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Abstract

By Newton’s Third Law the gravitational forces on the two stars of a binary system are equal and
opposite, so the acceleration of each star is inversely proportional to its mass, which yields the ratio of
the two stars’ masses. However the difference of the two stars’ gravitational accelerations is proportional
to the sum of their masses; it is also inversely proportional to the square of their vector separation, so
that vector separation traces out an elliptical orbit. The orbit’s period plus its major axis length yields
the sum of the stars’ masses. The complete orbit isn’t required; five or more of the points which lie on
an ellipse determine it, and the orbit sweeps out the area enclosed by the ellipse at a constant rate.

The Newtonian gravitational accelerations of the stars of a binary system

Newton’s Law of Gravitational Force together with his Second Law of Motion imply the following coupled
equations of motion for the two stars of a binary system,

m1r̈1 = −Gm1m2(r1 − r2)/|r1 − r2|3 and m2r̈2 = −Gm2m1(r2 − r1)/|r2 − r1|3, (1a)

which, since the forces −Gm1m2(r1−r2)/|r1−r2|3 and −Gm2m1(r2−r1)/|r2−r1|3 are equal and opposite,
is consonant with Newton’s Third Law of Motion. Eq. (1a) immediately yields,

m1r̈1 +m2r̈2 = 0 ⇒ r̈2 = −(m1/m2)r̈1, (1b)

so the ratio of the masses of the two stars of a binary system can immediately be obtained from the
magnitudes of their oppositely-directed accelerations r̈1 and r̈1.

Moreover, the two Eq. (1a) coupled equations of motion can also be written,

r̈1 = −Gm2(r1 − r2)/|r1 − r2|3 and r̈2 = −Gm1(r2 − r1)/|r2 − r1|3, (1c)

which shows that the acceleration of each star is independent of its own mass, in accord with the gravitational
principle of equivalence. Subtracting the two equations given by Eq. (1c) yields the equation of motion for
the vector separation r = (r1 − r2) of the two stars,

r̈ = −GMr/|r|3, where r
def
= (r1 − r2) and M

def
= (m1 +m2), (1d)

which purely for reasons of familiarity of terminology, can also conveniently be presented as,

mr̈ = −GmMr/|r|3, where m
def
= m1m2/(m1 +m2) = m1m2/M has the name “reduced mass”. (1e)

Since in Eq. (1e), mM = m1m2 and r = (r1−r2), the Eq. (1e) “force” −GmMr/|r|3 is equal to the Eq. (1a)
force −Gm1m2(r1 − r2)/|r1 − r2|3. The Eq. (1e) presentation of the Eq. (1d) vector-separation equation of
motion sanctions the use of familiar terminology such as “force” for −GmMr/|r|3, “angular momentum” L
for m(r× ṙ) and “energy” E for m(|ṙ|2/2−GM/|r|).

In the next section we obtain the elliptical locus and also the relation of the orbital period to the area
enclosed by that locus of the orbit described by the Eq. (1d) equation of motion for the vector-separation
r = (r1 − r2) of the two stars. This yields the sum of the masses M = (m1 +m2) of the two stars from the
that orbit’s period and major-axis length in conjunction with the universal gravitational constant G.

The sum of the two stars’ masses from their vector-separation elliptical orbit

The Eq. (1d) vector-separation equation of motion r̈ = −GMr/|r|3 yields “angular momentum” conservation,

d(L/m)/dt = d(r× ṙ)/dt = (ṙ× ṙ) + (r× r̈) = (ṙ× ṙ)−GM(r× r)/|r|3 = 0. (2a)

Since (L/m) = (r × ṙ) is a constant vector , r(t) and ṙ(t) are always confined to the plane perpendicular to

that constant vector , i.e., r(t) is planar . Thus |r× ṙ| = (|L|/m) alone is relevant, so we define L
def
= |L|.

The Eq. (1d) vector-separation equation of motion r̈ = −GMr/|r|3 also yields “energy” conservation,

d(E/m)/dt = d
(
|ṙ|2/2−GM/|r|

)
/dt =

d
(
(ṙ · ṙ)/2−GM/(r · r)

1
2

)
/dt = (ṙ · r̈) +GM

(
(ṙ · r)/(r · r)

3
2

)
= ṙ ·

(
r̈ +GMr/|r|3

)
= 0.

