
Solving the Container Shipment Problem with the focus on special

goods (dangerous and fragile) using Genetic Algorithms

Walter Zimmer

Department of Computer Science

Cooperative State University

10 Lohrtalweg

Mosbach 74821, Germany

E-mail: walterzimmer@gmx.de

Carsten Mueller, PhD

Department of Computer Science

Cooperative State University

10 Lohrtalweg

Mosbach 74821, Germany

E-mail: carsten.mueller@itg-research.net

Abstract—An optimum usage of the shipping space is calcu-
lated using genetic algorithms. The objective of the optimization
is the maximization of loaded container of type dangerous and
the minimization of the unused shipping space. The minimization
of the unused shipping space has to be preferred against the max-
imization of the loaded container of type dangerous. Statistical
evalutations were done and the usage of various parameters was
analysed.

I . I N T R O D U C T I O N

The transport of goods is very important in the ecomomic

development. Til now the solving of the container shipment

problem is difficult to solve because there are many approaches.

There are many port cities worldwide that have to load their

ships in an efficient way. The modern global commerce reduces

the cost and time of transporting goods. Today we have a lot

of automated systems that load container to ships.

What we need is an algorithm which computes the right order

to discharge containers [9]. This problem was firstly introduced

by Gilmore and Gomory in 1965. A subset of containers of

various sizes should be packed into a ship. The ship has fixed

dimensions and the target is to optimize the volume of that ship.

The container shipment problem is a NP-hard problem and

belongs to the packing problems problem class. That means

there is no polynomial algorithm that solves this problem in

acceptable execution time [16].

One approach is to use the backtracking heuristic method to

solve this problem. The volume of the packed container will

be optimized and it is also possible to optimize the weight

distribution. The more variations of containers there are the

more difficult the problem is to solve. The mass center of all

container is not necessarily near to its geometric center. In

this study a weight tolerance of 5% is acceptable. To improve

the stability of all containers and the ship another constraint

was introduced. Before a container is placed into the ship

it must be ensured that at least two third of the area below

is covered by other container. In [11] is described how to

improve the stability of the ship. In this study a solution of the

Container Shipment Problem using Genetic Algorithm (GA)

is described. GA belongs to evolutionary algorithms that are

part of metaheuristics.

The organization of the paper is as follows: Section II

describes the problem statement und some research approaches.

An overview of the solution architecture is given in section

III. A proof of concept is mentioned in section IV where a

solution of a genetic algorithm is compared with a solution

that was generated through a monte carlo evaluation. Section

V concludes the work.

I I . P R O B L E M S TAT E M E N T A N D R E S E A R C H

A P P R O A C H

A. Problem Statement

The first aim is to maximize the amount of containers or

minimizing the waste of space. This can be solved by using the

backtracking method combined with heuristics. The second goal

is to maximize the amount of dangerous container that should

be loaded between two container with goods type standard.

This will be done by using a Genetic Algorithm [1]. The ship

has the following dimensions (see table I)

Table I
D I M E N S I O N S O F T H E S H I P

length 178 m

width 33 m

height 20 m

The ship contains two halves that are seperated by a one meter

wide wall. The wall is 178 m long and 20 m high. After

the loading of the ship both ship sides should be balanced.

A tolerance of 5% should not be exceeded. In [15, p. 238]

a load balancing using a Q-learning algorithm is described.

Furthermore it is not allowed that container go beyond the

walls of the ship. There are three container types (C1, C2 and

C3). Each container type could have the goods type dangerous

or standard. The table II below lists the three container types:

Table II
C O N TA I N E R T Y P E S

Container type Dimensions (length, width, height)

C1 6 m x 2.50 m x 2.50 m

C2 12 m x 2.75 m x 2.50 m

C3 14 m x 3.25 m x 2.50 m



B. Research Approach

There are three methods to solve the container shipment

problem: exact methods, heuristics and hybrid methods.

Exact Methods are used to solve small problems, because

there are a large number of constraints. The aim is to find

the optimal (best) solution. But the disadvantage is that this

method requires a lot of computational resources.

