-Schwarz inequality [5]

$$
\begin{equation*}
|\mathbf{a} \cdot \mathbf{b}| \leqslant|\mathbf{a}||\mathbf{b}| . \tag{29}
\end{equation*}
$$

It then follows from (28) that

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{a}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| X} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}-\mathbf{M}}\right| k\left|\mathbf{M} \|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}| X}\right. \\
& +\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}-\mathbf{M}}\right| k|\mathbf{M}|\left|\mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}| X}-\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}|\mathbf{L}|^{2}\left|\mathbf{a}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| X} \tag{30}
\end{align*}
$$

where $0 \leqslant X \ll 1$, implying that

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{a}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| X} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}\right| k\left|\mathbf{M} \| \mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}+\mathbf{M}| X} \\
& +\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}}\right| k|\mathbf{M}|\left|\mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}+\mathbf{M}| X}-\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}|\mathbf{L}|^{2}\left|\mathbf{a}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| X} \tag{31}
\end{align*}
$$

in light of (13), which yields

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{a}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| X} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}\right| k\left|\mathbf{M} \|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k(\mathbf{L}|+|\mathbf{M}|) X}\right. \\
& +\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}}\right| k|\mathbf{M}|\left|\mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k(\mathbf{L}|+|\mathbf{M}|) X}-\sum_{\mathbf{L}=-\infty}^{\infty} \gamma k^{2}|\mathbf{L}|^{2}\left|\mathbf{a}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| X} \tag{32}
\end{align*}
$$

on using the triangle inequality [5]

$$
\begin{equation*}
|\mathbf{a}+\mathbf{b}| \leqslant|\mathbf{a}|+|\mathbf{b}| . \tag{33}
\end{equation*}
$$

From (22) and in light of (25) it is possible to write

$$
\begin{equation*}
\frac{\partial \mathbf{b}_{\mathbf{L}}}{\partial t} \cdot \hat{\mathbf{b}}_{\mathbf{L}}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}\right) \cdot \hat{\mathbf{b}}_{\mathbf{L}}=-v k^{2}|\mathbf{L}|^{2} \mathbf{b}_{\mathbf{L}} \cdot \hat{\mathbf{b}}_{\mathbf{L}} \tag{34}
\end{equation*}
$$

where $\hat{\mathbf{b}}_{\mathbf{L}}=\mathbf{b}_{\mathbf{L}} /\left|\mathbf{b}_{\mathbf{L}}\right|$ is the unit vector in the direction of $\mathbf{b}_{\mathbf{L}}$. Then (34) implies

$$
\begin{equation*}
\frac{\partial\left|\mathbf{b}_{\mathbf{L}}\right|}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}\right) \cdot \hat{\mathbf{b}}_{\mathbf{L}}=-v k^{2}|\mathbf{L}|^{2}\left|\mathbf{b}_{\mathbf{L}}\right| \tag{35}
\end{equation*}
$$

From (35) it is possible to write

$$
\begin{equation*}
\frac{\partial\left|\mathbf{b}_{\mathbf{L}}\right|}{\partial t} \leqslant \sum_{\mathbf{M}=-\infty}^{\infty}\left(\left|\mathbf{a}_{\mathbf{L}-\mathbf{M}}\right| k|\mathbf{M}|\left|\mathbf{a}_{\mathbf{M}}\right|+\left|\mathbf{b}_{\mathbf{L}-\mathbf{M}}\right| k|\mathbf{M}|\left|\mathbf{b}_{\mathbf{M}}\right|\right)-v k^{2}|\mathbf{L}|^{2}\left|\mathbf{b}_{\mathbf{L}}\right| \tag{36}
\end{equation*}
$$

on using the Cauchy-Schwarz inequality. It then follows from (36) that

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{b}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| X} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}-\mathbf{M}}\right| k\left|\mathbf{M} \| \mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}| X} \\
& +\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}-\mathbf{M}}\right| k|\mathbf{M}|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}| X}-\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}|\mathbf{L}|^{2}\left|\mathbf{b}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| X} \tag{37}
\end{align*}
$$

implying that

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{b}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| X} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}\right| k\left|\mathbf{M} \| \mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}+\mathbf{M}| X} \\
& +\left.\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}}\right| k\left|\mathbf{M} \|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}+\mathbf{M}| X}-\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}\right| \mathbf{L}\right|^{2}\left|\mathbf{b}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| X} \tag{38}
\end{align*}
$$