(2b)
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Having shown that the Eq. (1d) equation of motion r̈ = −GMr/|r|3 for the vector-separation r = (r1−r2)
of the two stars implies the conservation relations (r × ṙ) = (L/m) and (|ṙ|2/2 − GM/|r|) = (E/m), we
would like to solve these conservation relations for the locus of that two-star vector-separation orbit, from
which we in turn would like to obtain enough information to determine M = (m1 +m2), the sum of the two
star masses. Since we now know that this orbit is planar , the first thing we need to do is to express these
conservation relations in two-dimensional polar coordinates, which have the following properties,

r = (r cos θ, r sin θ), |r| = r,

ṙ = (ṙ cos θ − rθ̇ sin θ, ṙ sin θ + rθ̇ cos θ), |ṙ|2 = (ṙ)2 + r2(θ̇)2, |r× ṙ| = r2|θ̇|.
(3a)

Thus expressed in two-dimensional polar coordinates, |r× ṙ| = (L/m) becomes,

r2|θ̇| = (L/m), (3b)

and in those coordinates (|ṙ|2/2−GM/|r|) = (E/m) becomes,(
(ṙ)2 + r2(θ̇)2

)/
2−GM/r = (E/m) (3c)

We won’t try to solve Eqs. (3c) and (3b) for r(t) and θ(t). We intend to use Eqs. (3c) and (3b) to obtain only
the orbit’s locus r(θ). Therefore we first insert the relation (ṙ)2 = (dr/dθ)2(θ̇)2 into Eq. (3c), and only then
do we use Eq. (3b) to eliminate |θ̇| from Eq. (3c), which produces the following locus differential equation,

(L/m)2r−4
(
(dr/dθ)2 + r2

)/
2−GM/r = (E/m). (3d)

The disquieting factor r−4 in Eq. (3d) is eliminated upon changing the dependent variable from r to u = (1/r)
because dr/dθ = −u−2(du/dθ); after that change of dependent variable, Eq. (3d) reads,

(L/m)2
(
(du/dθ)2 + u2

)/
2−GMu = (E/m) (3e)

We know that Eq. (1d) can be satisfied by circular orbits. Indeed Eq. (3e) can also be satisfied by the simple
circular constant locus u(θ) = 1/ρ0 if (L/m)2 and (E/m) are adjusted to accommodate it. But circular
orbits clearly aren’t general solutions of either Eq. (1d) or Eq. (3e). In the limit of zero gravitational force,
namely when M is put to zero, Eq. (1d) is obviously satisfied by straight-line trajectories (Newton’s First
Law of Motion). In two-dimensional rectangular coordinates, a straight-line locus has the form,

ax− by =
(
a2 + b2

) 1
2 ρ0,

which is changed to polar coordinates by substituting (r cos θ) for x and (r sin θ) for y, with the result,

r
[
cos θ

(
a
/(
a2 + b2

) 1
2

)
− sin θ

(
b
/(
a2 + b2

) 1
2

)]
= ρ0.

Of course there is an angle δ such that cos δ = a/(a2 + b2)
1
2 and sin δ = b/(a2 + b2)

1
2 . That, plus the fact

that u = 1/r, enables this straight-line locus in two dimensions to be written,

u(θ) = cos(θ + δ)/ρ0. (3f)

For the particular zero-gravitational-force case that M = 0, substitution of the Eq. (3f) straight-line locus
into the locus relation of Eq. (3e), which is consistent with the dynamics of the Newtonian Eq. (1d), yields,

(L/(mρ0))2/2 = (E/m). (3g)

Eq. (3g) requires nonnegative energy E, which is of course entirely expected of a straight-line locus under
the circumstance that the gravitational force has been put to zero. We have now exhibited two special
solutions of the Eq. (3e) locus relation, which itself is consistent with the gravitational Newtonian dynamics
of Eq. (1d). These two special locus solutions of Eq. (3e) are the constant circular locus u(θ) = 1/ρ0,
which is entirely compatible with gravitational force and negative energy, and the Eq. (3f) straight-line locus
u(θ) = cos(θ+ δ)/ρ0 which is progeny of zero gravitational force and absolutely requires nonnegative energy .
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At this point it seems not unreasonable to guess that the general solution of the Eq. (3e) gravitational
locus relation is an arbitrary linear combination of the constant circular locus u(θ) = 1/ρ0 with the Eq. (3f)
straight-line locus u(θ) = cos(θ + δ)/ρ0, namely,

u(θ) = (1− β cos(θ + δ))/ρ0. (3h)

In the next paragraph we show that the Eq. (3h) circle/straight-line hybrid locus indeed always satisfies the
Eq. (3e) gravitational locus relation. Moreover, it turns out that if the Eq. (3e) energy is negative, then β2 is
constrained to be less than unity , so a bound gravitational locus is always more a circle than it is a straight
line. If the Eq. (3h) circle/straight-line hybrid gravitational locus is converted to rectangular coordinates
and inspected , it is seen to always be a conic section. Of course β = 0 produces circular loci, but furthermore,
0 < β2 < 1 produces elliptical loci, β2 = 1 produces parabolic loci and β2 > 1 produces hyperbolic loci.
Needless to say, β2 →∞ corresponds to straight lines (which technically can’t exist unless M is put to zero
in the Eq. (3e) gravitational locus relation).

