Proof that there are no odd perfect numbers

Kouji Takaki

December 17th, 2019
Abstract

If \(y \) is an odd perfect number, let \(p \) be one of the prime factors of \(y \), the exponent of \(p \) be an integer \(n \) \((n \geq 1)\), the prime factors other than \(p \) and different from each other be \(p_1, p_2, \cdots, p_r, \cdots, p_s \) and the even exponent of \(p_k \) be \(q_k \).

\[
y/p^n = (1 + p + p^2 + \cdots + p^n) \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k})/(2p^n) = \prod_{k=1}^{r} p_k^{q_k}
\]

must be satisfied. Let \(m \) be a non negative integer and \(q \) be a positive integer,

\[
n = 4m + 1
\]
\[
p = 4q + 1
\]

Letting \(a \) and \(b \) be odd integers, satisfying following expressions,

\[
a = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k})
\]
\[
b = \prod_{k=1}^{r} p_k^{q_k}
\]
\[
a(p^n + \cdots + 1) - 2bp^n = 0
\]

is established. This is a known content that has been proven by Euler. Let \(s \) \((s \geq r)\) be an integer, \(v \) be a rational number,

\[
v = \prod_{k=1}^{s} (1 + p_k + p_k^2 + \cdots + p_k^{q_k})/\prod_{k=1}^{r} p_k^{q_k}
\]

holds. By the consideration of this research paper, we proved that when \(v \) is not an integer, due to the uniqueness of \(a(p^n + \cdots + 1)/(bp^n) \), etc there are no solutions that satisfies the equation \(a(p^n + \cdots + 1) - 2bp^n = 0 \) other than inappropriate solution \((a, b, p, n) = (1,1,1,1)\). Then, because we proved that a contradiction arises when \(v \) becomes an integer, we have obtained a conclusion that there are no odd perfect numbers.

Contents

Introduction 2
Proof 2
Complement 12
Acknowledgement 14
References 14
1. Introduction

The perfect number is one in which the sum of the divisors other than itself is the same value as itself and the smallest perfect number is

\[1 + 2 + 3 = 6\]

It is 6. Whether odd perfect numbers exist or not is currently an unsolved problem in mathematics.

2. Proof

Let \(y \) be an odd perfect number, one of the prime factors of \(y \) be an odd prime \(p \) and an exponent of \(p \) be an integer \(n \) \((n \geq 1)\). Let the prime factors other than \(p \) and different from each other be \(p_1, p_2, \ldots, p_r \), \(q_k \) be the index of \(p_k \) and an integer \(a \) be the product of series of prime numbers other than prime \(p \).

\[a = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k}) \ldots (1) \]

The number of terms \(N \) of variable \(a \) is

\[N = \prod_{k=1}^{r} (q_k + 1) \ldots (2) \]

When \(y \) is a perfect number,

\[y = a(1 + p + p^2 + \cdots + p^n) - y \ (n > 0) \]

is established.

\[a \sum_{k=0}^{n} p^k / 2 = y \]

\[a \sum_{k=0}^{n} p^k / (2p^n) = y/p^n \ldots (3) \]

2.1. When \(q_k \) has at least one odd integer

Letting the number of terms where \(q_k \) is odd be a positive integer \(u \), because \(y/p^n = \prod_{k=1}^{r} p_k^{q_k} \) is odd and the denominator on the left side of the expression \(3\) has a prime factor 2, from the expression \(2\) variable \(a \) has prime factor 2 more than \(u \) and variable \(a \) is even. Therefore, \(n \) is even and \(u \) is 1 since \(\sum_{k=0}^{n} p^k \) must be an odd integer.
2.2. When all q_k are even integers

y/p^n is odd and the denominator on the left side of the expression ② is even. Since N is odd when q_k are all even integers, variable a is odd. Therefore, $\sum_{k=0}^n p^k \equiv 0 \pmod{2}$ is established and n must be an odd integer since $\sum_{k=0}^n p^k$ is necessary to include one prime factor 2.