in light of (13), which yields

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{b}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| X} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}\right| k|\mathbf{M}|\left|\mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k(\mathbf{L}|+|\mathbf{M}|) X} \\
& +\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}}\right| k|\mathbf{M}|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k(\mathbf{L}|+|\mathbf{M}|) X}-\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}|\mathbf{L}|^{2}\left|\mathbf{b}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| X} \tag{39}
\end{align*}
$$

on using the triangle inequality.
Let

$$
\begin{equation*}
\psi=\sum_{\mathbf{L}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| X}, \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\phi=\sum_{\mathbf{L}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| X} \tag{41}
\end{equation*}
$$

and note that $|\tilde{\mathbf{u}}| \leqslant Q$ where $Q=\psi+\phi$. Then (32) can be written as

$$
\begin{equation*}
\frac{\partial \psi}{\partial t} \leqslant \psi \frac{\partial \phi}{\partial X}+\phi \frac{\partial \psi}{\partial X}-v \frac{\partial^{2} \psi}{\partial X^{2}} \tag{42}
\end{equation*}
$$

and (39) can be written as

$$
\begin{equation*}
\frac{\partial \phi}{\partial t} \leqslant \psi \frac{\partial \psi}{\partial X}+\phi \frac{\partial \phi}{\partial X}-v \frac{\partial^{2} \phi}{\partial X^{2}} . \tag{43}
\end{equation*}
$$

Adding (42) and (43) yields

$$
\begin{equation*}
\frac{\partial Q}{\partial t} \leqslant Q \frac{\partial Q}{\partial X}-v \frac{\partial^{2} Q}{\partial X^{2}} \tag{44}
\end{equation*}
$$

Now both

$$
\begin{equation*}
\left.\tilde{\mathbf{a}}\right|_{t=0}=\sum_{\mathbf{L}=-\infty}^{\infty} \mathbf{a}_{\mathbf{L}}(0) \mathrm{e}^{\mathrm{i} \mathbf{k} \mathbf{L} \cdot \mathbf{x}} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\tilde{\mathbf{b}}\right|_{t=0}=\sum_{\mathbf{L}=-\infty}^{\infty} \mathbf{b}_{\mathbf{L}}(0) \mathrm{e}^{\mathrm{i} k \mathbf{L} \cdot \mathbf{x}} \tag{46}
\end{equation*}
$$

converge for all $\mathbf{x} \in \mathbb{R}^{d}$ since $\mathbf{u}_{0}=\left.\tilde{\mathbf{u}}\right|_{t=0}=\left.\tilde{\mathbf{a}}\right|_{t=0}+\left.\mathrm{i} \tilde{\mathbf{b}}\right|_{t=0}$ is smooth. Then

$$
\begin{equation*}
\sum_{\mathbf{L}=-\infty}^{\infty}\left\{\mathbf{a}_{\mathbf{L}}(0)\right\}_{i}^{2}<\infty \tag{47}
\end{equation*}
$$

for $1 \leqslant i \leqslant d$ in light of Theorem 3.5-2 of [5] which yields

$$
\begin{equation*}
\sum_{\mathbf{L}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}(0)\right|^{2}<\infty \tag{48}
\end{equation*}
$$

Then with $n \in \mathbb{N}$

$$
\begin{align*}
\sum_{\mathbf{L} \neq \mathbf{0}}\left|\mathbf{a}_{\mathbf{L}}(0)\right| & =\sum_{\mathbf{L} \neq \mathbf{0}}\left|\mathbf{a}_{\mathbf{L}}(0)\right||\mathbf{L}|^{n}|\mathbf{L}|^{-n} \\
& \leqslant\left(\sum_{\mathbf{L} \neq \mathbf{0}}\left|\mathbf{a}_{\mathbf{L}}(0)\right|^{2}|\mathbf{L}|^{2 n}\right)^{1 / 2}\left(\sum_{\mathbf{L} \neq \mathbf{0}}|\mathbf{L}|^{-2 n}\right)^{1 / 2} \tag{49}
\end{align*}
$$

on using the Cauchy-Schwarz inequality. It can be found that there are less than $c q^{d}$ vectors \mathbf{L} with $|\mathbf{L}|^{2}=q$ where $c=c(d)$. Then

$$
\begin{equation*}
\sum_{\mathbf{L} \neq \mathbf{0}}|\mathbf{L}|^{-2 n}=\sum_{q=1}^{\infty} h_{q} q^{-n} \tag{50}
\end{equation*}
$$

where h_{q} is the number of vectors \mathbf{L} with $|\mathbf{L}|^{2}=q$. Therefore

$$
\begin{equation*}
\sum_{\mathbf{L} \neq \mathbf{0}}|\mathbf{L}|^{-2 n}<\sum_{q=1}^{\infty} c q^{d} q^{-n} . \tag{51}
\end{equation*}
$$