We now insert the Eq. (3h) circle/straight-line hybrid locus into the Eq. (3e) gravitational locus relation,

(L/(mρ0))2
(
−2β cos(θ + δ) + 1 + β2

)/
2− (GM/ρ0)

(
−β cos(θ + δ) + 1

)
= (E/m) (3i)

Since in Eq. (3i) the coefficient of cos(θ+ δ) must vanish, the first consequence of Eqs. (3h) and (3e) is that,

GM =
(
(L/m)2/ρ0

)
. (3j)

Putting the Eq. (3j) result back into Eq. (3i) yields,

(E/m) = (L/(mρ0))2
(
β2 − 1

)/
2, (3k)

from which we immediately see that the energy E of this gravitational system is negative only if β2 < 1,
namely only if the Eq. (3h) circle/straight-line hybrid locus is more a circle than it is a straight line. Further
on we study the Eq. (3h) circle/straight-line hybrid orbit locus in vastly clearer detail by converting it to
two-dimensional rectangular coordinates; it’s behavior is almost impossible to grasp in the form it is written
in Eq. (3h) because large values of r(θ) produce entirely innocuous-looking small values of u(θ) = 1/r(θ). We
shall see that it is always a conic section. Of course we are well-aware that it is a circle when β = 0, but
a better overview furthermore shows that it is an ellipse when 0 < β2 < 1, a parabola when β2 = 1 and a
hyperbola when β2 > 1. Therefore it is little wonder that the Eq. (3k) energy of this gravitational system is
negative only if β2 < 1, namely only if its orbit locus is a circle or ellipse.

Eq. (3j) is the ticket to obtaining M = (m1+m2), the sum of the masses of the two stars, from the universal
gravitational constant G and particular inputs from the vector-separation orbit r(t) = (r1(t) − r2(t)) of the
two stars. The two ingredients which enter into the right side of Eq. (3j) are the Eq. (3h) orbit parameter
ρ0 and the Eq. (3b) conserved dynamical orbit entity (L/m) = r2|θ̇|, which, since the infinitesimal area |dA|
of the plane that corresponds to an infinitesimal angular arc |dθ| of the orbit is,

|dA| = 1
2r(r|dθ|) = r2|dθ|/2,

the area of the plane which the orbit sweeps out per unit time is,

|dA/dt| = r2|θ̇|/2 = (L/m)/2. (3l)

It was Johannes Kepler who first realized, in the course of studying the precise planetary-orbit observations
of Tycho Brahe, that |dA/dt| is a conserved dynamical orbit entity . Thus it has been routine for around 400
years for astronomers to read off (L/m) = 2|dA/dt| from orbital data. Alternatively, if the period T of the
orbit has been observed , then since |dA/dt| is constant in time,

(L/m) = 2|dA/dt| = 2A/T, (3m)

where A is the area enclosed by the complete orbit . In terms of the two Eq. (3h) orbit parameters ρ0 and β,
it turns out that when β2 < 1, so that the complete orbit is an ellipse or a circle, its area A is,

A = π ρ20
/(

1− β2
) 3

2 = π r0R0, where r0 = ρ0/(1− β2)
1
2 and R0 = ρ0/(1− β2). (3n)

This r0 and R0 are the half-lengths of, respectively, the minor and major ellipse axes. Thus from Eq. (3m),

(L/m) = (2π/T ) ρ20
/(

1− β2
) 3

2 = (2π/T ) r0R0. (3o)

Therefore from Eqs. (3j) and (3o) the sum of the masses of the two stars is given by,

(m1 +m2) = M = G−1(2π/T )2
(
ρ0
/(

1− β2
))3

= G−1(2π/T )2R3
0. (3p)
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Is there a neat way, in terms of observations, to characterize r0 and R0? Perhaps the neatest way is to
note that the perigee distance of the orbit, the smallest distance between the two stars, is R0 − (R2

0 − r20)
1
2 ,

whereas the apogee distance of the orbit, the greatest distance between the two stars, is R0 + (R2
0 − r20)

1
2 .