From 2.1, 2.2, in order for odd perfect numbers to exist, only one exponent of the prime factor of y must be an odd integer. We consider the case of 2.2 below.

In order for y to be an odd perfect number, the following expression must be established.

$$y/p^n = (1 + p + p^2 + \cdots + p^n) \prod_{k=1}^r \left(1 + p_k + p_k^2 + \cdots + p_k^{q_k}\right)/(2p^n) = \prod_{k=1}^r p_k^{q_k}$$

However, q_1, q_2, \ldots, q_r are all even integers.

Here, let b be an odd integer.

$$b = \prod_{k=1}^r p_k^{q_k} \ldots ④$$

A following expression is established.

$$y/p^n = a(1 + p + p^2 + \cdots + p^n)/(2p^n) = b$$

$$a(p^{n+1} - 1)/(2(p - 1)p^n) = b$$

$$(a - 2b)p^{n+1} + 2bp^n - a = 0 \ldots ⑤$$

$$(ap - 2bp + 2b)p^n = a$$

Since $ap - 2bp + 2b$ is odd, a/p^n is odd. Let a/p^n be an odd integer c.

$$ap - 2bp + 2b = c (c > 0) \ldots ⑥$$

$$(2b - a)p = 2b - c$$

Since variable a is odd, $2b - a$ is odd and $2b - a \neq 0$.

$$p = (2b - c)/(2b - a)$$
Since $n \geq 1$,
\[a - c = cp^n - c \geq cp - c > 0 \]
a > c

is.

From the equation ⑥,
\[2b(p - 1) - (ap - c) = 0 \]
\[2b - c(p^{n+1} - 1)/(p - 1) = 0 \]
Since \((p^n + \cdots + 1)/2\) is odd, \(n = 4m + 1\) must be hold with \(m\) as an integer.
\[2b(p - 1) = c(p^{n+1} - 1) \]
\[2b = c(p^n + \cdots + 1) \]
\[2b = c(p + 1)(p^{n-1} + p^{n-3} + \cdots + 1) \ldots ⑦ \]
Since \(b\) is odd when \(p + 1\) is not a multiple of 4, \(p - 1\) must be a multiple of 4. A positive integer is taken as \(q\).
\[p = 4q + 1 \]
is established. The above conditions have been proved by Euler.

When \(p > 1\),
\[p^n - 1 < p^n \]
\[(p^n - 1)/(p - 1) < p^n/(p - 1) \]
\[p^{n-1} + \cdots + 1 < p^n/(p - 1) \]

Since \(p\) is an odd prime number satisfying \(p = 4q + 1\) and \(p \geq 5\),
\[p^{n-1} + \cdots + 1 < p^n/4 \]
\[2b - a = c(p^n + \cdots + 1) - cp^n = c(p^{n-1} + \cdots + 1) \]
\[2b - a < cp^n/4 = a/4 \]
\[2b < 5a/4 \]
a > 8b/5 ⑧
Let a_k and b_k be odd integers and if

\[a_k = 1 + p_k + p_k^2 + \cdots + p_k^{q_k}, \quad b_k = p_k^{q_k} \]

\[a_k - b_k < b_k/(p_k - 1) \]

\[a_k < b_k p_k/(p_k - 1) \]

\[
\begin{align*}
 a &= \prod_{k=1}^{r} a_k < \prod_{k=1}^{r} b_k p_k/(p_k - 1) = b \prod_{k=1}^{r} p_k/(p_k - 1) \\
 a/b < \prod_{k=1}^{r} p_k/(p_k - 1)
\end{align*}
\]

When $r = 1$, since $a/b < 3/2$ is established, it becomes inappropriate contrary to inequality ⑧.