The second approach to solve this problem is the use of

heuristics. The most known heuristic is called wall building

heuristic. This method creates layers (horizontal strips) and

arranges the container by reducing the problem to a 2D

packing problem. There are backtracking algorithms that solve

the 2D packing problem effortlessly. Another approach is to

build segments (instead of layers) which could be rotated and

interchanged to improve the weight distribution. Metaheuristics

(e.g. tabu search) achieve good solutions in reasonable time,

but they do not guarantee the best solution. This work is

based on solving the container shipment problem by using

Genetic Algorithms. Containers are arranged in stacks. There

are 8 layers of stacks because the ship height is 20 meters

and each container has a height of 2.5 meters. A chromosome

consists of many stacks and each genome can be interchanged

with an other genome to improve the weight distribution. The

disadvantage of heuristic methods is that they do not guarantee

to find the best solution. On the other hand this methods have

a better execution time in contrast to exact methods.

The third approach is to use hybrid methods and combine

algorithms with metaheuristics [4]. A combination of multiple

approaches is always better than a single approach. A second

hybrid method is the combination of heuristic methods and

local search methods. It has to be said that each algorithm

is better for a specific case of problem and worse for other

problems.

Heuristic Backtracking methodology

The heuristic backtracking methodology consists of two phases

that will be described below:

Phase I: Maximizing packed volume

To maximize the packed volume the wall building heuristics

will be combined with a backtracking search algorithm to

chose the best order. The result is a build tree solution.

Container are placed recursively into the ship in such a way as

to create blocks. If this algorithm would only accept optimal

solutions then good solutions would be discarded. Therefore it

is acceptable when small waste of space occurs [.]

Phase II: Optimize weight distribution

In the second phase the optimal order of container will be

determined using Genetic Algorithms. The advantage of

this project is that the height of each container is the same.

Therefore eight layers fit into a ship to reach a height of

20 meters. There layers could be rotated to improve the

weight distribution. Another approach is to generate blocks

of containers that can easily be interchanged to optimize the

weight distribution. The volume size will be the same, because

blocks with the same volume are interchanged. Furthermore a

set of blocks can be rotated clockwise or counterclockwise

(see figure 1). The rotation direction is determined randomly.

Figure 1. Rotation of multiple blocks with different volume.

The value 1 could mean, that the blocks are rotated clockwise

and the value 0 stands for counter-clockwise rotation. The

fitness function of the weight optimization can decide whether

the reached result is good or not. The distance between the

geometric center of the ship and the container’s center of

mass is calculated and then compared. The ship has a high

fitness value if the packed volume is hight and the container’s

center of mass is near the center of the ship. The below shown

fitness function is used to determine the fitness value of the

second optimization:

f =
�

(xgc − xcm)2 + (zgc − zcm)2

xcm =

n�

i=1

xi·wi

n�

i=1

wi

; zcm =

n�

i=1

zi·wi

n�

i=1

wi

The geometric center of the ship is (xgc, zgc) and (xcm, zcm)

is the center of mass of all container. The center of one

container is (xi, zi) and wi is the weight. In the end both

fitness values are added and the total fitness value is calculated.

I I I . S O L U T I O N A R C H I T E C T U R E

In this section first the software architecture will be described.

A class diagram shows the interaction between the used

components. It improves the comprehension of the reader

and also internalizes the structure of the implementation. The

second part describe the Genetic Algorithm and its components.

The third part shows some diagrams of the parameter analysis.

A. Software architecture

The figure 2 shows a class diagram of the used classes.

The genetic algorithm is started in the Application

class in the main() method. In the configuration

(Configuration.java you can set a two boolean variables

to indicate whether a already saved configuration and ship



should be loaded or not. If these variables are set to true

then the content of a CSV file will be loaded by the class

CSVLoader.java. After the loading process a visualization

of the ship will open. Otherwise a new population of ships

is generated. Every ship has a set MC of containers that

are created inside a loop. After the creation of the whole

population the genetic algorithm starts and begins to improve

the population in small steps. In this process the strategies

that were set in the configuration class are applied. They are

repeated in the following order:

1) Order Selection

2) Uniform Recombination

3) Displacement Inversion Mutation

4) Elitism Selection

The recombination and mutation process will be performed

randomly. An external generator of random numbers (class

MersenneTwister.java) is used in this process. A con-

tainer can have the following container types: C1, C2 or

C3 (class ContainerType). These types as well as the

dimensions of the container are put into an enum. Furthermore

a container can be of type dangerous/fragile or standard. Here

another enum is used (enum GoodsType).

