Refutation of Frege’s inference rule of generalization

© Copyright 2019 by Colin James III All rights reserved.

Abstract: We evaluate Frege’s inference rule of generalization which is not tautologous. This result forms a non tautologous fragment of the universal logic $VŁ_4$.

We assume the method and apparatus of Meth8/$VŁ_4$ with \top as tautology (non-contradiction), \bot as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

LET \sim Not, \neg; $+$ Or, \lor, \cup; $-$ Not Or; $\&$ And, \land, \cap, \cdot; Θ; \ Not And;
\> Imply, greater than, \rightarrow, \Rightarrow, \supset, \ \supseteq; \< Not Imply, less than, \in, \subset, \subseteq, \neq, \approx; \@ Not Equivalent, \neq, \oplus;
\% possibility, for one or some, \exists, \diamond, M; \# necessity, for every or all, \forall, \square, L;
\(z=z\) \top as tautology, \top, ordinal 3; \(z@z\) \bot as contradiction, \emptyset, Null, \perp, zero;
\(\%z>#z\) \neg as non-contingency, Δ, ordinal 1; \(\%z<#z\) $\neg\bot$ as contingency, ∇, ordinal 2;
\(~(y<x)\) (\(x \leq y\)), (\(x \leq y\)), (\(x \subseteq y\)); \(A=B\) (\(A\sim B\)).
Note for clarity, we usually distribute quantifiers onto each designated variable.

From: en.wikipedia.org/wiki/Begriffsschrift

The rule of generalization allows us to infer [if x does not occur in P,]

\[\vdash P \rightarrow \forall x A(x) \text{ from } \vdash P \rightarrow A(x) \] \hspace{1cm} (2.1)

LET p, q, r, s: P, x, A.

\(~(r<p)>(p>(q&r)))>(p>(q\&r))\);

\[\begin{array}{cccccc}
 & T & T & T & T & T \\
\vdash (r<p) & T & T & T & T & T \\
\vdash (p>(q\&r)) & T & T & T & T & T \\
\vdash (p>(q\&r)) & T & T & T & T & T \\
\end{array} \] \hspace{1cm} (2.2)

Remark 2.2: Eq. 2.2 as rendered is not tautologous. This refutes Frege’s inference rule of generalization, and any conjecture making use of it.