Goldbach’s conjecture

November 2, 2019
Yuji Masuda
(y_masuda0208@yahoo.co.jp)

\[2n = p_1 + p_2 \quad (\because n > 2) \]

\[2(n + 1) = 2n + 2 = 2n - 3 \]

\[1 = \frac{1}{1} = -\frac{4}{6} = -\frac{2}{3} = -\frac{2}{8} = -\frac{1}{4} \]

\[1 = 1^1 = (81)^1 = (81)^{-\frac{1}{4}} = \frac{1}{3} \]

\[2n - 3 = 2n - 1 - 1 - 1 = 2n - \frac{2}{3} - 1 \]

\[2n - \frac{2}{3} - 1 = 2n + \frac{3}{3} - 1 = 2n + 1 - 1 = 2n \]

\[\therefore 2(n + 1) = 2n = p_1 + p_2 \quad (\because n > 2) \]

That is all. (proof end)