From the expression ⑦,

\[b = c(p + 1)/2 \times (p^{n-1} + p^{n-3} + \cdots + 1) \]

holds. Since $(p + 1)/2$ is the product of only prime numbers of b, let d_k be the index.

\[(p + 1)/2 = \prod_{k=1}^{r} p_k^{d_k} \]

\[p = 2 \prod_{k=1}^{r} p_k^{d_k} - 1 \quad \ldots ⑨ \]

From $a = cp^n$ and the expression ⑦,

\[2bp^n = a(p^n + \cdots + 1) \]

\[a(p^n + \cdots + 1)/(2bp^n) = 1 \quad \ldots (A) \]

When $r = 1$,

\[a = (p_1 q_1 + 1)/(p_1 - 1) \]

\[b = p_1 q_1 \]

The equation (A) does not hold since there are no odd perfect numbers when $r = 1$.

Let R be a rational number.

$$R = a(p^n + \cdots + 1)/(2bp^n)$$

Define an operation [multiplication] and an operation [division] as follows.

An operation [multiplication] of A_i/B_i is performed by multiplying R by A_i/B_i and changing p and n in the expression of R to p' and n'. If R is changed to R' by this operation,

$$R' = R \times A_i/B_i \times p^n/p'^n \times (p'^n + \cdots + 1)/(p^n + \cdots + 1)$$

$$p' = 2 \prod_{k=1}^r p_k^{d_k} \times p_i^{d_i} - 1$$

$$0 \leq d_i \leq q_i$$

Here, let i be $i > r$.

An operation [division] of A_j/B_j is performed by dividing R by A_j/B_j and changing p and n in the expression of R to p'' and n''. If R is changed to R'' by this operation,

$$R'' = R \times B_j/A_j \times p^n/p''^n \times (p''^n + \cdots + 1)/(p^n + \cdots + 1)$$

If p_j is included in the expression of R, p_j is deleted as $d_j = 0$.

$$p'' = 2 \prod_{k=1}^{j-1} p_k^{d_k} \times \prod_{k=j+1}^r p_k^{d_k} - 1$$

Here, j is assumed to satisfy $1 \leq j \leq r$.

Let A_k and B_k to be odd integers.

$$A_k = (p_k^{q_k+1} - 1)/(p_k - 1)$$

$$B_k = p_k^{q_k}$$

When the operation [multiplication] of A_{r+1}/B_{r+1} is performed on R, there are both cases that p is increased or not changed. When this operation is performed, the rate of change of R is

$$A_{r+1}p^n(p^n + \cdots + 1)/(B_{r+1}p'^n(p^n + \cdots + 1))$$

If p after variation is p'.

If the rate of change of R is 1,

$$A_{r+1}p^n(p^n + \cdots + 1)/(B_{r+1}p'^n(p^n + \cdots + 1)) = 1$$

$$A_{r+1}p^n(p^n + \cdots + 1) = B_{r+1}p'^n(p^n + \cdots + 1)$$

This expression does not hold since the right side is not a multiple of p when $p' > p$ and $A_{r+1} > B_{r+1}$ holds when $p' = p$. Due to this operation, R becomes larger or smaller than the original value since the rate of change of R does not become 1.
Assuming that \(R = 1 \) in some \(r \), letting \(t < r \) be an integer and assuming that \(A_1 A_{t+1} \ldots A_r \) is not a multiple of \(p \), \(R \) is performed the operations [division] of \(A_t / B_t, \ldots, A_{t+1} / B_{t+1}, A_t / B_t \). Furthermore, letting \(x (x > t) \) be an integer and \(R \) is performed the operations [multiplication] of \(A'_t / B'_t, A'_{t+1} / B'_{t+1}, \ldots, A_x / B_x \) and it is assumed that finally \(R = 1 \). At this time, assuming that \(n \) is changed when the operations [multiplication] or the operations [division] are performed.