Figure 2. Software architecture

B. Genetic Algorithm

In this section the genetic algorithms are described. First a

definition will be given and afterwards the components will

be described. Furthermore the building block hypothesis will

be mentioned.

A genetic algorithm is a technique that is used to find the

most valuable individual in a generation that consists of many

individuals. The individuals compete against each other which

results in an increase of the fitness of the population. In

figure 3 and 4 you can see that individuals converge against

the maximum fitness value. In the first picture the solution

candidates are spread over the whole x- and y-axis. The the

second picture they accumulate at the peaks of the graph. After

one generation has passed only the fittest solution candidates

move to the next generation. One generations consists of a

recombination and a mutation process.

Figure 3. Increase of the fitness values of individuals.

Figure 4. Increase of the fitness values of individuals.

The recombination process is applied to two or more

individuals (parents) and produces two new candidates

(children). The mutation process is applied only to one

individual and the result is a modified individual. All solution

candidates are sorted by their fitness values and after that it is

checked if a better candidate was generated.

The mutation and recombination in a generation is responsible

for the variety of a generation. The last process in the loop

is the selection of the fittest individuals. This step improves

the quality of the generation. One approach is not use choose

every time only the fittest individuals. It can be of advantage

to choose a low amount of weak individuals to avoid the

creation of local optima and the stagnation of the fitness. In the

following pseudo code the process of a generation is described:

BEGIN

INITIALIZATION of a population with random

solution candidates;

EVALUATION of each candidate;

ITERATE until termination condition is reached

1. SELECTION of parents;

2. RECOMBINATION of parents;

3. MUTATION of individuals;

4. EVALUATION of new candidates;

5. SELECTION of new candidates

for the next generation;

END



Flow chart for Genetic Algorithm is illustrated in figure 5.

Figure 5. Illustration of the genetic algorithm

After the algorithm has started, the initial population is

generated. The population size in this work has been set to 100.

The fitness value of each individual is determined and then

the termination condition will be proved. Is the termination

condition satisfied a loop will be entered and the evolutionary

process is started. For parent selection the ’roulette wheel

selection’ is chosen and the ’uniform recombination’ method

is used to cross both parents and generate new children. After

that the children were mutated by using the ’displacement

inversion mutation’ that will be described in the next section.

Lastly the fitness value of each individual is calculated and

a new generation is chosen applying the ’elitism method’. Is

the number of defined generations reached the termination

condition is satisfied and the algorithm ends.

You can image the process of the genetic algorithm as a

building-block-hypothesis. The chromosome blocks are used by

genetic algorithms. They are shuffled to increase to increase the

fitness value of that individual. With a higher fitness value that

individual has a higher possibility to be chosen for pairing. This

hypothesis states the improvement of individuals by assembling

different blocks together. Next the components of the genetic

algorithm that were used in this thesis will be described in

detail:

• Individuals

• Fitness function

• Population

• Initialization

• Parent selection

• Operators (recombination and mutation operators)

• Survivor selection

• Termination condition

1) Individuals: A population consists of a set of individuals.

An individual is represented by a genotype and a phenotype.

The genotype determines the inner and the phenotype the outer

structure of an individual. In case of saving a individual as

an integer, the integer will represent the phenotype of that

individual. The binary representation of the integer makes

up the genotype. The evolutionary search process takes place

on the genotype level. In phenotype space individuals are

called solution candidates and in genotype space they are

knowns as chromosomes. The components of a chromosome

are the genes. Genes are also known as variables, positions

or loci. An object at such a position is the value or allele.

The transformation from a genotype to phenotype is called

decoding. The transformation vice versa is called encoding.

Each genotype has a corresponding phenotype [6].

2) Fitness function: The fitness function represents the

prerequisites, that a population has to fulfil. It is used in the

survival selection process to determine the fittest individuals.

In the implementation of the survival function a function

called elitism selection is used. This means that only the best

individuals are selected for the next generation. The aim of

the genetic algorithm is to optimize the volume of the ship

(amount of containers that are loaded onto the ship) as well as

the amount of dangerous containers. The optimization of the

volume of the ship has a higher priority than the amount of

dangerous container. Therefore it is weighted with the factor 3.