It is possible to choose $n>d+1 \in \mathbb{N}$ so that (50) converges. It then follows that

$$
\begin{equation*}
\sum_{\mathbf{L} \neq 0}\left|\mathbf{a}_{\mathbf{L}}(0)\right|<\infty \tag{52}
\end{equation*}
$$

since $\mathbf{u}_{0}=\left.\tilde{\mathbf{u}}\right|_{t=0}$ is smooth. Likewise,

$$
\begin{equation*}
\sum_{\mathbf{L} \neq \mathbf{0}}\left|\mathbf{b}_{\mathbf{L}}(0)\right|<\infty . \tag{53}
\end{equation*}
$$

Therefore $\left.Q\right|_{X=t=0}$ converges. Similarly $\left.\frac{\partial^{2} Q}{\partial X^{2}}\right|_{X=t=0}$ converges and therefore $\left.Q\right|_{t=0}$ converges for $0 \leqslant X \ll 1$. Note also that

$$
\begin{equation*}
\frac{\partial^{s} Q}{\partial X^{s}} \geqslant 0 \text { for } s \geqslant 0 \tag{54}
\end{equation*}
$$

At points where Q is a maximum,

$$
\begin{equation*}
\frac{\partial Q}{\partial t} \geqslant 0 . \tag{55}
\end{equation*}
$$

Equation (44) can be written as

$$
\begin{equation*}
\frac{\partial Q}{\partial t}-Q \frac{\partial Q}{\partial X}+v \frac{\partial^{2} Q}{\partial X^{2}}=H \tag{56}
\end{equation*}
$$

where $H=H(X, t) \leqslant 0$ can be thought of as a force. The extreme case is then $Q=\Omega$ where

$$
\begin{equation*}
\frac{\partial \Omega}{\partial t}=\Omega \frac{\partial \Omega}{\partial X}-v \frac{\partial^{2} \Omega}{\partial X^{2}} \tag{57}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Omega=\lambda \frac{\partial A}{\partial X} / A=\lambda \frac{\partial}{\partial X} \log _{\mathrm{e}} A \tag{58}
\end{equation*}
$$

where λ is a constant. Substituting (58) into (57) gives

$$
\begin{equation*}
\lambda \frac{\partial}{\partial X}\left(\frac{\partial A}{\partial t} / A\right)=\lambda^{2} \frac{1}{2} \frac{\partial}{\partial X}\left(\left(\frac{\partial A}{\partial X} / A\right)^{2}\right)-\lambda v \frac{\partial}{\partial X}\left(\left(\frac{\partial^{2} A}{\partial X^{2}} A-\left(\frac{\partial A}{\partial X}\right)^{2}\right) / A^{2}\right) . \tag{59}
\end{equation*}
$$

Then with $\lambda=-2 v$, equation (59) gives

$$
\begin{equation*}
\frac{\partial}{\partial X}\left(\frac{\partial A}{\partial t} / A\right)=-v \frac{\partial}{\partial X}\left(\frac{\partial^{2} A}{\partial X^{2}} / A\right) \tag{60}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\frac{\partial A}{\partial t}=-v \frac{\partial^{2} A}{\partial X^{2}}+h A \tag{61}
\end{equation*}
$$

where $h=h(t)$ is arbitrary.
The separation of variables method and the form of Q necessitates to let

$$
\begin{equation*}
A=\sum_{\mathbf{L}=-\infty}^{\infty} A_{\mathbf{L}} \mathrm{e}^{k|\mathbf{L}| X} \tag{62}
\end{equation*}
$$

where $A_{\mathbf{L}}=A_{\mathbf{L}}(t)$. Substituting (62) into (61) gives

$$
\begin{equation*}
\sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial A_{\mathbf{L}}}{\partial t} \mathrm{e}^{k|\mathbf{L}| X}=-v \sum_{\mathbf{L}=-\infty}^{\infty} k^{2}|\mathbf{L}|^{2} A_{\mathbf{L}} \mathrm{e}^{k|\mathbf{L}| X}+h \sum_{\mathbf{L}=-\infty}^{\infty} A_{\mathbf{L}} \mathrm{e}^{k|\mathbf{L}| X} \tag{63}
\end{equation*}
$$