\[
1 \times B_t p^n (p_{r-1}{}^{nr-1} + \cdots + 1)/(A_r p_{r-1}{}^{nr-1}(p^n + \cdots + 1)) \times \ldots \times B_{t+1} p_{t+2}{}^{nt+2}(p_{t+1}{}^{nt+1} + \cdots + 1)/(A_{t+1} p_{t+1}{}^{nt+1}(p_{t+2}{}^{nt+2} + \cdots + 1)) \times B_t p_{t+1}{}^{nt+1}(p_t{}^{nt} + \cdots + 1)/(A_t p_t{}^{nt}(p_{t+1}{}^{nt} + \cdots + 1)) \times A'_t p_t{}^{nt}(p'_t{}^{nt} + \cdots + 1)/(B'_t p'_t{}^{nt}(p_t{}^{nt} + \cdots + 1)) \times \ldots \times A_x p_x{}^{nx}(p_x{}^{nx} + \cdots + 1)/(B_x p_x{}^{nx}(p_{x-1}{}^{nx-1} + \cdots + 1)) = 1
\]

\(B_t B_{t+1} \ldots B_x A'_t A'_{t+1} \ldots A_x p^n (p_x{}^{nx} + \cdots + 1) = A_t A_{t+1} \ldots A_x B'_t B'_{t+1} \ldots B_x p^n (p^n + \cdots + 1) \) \(\ldots \) (B)

When \(p_x = p \) and \(n_x < n \), it becomes a contradiction since the right side of above expression does not include the prime factor \(p \).

\[
A_1 \ldots A_r = cp^n
\]

\[
2B_1 \ldots B_x = c(p^n + \cdots + 1)
\]

\[
A_1 \ldots A_x = c'p_x{}^{nx}
\]

\[
2B_1 \ldots B_x = c'(p_x{}^{nx} + \cdots + 1)
\]

Assume that these equations hold. If these equations are substituted into the expression (B), the expression is established, so no contradiction arises by performing the operations [division].

Let \(s (s \geq r) \) be an integer and \(v \) be a rational number, if

\[
v = \prod_{k=1}^{s} (1 + p_k + p_k^2 + \cdots + p_k^{q_k}) / \prod_{k=1}^{s} p_k^{q_k}
\]

holds, we define a condition (C) as follows.

\(v \) is not an integer \(\ldots \) (C)

Consider a directed graph whose root is \((a, b, p, n) = (1, 1, 1, 1) \) and when the operations [multiplication] are performed, it becomes a child node. For example, consider a child node connected to a root as follows.

\((a, b, p, n) = (13, 9, 5, 5) \) as \(p_1 = 3, q_1 = 2 \) and \(d_1 = 1 \)

\((a, b, p, n) = (13, 9, 17, 9) \) as \(p_1 = 3, q_1 = 2 \) and \(d_1 = 2 \)

\((a, b, p, n) = (57, 49, 97, 13) \) as \(p_1 = 7, q_1 = 2 \) and \(d_1 = 2 \)
Suppose that a node is connected from a vertex (1,1,1,1) when operations [multiplication] of B_k ($k = 1, 2, ..., r$) are performed r times. Here, it is assumed that the bases of B_k are all different odd prime numbers. When an operation [multiplication] of B_1 is performed from this node, the base of B_1 can take any odd prime number other than the base of B_k and its exponent q_1 ($q_1 \mod 2 \equiv 0, q_i > 0$), the variable d_1 ($0 \leq d_1 \leq q_1$) in the expression \circ and the index n ($n \mod 4 \equiv 1, n > 0$) of p can be assumed to take all possible values. Since this directed graph is connected to the same node even if the order of a plurality of operations [multiplication] is exchanged, it becomes a graph having a cycle. The number of operations [multiplication] before connecting to a certain node from the root is defined as a distance of this node. When this graph is composed, even if p is not a prime in a halfway layer, the case where p is not a prime is also considered since it can be considered that p becomes a prime in a layer having a greater distance than the node. For example, a case where $B_1 = 5^2$, $B_2 = 11^2$, $p = 2 \times 5 - 1 = 9$ and $p' = 2 \times 5 \times 11 - 1 = 109$ can be considered. When an operation [multiplication] of a new prime power is performed, the graph branches. By repeating this operation, all nodes that can be considered as solutions can be connected from the root.