The amount of dangerous container is weighted with the factor

2. Both fitness values are summed together to create the final

fitness value of the individual. In equation 1 the calculation of

the fitness function is shown.

ftotal best = 3 · VS + 2 · numdangerous container

(1)

VS represents the volume of the ship and

numdangerous container the number of dangerous container

that are loaded onto the ship. The aim is to generate individuals

with high fitness values. This principle can be inverted so that

the lowest fitness value is searched [5, p. 20].

3) Population: A population is made up of individuals.

There can be multiply identical individuals in one population.

The maximum population size is set in the configuration and

the default value is 100. To speed up the genetic algorithm

the population size can be set to two individuals. After each

evolutionary cycle the best individuals are determined that

build up the next generation. Another option is to determine

the worst individuals and remove them from the population. The

remaining individuals build up the next generation. The variety

of a population is determined by the different individuals in a

population. Another statistical value is given by the entropy

that indicates that there is no order in the population [6].



4) Initialization: In the initialization phase the population

is filled with randomly chosen individuals from the container

repository. One approach is to use heuristics to create a start

population with a high fitness value. The disadvantage of this

approach is that the algorithm takes more time before the

actual genetic algorithm is started. In this thesis the maximum

runtime of the algorithm is set to five minutes. The right balance

between a heuristic initialization and a random initialization

must be found. In [6] is mentioned that an intelligent heuristic

is not necessary because the genetic algorithm is capable of

reaching a high fitness value after a few generations. In figure

6 you can see the increase of the fitness value of a population

that depends on the time.

Figure 6. Visualization of the fitness value in the evolutionary process. An
intelligent heuristic is not mandatory because a random generated population
(level a) can reach the plateau of a population (level b) that was generated
using a intelligent heuristic after k time is passed.

5) Parent selection: The aim of the ’parent selection’ is to

chose individuals for pairing. Before this method is applied

all individuals of the population are sorted after their fitness

values. After that always two individuals are chosen for pairing

beginning with the fittest individuals. The first one will be

paired with the second one and so on. If two individuals with

high fitness values are paired the children will have a high

fitness value too. Therefore there is the possibility to generate

better individuals. Individuals with a low fitness value will not

be chosen for pairing. But there will be a small probability for

choosing individuals with a small fitness value to prevent a

drift of the population into a local optima.

6) Crossover strategy: The recombination operator is used

to create new individuals. The crossover strategy in this

work is ’uniform recombination’. Given two chromosomes

of individuals new chromosomes are generated by swapping

each genome if the probability is below 0.51. The evolution

process on earth has shown that a recombination of individuals

has led to high structured organisms.

1The probability range is between 0.0 and 1.0 and a random number is
generated by using the MersenneTwister.

The below figure 7 illustrates the ’uniform recombination’:

Figure 7. Uniform Recombination’.

At the first genome the probability was over 0.5 and therefore

this genome was not swapped. To use this operator on the ship

to exchange two series of container, the exchanged container

have to be rearranged. The recombination operator is applied to

the indices of container in the container repository. This list of

indices is stored in the ship. Without rearranging the container

after the recombination process the new fitness value can not

be calculated. In [14, p. 682] is mentioned that the operators

of genetic algorithms lead to an disruption of building blocks

of containers. An alternative would be to use a estimation

distribution algorithms-based hyper-heuristic (EDA HH). First

the gene distribution is estimated and then new individuals

are sampled from that distribution. Finally it has to be said

that the crossover strategy has to adapted to the type of the

chromosome. Is the chromosome build up of bits, each bit has

to be mutated in the mutation phase. This operator has to be

adapted to the problem statement to use it efficiently [2].

7) Mutation strategy: The mutation operator is always

applied to only one individual. Mutation of genomes is used

to modify randomly chosen genomes. Displacement inversion

mutation cuts a randomly chosen part of the chromosome,

inverts the order and inserts this part at a randomly chosen

position. In figure 8 you can see the displacement inversion

mutation:

Figure 8. Displacement Inversion Mutation.

The mutation operator is important in order to avoid local

optima, which are areas of the search space that appear to be

optimum, but are actually just isolated by neighboring solutions

of a less desirable nature [7, p. 44].

8) Survivor Selection: In contrast to ’parent selection’ that

is stochastic, the ’survivor selection’ is deterministic. There are

multiple variants to apply ’survivor selection’ to the individuals.