Equating like powers of the exponentials in (63) leads to

$$
\begin{equation*}
\frac{\partial A_{\mathbf{L}}}{\partial t}=-v k^{2}|\mathbf{L}|^{2} A_{\mathbf{L}}+A_{\mathbf{L}} h \tag{64}
\end{equation*}
$$

Equation (64) is easily solved to find

$$
\begin{equation*}
A_{\mathbf{L}}=A_{\mathbf{L}}(0) \mathrm{e}^{-v k^{2}|\mathbf{L}|^{2} t+\int_{0}^{t} h(\tau) d \tau} \tag{65}
\end{equation*}
$$

It then follows that

$$
\begin{equation*}
\Omega=\frac{\partial}{\partial X} \log _{\mathrm{e}}\left(\left(\sum_{\mathbf{L}=-\infty}^{\infty} A_{\mathbf{L}}(0) \mathrm{e}^{-v k^{2}|\mathbf{L}|^{2} t} \mathrm{e}^{k|\mathbf{L}| X}\right)^{-2 v}\right) \tag{66}
\end{equation*}
$$

Now with

$$
\begin{equation*}
\Omega=\sum_{\mathbf{L}=-\infty}^{\infty} \Omega_{\mathbf{L}} \mathrm{e}^{k|\mathbf{L}| X}, \Omega_{\mathbf{0}}=0 \tag{67}
\end{equation*}
$$

where $\Omega_{\mathbf{L}}=\Omega_{\mathbf{L}}(t) \geqslant 0$ it follows that

$$
\begin{align*}
\left.A\right|_{t=0} & =\left.\mathrm{e}^{\int^{X} \frac{\Omega}{\lambda} d X}\right|_{t=0} \\
& =\mathrm{e}^{\frac{1}{\lambda} \sum_{\mathbf{L} \neq 0} \frac{\Omega_{\mathbf{L}}(0) \mathrm{e}^{k|\mathbf{L}| X}}{k \mid \mathbf{L}}} \\
& =1+\frac{1}{\lambda} \sum_{\mathbf{L} \neq \mathbf{0}} \frac{\Omega_{\mathbf{L}}(0) \mathrm{e}^{k|\mathbf{L}| X}}{k|\mathbf{L}|}+\frac{1}{2}\left(\frac{1}{\lambda} \sum_{\mathbf{L} \neq \mathbf{0}} \frac{\Omega_{\mathbf{L}}(0) \mathrm{e}^{k|\mathbf{L}| X}}{k|\mathbf{L}|}\right)^{2}+\ldots \tag{68}
\end{align*}
$$

which is valid since $\left.Q\right|_{t=0}$ converges for $0 \leqslant X \ll 1$. For consistency, matching (62) with (68) yields

$$
\begin{equation*}
A_{\mathbf{0}}(0)=1, \quad A_{\mathbf{L}}(0)=\frac{\Omega_{\mathbf{L}}(0)}{\lambda k|\mathbf{L}|}+O\left(\frac{1}{\lambda^{2} k^{2}}\right) \text { for } \mathbf{L} \neq \mathbf{0} \tag{69}
\end{equation*}
$$

Then (66) becomes

$$
\begin{equation*}
\Omega=\frac{\partial}{\partial X} \log _{\mathrm{e}}\left(A^{\lambda}\right) \tag{70}
\end{equation*}
$$

where

$$
\begin{equation*}
A=1+\sum_{\mathbf{L} \neq \mathbf{0}}\left(\frac{\Omega_{\mathbf{L}}(0)}{\lambda k|\mathbf{L}|}+O\left(\frac{1}{\lambda^{2} k^{2}}\right)\right) \mathrm{e}^{-\left.\nu k^{2} \mathbf{L}\right|^{2} t} \mathrm{e}^{k|\mathbf{L}| X}=\mathrm{e}^{\int^{X} \frac{\Omega}{\lambda} d X} . \tag{71}
\end{equation*}
$$