When performing the same base operation [multiplication] as the last operation [multiplication] of B_j performed up to a certain node, the operation [division] of B_j must be performed and then the operation [multiplication] of B_j must be performed. That is, it returns from the child node to the parent node. By repeating the operations [division], it is possible to finally return to the root, so that it is possible to connect any two points in the four-dimensional space that can be considered as solutions by these operations.

Suppose that the directed graph is created by repeating the operations [multiplication] as described above. Here, a case is considered in which a solution exists at a certain point in this four-dimensional space (a, b, p, n) and another solution exists at other point connected by only the operations [multiplication]. If $R = 1$ holds again when the operations [multiplication] are performed from one point where $R = 1$,

$$1 \times A_{r+1}p^n(p_{r+1}^{n_{r+1}} + \cdots + 1)/(B_{r+1}p_{r+1}^{n_{r+1}}(p^n + \cdots + 1)) \times A_{r+2}p^{n_{r+1}}(p_{r+2}^{n_{r+2}} + \cdots + 1)/(B_{r+2}p_{r+2}^{n_{r+2}}(p_{r+1}^{n_{r+1}} + \cdots + 1)) \times \cdots \times A_{k}p_{k-1}^{n_{k-1}}(p_{k}^{n_{k}} + \cdots + 1)/(B_{k}p_{k}^{n_{k}}(p_{k-1}^{n_{k-1}} + \cdots + 1)) = 1$$

$$A_{r+1}A_{r+2}...A_{k}/(B_{r+1}B_{r+2}...B_{k}) = p_{k}^{n_{k}}(p^n + \cdots + 1)/(p^n(p_{k}^{n_{k}} + \cdots + 1))$$

$$A_{1}A_{2}...A_{x}(p_{x}^{n_{x}} + \cdots + 1)/(B_{1}B_{2}...B_{x}p_{x}^{n_{x}}) = A_{1}A_{2}...A_{r}(p^n + \cdots + 1)/(B_{1}B_{2}...B_{r}p^n) \ldots (D)$$
Assume that \(G_r = A_1 A_2 \ldots A_r (p^n + \ldots + 1)/(B_1 B_2 \ldots B_s p^n) \) holds. Assume that \(q_k = h_k \) and \(n \) becomes \(n - h \) \((n - h \geq 0)\) by changing \(q_k \) and \(n \) with respect to \(G_r \). Here, \(h_k \) is an even integer and \(h \) is an integer to be a multiple of 4 or be \(n \). Then, \(G_s \) is a function obtained by performing the operations [multiplication] \(s-r \) \((s > r)\) times. If \(h \) equals \(n \), since it means that \(p \) has been deleted, the operations [multiplication] are performed so that \(p \) becomes a new value. \(G_s \) represents all points \((a,b,p,n)\) that can be solutions. At this time, if there is no change at \(G_s = G_r \),
\[
\frac{G_s}{G_r} = p_{r+1}^{q_{r+1}} \times \ldots \times p_s^{q_s}/((p_{r+1}^{q_{r+1}} + \ldots + 1) \times \ldots \times (p_s^{q_s} + \ldots + 1)) \times p_t^{q_t} \times p_2^{q_2} \times \ldots \times p_r^{q_r} p^n (p_1^{q_1-h_1} + \ldots + 1) \ldots (p_r^{q_r-h_r} + \ldots + 1)(p^{n-h} + \ldots + 1)/((p_1^{q_1-h_1} \times \ldots \times p_r^{q_r-h_r} p^n h) = (p_1^{q_1 + \ldots + 1} \ldots (p_r^{q_r} + \ldots + 1)(p^n + \ldots + 1)(p_{r+1}^{q_{r+1}} + \ldots + 1)) (p_s^{q_s} + \ldots + 1)
\]
Since \(\prod_{k=1}^r A_k = c p^n \) holds,
\[
p_{r+1}^{q_{r+1}} \times \ldots \times p_s^{q_s} p^n (p_1^{q_1-h_1} + \ldots + 1) \ldots (p_r^{q_r-h_r} + \ldots + 1)(p^{n-h} + \ldots + 1)
\]
When \(h_k < 0 \) \((1 \leq k \leq r)\), being multiplied by \(p_k^{-h_k} \) so that both sides become integers. When \(\prod_{k=r+1}^s (A_k/B_k) \) is not an integer, if both sides are divided by the prime numbers from \(p_{r+1} \) to \(p_s \), at least one prime number among the prime numbers from \(p_{r+1} \) to \(p_s \) is left on the left side. Since \(c \) and \(p^n + \ldots + 1 \) are products of prime numbers from \(p_t \) to \(p_r \) and in the case of \(s > r + 1 \) the left side has some prime numbers that are not on the right side as factors, this expression does not hold.