The selection criterias are summarized below:

• Elitism selestion

• Age-based replacement

• Fitness function value only

• Age-based replacement together with fitness function value



The first opportunity is to use the ’elitism selection’ to

select only the individuals with the highest fitness values. In

[3, p. 15] it is advised to keep the best 10% from the previous

generation. Another possiblity is to keep 2-5% of individuals

in a population and to do n copies of them [7, p. 66].

The second variant determines the age of an individual.

Individuals that are very young will have a higher selection

rate than older individuals.

The third ’survivor selection’ method is the ’random wheel

selection’. The higher the fitness value of an individual the

higher the probability to be chosen. Each individual has the

probability pi to reach the next generation. The below formula

describes the probability pi:

pi =
fi

n�

j=0

fj

n is the amount of all individuals in the population and fi
stands for the fitness value of the current individual. This fitness

value is divided by the sum of all fitness values. In [12, p. 119]

is mentioned that using both parent and survivor selection can

cause premature convergence to a local optimum. Therefore

using the third selection criteria supports escaping from local

optima and to track dynamic ones.

9) Termination condition: There are a lot of termination

conditions that can be used in a genetic algorithm. The

algorithm can terminate if a certain fitness value is reached.

Is this fitness value very high, it can not be reached and the

algorithm will never stop. Therefore a second termination

condition is used and records the time that is passed since the

algorithm was started. In this thesis a runtime of five minutes

was suggested. Another method to terminate the algorithm

is the achievement of a certain number of evaluations on

individuals. If there is no improvement of the fitness value after

x generations the algorithm will end too. The fifth method to

terminate the algorithm is the lack of diversity of individuals

in a population.

In the implementation of the termination conditions all oppor-

tunities are combined together with a logical OR. Therefore

one condition is enough to abort the genetic algorithm. The

last possibility to terminate the algorithm to close/kill the

application (e.g. the user closes the window or presses the

stop button). In table III all six termination conditions are

summarized.

Table III
S U M M A RY O F A L L T E R M I N AT I O N C O N D I T I O N S O F T H E G E N E T I C

A L G O R I T H M .

Termination condition Explanation
maxGenerations Max. number of generations is reached.
maxExecutionTime Max. time is up.
solutionFound Solution candidate found.
noImprovementAfter

XGenerations No improvement after x generations.
lackOfDiversity A lack of diversity in population.
forceTermination User forced to terminate the application.

10) Parameter: The parameter that are used in the above

mentioned components of the genetic algorithm are shown in

table IV. For parent selection the strategy ’Order Selection’

was chosen. After that a ’Uniform Recombination’ with the

probability of 70% will be performed on the population. The

next step of the genetic algorithm is the mutation. In this part

the ’Displacement Inversion Mutation’ with a probability of

25% is applied. The last section is the selection of the fittest

individuals. Here the ’Elitism Selection’ method is used to

select the individuals with the highest fitness value.

Table IV
T H E PA R A M E T E R T H AT A R E U S E D B Y T H E G E N E T I C A L G O R I T H M .

Volume of ship in [m3]: 99.12
Volume of ship in [%]: 112,920.00
Dimensions of ship [in m]: 178.00, 33.00, 20.00
Weight difference [in %]: 0.00
Dangerous container amount/
Total container amount: 912/2352
Recombination: Uniform Recombina-

tion
Recombination probability: 0.70
Mutation: Displacement

Inversion Mutation
Mutation probability: 0.25
Parent Selection: Order Selection
Survival Selection: Elitism Selection
Population size: 100
Number of needed generations: 0
Processed time [in sec]: 300
Termination condition: max. execution time

The statistical parameter analysis was performed with the

software R. A combination of all strategies was tested. For

each component of the genetic algorithm two strategies were

chosen. The impacts of the applied strategies were compared

together. For the statistical parameter analysis a recombination

probability between 0.4 and 0.7 was chosen. The probability

of the mutation strategy was varied between 0.0001 and 0.001.

Twenty different variations were created and the results were

compared. A good approach is it to use ’Order Selection’

together with ’Uniform Recombination’ because the parameter

analysis often evaluated results with this combination as

significant. In [13] a process of adapting mutation operators is

described. The parameter tuning is an exhaustive process and

is problem specific. Tuning of parameters can lead to a higher

performance and enables the algorithm to escape local optima

more efficiently. [13] mention that it makes sense to combine

multiple genetic operators adaptively.



