Refutation of Frege's inference rule of generalization

Abstract: We evaluate Frege’s inference rule of generalization which is not tautologous. This result forms a non tautologous fragment of the universal logic $\mathcal{VL}4$.

We assume the method and apparatus of Meth8/$\mathcal{VL}4$ with \mathcal{T}autology as the designated proof value, \mathcal{F} as contradiction, \mathcal{N} as truthity (non-contingency), and \mathcal{C} as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

Let \sim Not, \neg; $+$ Or, \lor, \cup; \neg Not Or; $\&$ And, \land, \cap, \cdot; \setminus Not And;
\succ Imply, greater than, \rightarrow, \Rightarrow; \prec Not Imply, less than, \in, \subset, \notin, \subsetneq; \equiv, \equiv, \equiv; \neq Not Equivalent, \oplus;
% possibility, for one or some, \exists, \exists, \exists; # necessity, for every or all, \forall, \Box, \Diamond;
$(z=z)$ \top as tautology, \top, ordinal 3; $(z@z)$ \bot as contradiction, \emptyset, Null, \bot, zero;
$(%z>\#z)$ \mathcal{N} as non-contingency, Δ, ordinal 1; $(%z<\#z)$ \mathcal{C} as contingency, ∇, ordinal 2;
$\sim(y<x)$ ($x \leq y$), ($x \subseteq y$); ($x \subseteq y$); ($A=B$) ($A\neq B$).

Note for clarity, we usually distribute quantifiers onto each designated variable.

From: en.wikipedia.org/wiki/Begriffsschrift

The rule of generalization allows us to infer $\vdash P \rightarrow \forall x A(x)$ from $\vdash P \rightarrow A(x)$ if x does not occur

\[(2.1) \]

Let p, q, r, s: P, x, A.

\[(\neg (r<p) \Rightarrow (p>(q\&r))) \Rightarrow (p>(q\&r)) \]

\[TTTT \ TTTN \ TTTT \ TTTN \]

\[(2.2) \]

Remark 2.2: Eq. 2.2 as rendered is not tautologous. This refutes Frege’s inference rule of generalization, and any conjecture making use of it.