In the case of \(s = r + 1 \), letting \(w \) \((1 \leq w \leq s)\) be an integer, when \(p \neq p_w \), this expression does not hold similarly. From the above, if \(s > r + 1 \) or \(p \neq p_w \), the expression (C) does not hold because \(G_r \) must be represented uniquely. When \(s = r + 1 \) if \(p_x = p_w \), in the expression (D) as \(x = s \),
\[
A_s (p_x^{n_x} + \ldots + 1)p^n = B_s (p^n + \ldots + 1)p_x^{n_x}
\]
1. When the value of \(p \) does not change, let \(p = p_x \)
\[
A_s (p_x^{n_x} + \ldots + 1)p^{n-n_x} = B_s (p^n + \ldots + 1)
\]
When \(n - n_x > 0 \), since \(B_s \) must be a power of \(p \), so if \(A_s = p^{n_x} + \ldots + 1 \), \(B_s = p^{n_x} \),
\[
(p^{n_x} + \ldots + 1)(p^n + \ldots + 1)p^{n-n_x} = p^{n_x}(p^n + \ldots + 1)
\]
When $n - n_x = n_s$,
\[(p^{n_s} + \cdots + 1)(p^{n_x} + \cdots + 1) = p^n + \cdots + 1\]
Obviously, it becomes unsuitable since the left side is larger than the right side.
When $n - n_x \neq n_s$, a contradiction arises since there is a prime factor p on either side.

When $n - n_x \leq 0$, if $A_s = p_s^{n_s} + \cdots + 1$, $B_s = p_s^{n_s}$,
\[
(p_s^{n_s} + \cdots + 1)/p_s^{n_s} \times (p^{n_s} + \cdots + 1)/p^{n_s} = (p^n + \cdots + 1)/p^n \quad \text{(E1)}
\]
If $f(n) = (p^n + \cdots + 1)/p^n = (p - p^{-n})/(p - 1)$,
\[
\partial f(n)/\partial n = p^{-n}\log(p)/(p - 1)
\]
Therefore, since $\partial f(n)/\partial n > 0$ holds in the domain of $n \geq 1$, $f(n)$ is a monotonically increasing function of n in this domain. Since $n_x \geq n$,
\[
(p^{n_x} + \cdots + 1)/p^{n_x} \geq (p^n + \cdots + 1)/p^n
\]
is established. In addition to this, since
\[
(p_s^{n_s} + \cdots + 1)/p_s^{n_s} > 1
\]
holds, the expression (E1) does not hold.