I V. P R O O F O F C O N C E P T

To provide a proof-of-concept (poc) the genetic algorithm

is compared with a monte carlo evaluation. The well-known

Monte Carlo approach is basically an iterated generation of

random solutions [10, p. 9]. In this section a complex case will

be described to verify the performance of the genetic algorithm.

After a lot of experimental work the practical interest of the

algorithm will be shown. This section also describes how and

why the genetic methods work. Ships with the dimensions of

24m length, 16m width and 5m height will be generated and the

fitness values will be recorded 50 minutes long. In table V you

can see the configuration and the fitness value that was found

after a runtime of 50 minutes. 5543 generations were generated

Table V
C O N F I G U R AT I O N O F T H E G E N E T I C A L G O R I T H M T O P R O V I D E A

P R O O F O F C O N C E P T.

Fitness 4530.50
Volume of ship [in %] 83.75

Volume of ship [in m3] 1507.50
Ship dimensions [in m] 24.00, 16.00, 5.00
Weight difference [in %] 1.14
Dangerous container amount/
Total container amount 4/39
Free space volume [in %] 16.25

Free space volume [in m3] 292.50
Recombination UniformRecombination
Recombination probability 0.70
Mutation DisplacementInversionMutation
Mutation probability 0.005
Parent Selection OrderSelection
Survival Selection ElitismSelection
Evaluate true
Evaluation MonteCarlo
Maximum Number Of Evaluations 50000
Population size 2
Number of needed generations 5543
Processed time [in sec] 3000
Termination conditions maxExecutionTime

after 50 minutes. Afterwards the result of the genetic algorithm

was compared with a monte carlo evaluation with 50000 ships

that took about 50 minutes too. In table VI you can see the

fitness values that were generated by the genetic algorithm. In

the first column you see the corresponding generation with a

500 steps size. Furthermore the first two generations and the

last generation is listed in the table.

Table VI
L I S T I N G O F T H E F I T N E S S VA L U E S O F T H E G E N E T I C A L G O R I T H M

W I T H A S T E P S I Z E O F 5 0 0 .

Generation Fitness value
1 3,041.25
2 4,384.00
...
3500 4,418.00
4000 4,418.00
4500 4,444.00
5000 4,530.50
5500 4,530.50
5543 4,530.50

After the first generation the fitness value increases to

4,384.00 and stays constant up to the 3500th generation. To

compare the fitness values a monte carlo evaluation with 50000

ships was created (table VII).

Table VII
R E S U LT O F T H E M O N T E C A R L O E VA L U AT I O N W I T H A R U N T I M E

O F 5 0 M I N U T E S .

Number of evaluations: 50,000
Maximum fitness value: 4,434.50

The maximum fitness value that was generated is 4,434.50.

Therefore the genetic algorithm performs better than the monte

carlo evaluation. Besides a better fitness value the genetic

algorithm took less time for generating fitness values. Even

after the 4500th generation (about 45 minutes of runtime) a

better fitness value was found. The monte carlo evaluation took

about 50 minutes and was not able to generate a higher fitness

value. Therefore a proof of the performance of the genetic

algorithm is given.

V. C O N C L U S I O N S

In this section some benchmarks will be described and also

the advantages of genetic algorithms. They show the quality of

the reached solutions. The computational results were obtained

using an Intel i7-2720QM (@2.2 GHz) and 16 GB (@667

MHz) RAM. The Container Shipment Problem with only three

different container types belongs to the weak heterogeneous

Container Shipment Problem. The Genetic Algorithm was

tested with VisualVM and Mission Control.

The following figure 9 shows the whole ship loaded with

standard (dark gray) and dangerous (light gray) container

types.

Figure 9. Visualization of the generated ship.



The ship has the below shown dimensions (table VIII) and

contains two halves that are separated by a one meter wide

wall. The wall is 178m long and 20m high.

Table VIII
D I M E N S I O N S O F T H E S H I P

length: 178 m
width: 33 m
height: 20 m

Finally the advantages of genetic algorithms are summarized.

There are some problems mentioned in [8] that are good

candidates to solve with genetic algorithms.

• Problems where it is hard to find a solution but once a

solution is found, it can be measured.

• Problems where the search space is very large, complex

and poorly understood.

• Problems where a near optimal solution is acceptable.

• Problems where no mathematical analysis is available.

All four Problems fit to the Container Shipment Problem and

therefore genetic algorithms are the best choice to solve this

problem. ”Three billion years of evolution can not be wrong.