Equation (71) can be written as

$$
\begin{align*}
A= & 1+\left\{\frac{1}{2}\left(\frac{1}{\lambda k}\right)^{2} \sum_{\mathbf{L} \neq \mathbf{0}} \sum_{\mathbf{M} \neq \mathbf{0}} \frac{\Omega_{\mathbf{L}}(0) \Omega_{\mathbf{M}}(0)}{|\mathbf{L} \| \mathbf{M}|} \mathrm{e}^{k(\mathbf{L}|+|\mathbf{M}| X} \mathrm{e}^{-v k^{2}(\mathbf{L}|+| \mathbf{M})^{2} t}\right. \\
& +\frac{1}{24}\left(\frac{1}{\lambda k}\right)^{4} \sum_{\mathbf{L} \neq \mathbf{0}} \sum_{\mathbf{M} \neq 0} \sum_{\mathbf{N} \neq 0} \sum_{\mathbf{P} \neq \mathbf{0}} \frac{\Omega_{\mathbf{L}}(0) \Omega_{\mathbf{M}}(0) \Omega_{\mathbf{N}}(0) \Omega_{\mathbf{P}}(0)}{|\mathbf{L}||\mathbf{M}| \mathbf{N} \| \mathbf{P} \mid} \\
& \left.\times \mathrm{e}^{k(\mathbf{L}|+|\mathbf{M}|+|\mathbf{N}|+|\mathbf{P}|) X} \mathrm{e}^{-v k^{2}\left(\mathbf{L}|+|\mathbf{M}|+|\mathbf{N}|+|\mathbf{P}|)^{2} t\right.}+\ldots\right\}+\left\{\left(\frac{1}{\lambda k}\right) \sum_{\mathbf{L} \neq \mathbf{0}} \frac{\Omega_{\mathbf{L}}(0)}{|\mathbf{L}|} \mathrm{e}^{k|\mathbf{L}| X} \mathrm{e}^{-v k^{2}|\mathbf{L}|^{2} t}\right. \\
& +\frac{1}{6}\left(\frac{1}{\lambda k}\right)^{3} \sum_{\mathbf{L} \neq \mathbf{0}} \sum_{\mathbf{M} \neq \mathbf{0}} \sum_{\mathbf{N} \neq \mathbf{0}} \frac{\Omega_{\mathbf{L}}(0) \Omega_{\mathbf{M}}(0) \Omega_{\mathbf{N}}(0)}{|\mathbf{L}\|\mathbf{M}\| \mathbf{N}|} \mathrm{e}^{k(\mathbf{L}|+|\mathbf{M}|+| \mathbf{N}) X} \mathrm{e}^{-v k^{2}(|\mathbf{L}|+|\mathbf{M}|+\mid \mathbf{N})^{2} t} \\
& +\ldots\} . \tag{72}
\end{align*}
$$

In light of (72) and due to $A \in[0,1]$ from (71) it is then clear that A increases with increasing $t \geqslant 0$. This is more easily seen to be the case by applying the Cauchy product type formula to (72). It then follows that Ω has no finite-time singularity at $X=0$ and $|\tilde{\mathbf{u}}| \leqslant\left.\Omega\right|_{X=0}$. Similarly it can be shown that $\frac{\partial^{2} \Omega}{\partial X^{2}}$ has no finite-time singularity at $X=0$ and $\left|\nabla^{2} \tilde{\mathbf{u}}\right| \leqslant\left.\frac{\partial^{2} \Omega}{\partial X^{2}}\right|_{X=0}$. Then $\sum_{\mathbf{L}=-\infty}^{\infty} k^{4}|\mathbf{L}|^{4}\left|\mathbf{u}_{\mathbf{L}}\right|^{2}$ converges for all $t \geqslant 0$ in light of Theorem 3.5-2 of [5]. It then follows that [2]

$$
\begin{equation*}
\sup _{0 \leqslant \leqslant T} v \sum_{\mathbf{L}=-\infty}^{\infty}|\mathbf{L}|^{2}\left|\mathbf{u}_{\mathbf{L}}\right|^{2}<\infty \tag{73}
\end{equation*}
$$

for all $T \geqslant 0$. Therefore the theorem is true.

References

[1] Batchelor G. 1967. An introduction to fluid dynamics. Cambridge U. Press, Cambridge.
[2] Doering C. 2009. The 3D Navier-Stokes problem. Annu. Rev. Fluid Mech. 41: 109-128.
[3] Fefferman C. 2000. Existence and smoothness of the Navier-Stokes equation. Clay Mathematics Institute. Official problem description.
[4] Hardy G. 1949. Divergent series. Oxford University Press.
[5] Kreyszig E. 1989. Introductory functional analysis with applications. Wiley

Classics Library.
[6] Ladyzhenskaya O. 1969. The mathematical theory of viscous incompressible flows. Gordon and Breach, New York.
[7] Tao T. 2013. Localisation and compactness properties of the Navier-Stokes global regularity problem. Analysis and PDE. 6: 25-107.