Therefore R0 is the arithmetic mean of the greatest and smallest distances between the two stars whereas r0
is the geometric mean of the greatest and smallest distances between the two stars.

It may also be of interest that the two Eq. (3h) orbit parameters ρ0 and β are related to r0 and R0 by
ρ0 = r20/R0, β = (1− (r0/R0)2)

1
2 and (1−β2)

1
2 = (r0/R0). It has already been pointed out in Eq. (3n) that

r0 = ρ0/(1− β2)
1
2 and R0 = ρ0/(1− β2).

We have pointed out that ever since Johannes Kepler’s discovery that |dA/dt| is a conserved dynamical
orbit entity, astronomers routinely read off (L/m) = 2|dA/dt| from orbital data. Alternatively, if the period
T of the orbit has been observed, we have from Eq. (3o) that (L/m) = (2π/T ) r0R0. Likewise, for the basic
parameters r0 and R0 of the ellipse, we have pointed out that R0 is the arithmetic mean of the smallest
and greatest distances between the two stars, whereas r0 is the geometric mean of those two distances.
Alternatively, just as a circle is in principle determined by three or more of the points which lie on it, an
ellipse is in principle determined by five or more of the points which lie on it.

Finally, we have pointed out that the Eq. (3h) representation of the two-dimensional locus of a gravi-
tational orbit, namely u(θ) = (1 − β cos(θ + δ))/ρ0, is as opaque as it is simple. We now remedy that by
expressing it in rectangular coordinates. Since u = 1/r, cos(θ + δ) = cos θ cos δ − sin θ sin δ, x = r cos θ and
y = r sin θ, then after we multiply the Eq. (3h) representation 1/r = (1−β(cos θ cos δ− sin θ sin δ))/ρ0 of the
gravitational-orbit locus through by (rρ0), we readily express it in terms of x and y as,(

y2 + x2
) 1

2 = ρ0 + β(x cos δ − y sin δ). (4a)

We now rotate the axes of our reference (x, y) coordinate system in order to effectively render the angle δ
zero, which allows us to deal with the more symmetrically-oriented locus,(

y2 + x2
) 1

2 = ρ0 + βx. (4b)

We square both sides of Eq. (4b) and reorganize the resulting terms; the upshot is the conic-section locus,

y2 +
(
1− β2

)(
x−

(
βρ0

/(
1− β2

)))2
= ρ20

/(
1− β2

)
. (4c)

This conic section locus is a circle when β = 0, an ellipse when 0 < β2 < 1, a parabola when β2 = 1 and a
hyperbola when β2 > 1. Thus this locus only applies to a binary star system if β2 < 1. In that case, Eq. (4c)
yields the semi-minor axis length r0 = ρ0/(1−β2)

1
2 and the semi-major axis length R0 = ρ0/(1−β2), which

is in full accord with Eq. (3n) and the work subsequent to it. Since (1− β2) = (r0/R0)2, β = (R2
0 − r20)

1
2 /R0

and ρ0 = r20/R0, writing the Eq. (4c) ellipse orbit locus in terms of r0 and R0 produces,

y2 + (r0/R0)2
(
x−

(
R2

0 − r20
) 1

2

)2
= r20. (4d)

The perigee of the Eq. (4d) ellipse orbit locus occurs at the coordinates (−R0 + (R2
0 − r20)

1
2 , 0), with the

corresponding perigee distance being R0 − (R2
0 − r20)

1
2 , while the apogee of the Eq. (4d) ellipse orbit locus

occurs at the coordinates (R0+(R2
0−r20)

1
2 , 0), with the corresponding apogee distance being R0+(R2

0−r20)
1
2 .

These perigee and apogee distances R0 − (R2
0 − r20)

1
2 and R0 + (R2

0 − r20)
1
2 have been broached above, where

it was noted that R0 is their arithmetic mean whereas r0 is their geometric mean.
The area A of the Eq. (4d) ellipse orbit locus is,

A = 2r0

∫ R0+
(
R2

0−r
2
0

) 1
2

−R0+
(
R2

0−r
2
0

) 1
2

(
1−

((
x−

(
R2

0 − r20
) 1

2

)/
R0

)2) 1
2

dx = 2r0R0

∫ 1

−1

(
1− u2

) 1
2 du =

2r0R0

∫ π/2

−π/2
cos2 θ dθ = r0R0

∫ π/2

−π/2
(1 + cos 2θ)dθ = r0R0[π + (sinπ − sin(−π))/2] = π r0R0,

(4e)

a result which has been utilized above, starting with Eq. (3n).
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