It [genetic algorithm] is the most powerful algorithm there is.”

[Goldberg, [7]]

R E F E R E N C E S

[1] Luiz Araujo and Placido Pinherio. Genetic Algorithms

for Semi-Static Wavelength-Routed Optical Networks. Ed.

by Olympia Dr. Roeva. INTECH Open Access Publisher,

2012. I S B N: 978-953-51-0146-8.

[2] Thomas Bäck, David B. Fogel, and Zbigniew

Michalewicz, eds. Handbook of Evolutionary Computa-

tion. 1st. Bristol, UK, UK: IOP Publishing Ltd., 1997.

I S B N: 0750303921.

[3] Eduard Burke, Nam Pham, and Rong Qu. “Learning the

heuristic distribution by an evoluionary hyper-heuristic”.

In: (2014), p. 40. U R L: http://www.slideserve.com/

mikayla-osborne/learning-the-heuristic-distribution-by-

an-evolutionary-hyper-heuristic.

[4] Irina Dumitrescu and Thomas Stützle. “Applications

of Evolutionary Computing: EvoWorkshops 2003: Evo-

BIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and

EvoSTIM Essex, UK, April 14–16, 2003 Proceedings”.

In: ed. by Stefano Cagnoni et al. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2003. Chap. Combinations

of Local Search and Exact Algorithms, pp. 211–223.

I S B N: 978-3-540-36605-8. D O I: 10.1007/3-540-36605-

9 20. U R L: http://dx.doi.org/10.1007/3-540-36605-

9 20.

[5] Agoston Eiben. Introduction to evolutionary computing.

New York: Springer, 2003. I S B N: 9783540401841.

[6] Agoston Eiben. Introduction to evolutionary computing.

Berlin: Springer, 2015. I S B N: 3662448734.

[7] Adam Janiak and Maciej Lichtenstein. Advanced algo-

rithms in combinatorial optimization. 2011.

[8] JGAP. “Introduction to Genetic Algorithms with JGAP”.

In: (2009). U R L: http://jcraane.blogspot.de/2009/02/

introduction-to-genetic-algorithms-with.html.

[9] Marc Levinson. The box : how the shipping container

made the world smaller and the world economy bigger.

Princeton, N.J. Woodstock: Princeton University Press,

2006. I S B N: 978-0691136400.

[10] Ana Moura and José Fernando Oliveira. “An integrated

approach to the vehicle routing and container loading

problems”. In: OR Spectrum 31.4 (2009), pp. 775–800.

I S S N: 1436-6304. D O I: 10.1007/s00291-008-0129-4.

U R L: http://dx.doi.org/10.1007/s00291-008-0129-4.

[11] David Pisinger. “Heuristics for the container loading

problem”. In: European Journal of Operational Research

141.2 (2002), pp. 382–392.

[12] Kenneth Price. Differential evolution : a practical

approach to global optimization. Berlin New York:

Springer, 2005. I S B N: 978-3-540-20950-8.

[13] A. Prokopec and M. Golub. Adaptive mutation operator

cycling. 2009. D O I: 10.1109/ICADIWT.2009.5273969.

U R L: http : / / www . zemris . fer . hr / ∼golub / clanci /

icadiwt2009 atga.pdf.

[14] Rong Qu et al. “Hybridising heuristics within an estima-

tion distribution algorithm for examination timetabling”.

In: Applied Intelligence 42.4 (2014), pp. 679–693. I S S N:

1573-7497. D O I: 10.1007/s10489-014-0615-0. U R L:

http://dx.doi.org/10.1007/s10489-014-0615-0.

[15] Sani Tijjani and Ihsan Omur Bucak. “An approach

for maximizing container loading and minimizing the

waste of space using Q-learning”. In: 2013 The Interna-

tional Conference on Technological Advances in Electri-

cal, Electronics and Computer Engineering (TAEECE)

(2013). D O I: 10.1109/taeece.2013.6557277. U R L: http:

//dx.doi.org/10.1109/TAEECE.2013.6557277.

[16] Gerhard Wäscher, Heike Haußner, and Holger Schu-

mann. “An Improved Typology of Cutting and Packing

Problems”. In: An Improved Typology of Cutting and

Packing Problems 24 (Jan. 16, 2006), p. 46.