II. When the value of p change
Since $p \neq p_x$ and B_s must be a power of p, so if $A_s = p_s^{n_s} + \cdots + 1$, $B_s = p_s^{n_s}$,
\[
(p_q^{n_q} + \cdots + 1)(p_x^{n_x} + \cdots + 1)p^{n_q} = (p^n + \cdots + 1)p_x^{n_x} \quad \text{(E2)}
\]
When $n - q_s > 0$, this expression does not hold since there is no prime factor p on the right side.
\[
(p_q^{n_q} + \cdots + 1)/p_q^{n_q} \times (p_x^{n_x} + \cdots + 1)/p_x^{n_x} = (p^n + \cdots + 1)/p^n
\]
When $n - q_s < 0$, similar to the proof of I, since $f(n)$ is a monotonically increasing function of n in $n \geq 1$ and $q_s > n$,
\[
(p_q^{n_q} + \cdots + 1)/p_q^{n_q} > (p^n + \cdots + 1)/p^n
\]
holds. In addition to this, when $n_x \geq 1$ since
\[
(p_x^{n_x} + \cdots + 1)/p_x^{n_x} > 1
\]
holds, the expression (E2) does not hold. According to I and II above, when
\[
\prod_{k=r+1}^{s}(A_k/B_k)
\]
is not an integer, the expression (D) does not hold.
When one point \((a,b,p,n)\) is \((1,1,1,1)\), since \(r = 0\), that \(\prod_{k=r+1}^n(A_k/B_k)\) is not an integer is same that the condition (C) holds. If the condition (C) holds, when \(s > r + 1\), \(G_s \neq G_r\) holds similarly. When \(s = r + 1 = 1\), there are no solutions because the target nodes are in a layer of the distance 1 directly connected to the root of the graph. Therefore, if the condition (C) holds, except for \((a,b,p,n) = (1,1,1,1)\) there are no solutions satisfying the equation (A).

If the condition (C) does not hold, \(v = a/b\) when \(s = r\). Because the equation (A) must be satisfied at a point other than the point \((a,b,p,n) = (1,1,1,1)\), considering \(v\) becomes an integer,
\[
v = a/b = 2p^n/(p^n + \cdots + 1)
\]
\[
2p^n = v(p^n + \cdots + 1)
\]

Let \(z\) be an integer and if \(v = zp^n\) holds,
\[
2 = z(p^n + \cdots + 1)
\]

When \(p \equiv 1 \mod 4\), \(p \geq 5\) and \(n \equiv 1 \mod 4\), \(n \geq 1\),
\[
p^n + \cdots + 1 \geq 6
\]
At this time, it becomes inappropriate since \(z\) is not an integer. Therefore, if the condition (C) does not hold, except for \((a,b,p,n) = (1,1,1,1)\) there are no solutions satisfying the equation (A). From the above, there are no odd perfect numbers.
3. Complement

From the equation (5),

\[2b^n(p - 1) = a(p^{n+1} - 1) \]

\[2 = a\left(\frac{p^{n+1} - 1}{b^n(p - 1)}\right) \]

\[2 = (p_1^{q_1+1} - 1)(p_2^{q_2+1} - 1) \cdots (p_r^{q_r+1} - 1)(p^{n+1} - 1) \]

\[/ (p_1^{q_1}p_2^{q_2} \cdots p_r^{q_r}p^n(p_1 - 1)(p_2 - 1) \cdots (p_r - 1)(p - 1)) \]

\[\begin{align*}
2(p_1^{q_1+1} - p_1^{q_1})(p_2^{q_2+1} - p_2^{q_2}) \cdots (p_r^{q_r+1} - p_r^{q_r})(p^{n+1} - p^n) \\
= (p_1^{q_1+1} - 1)(p_2^{q_2+1} - 1) \cdots (p_r^{q_r+1} - 1)(p^{n+1} - 1)
\end{align*} \]

We consider when \(r = 2 \).

\[(p_1^{q_1+1} - 1)(p_2^{q_2+1} - 1)(p^{n+1} - 1) = 2(p_1^{q_1+1} - p_1^{q_1})(p_2^{q_2+1} - p_2^{q_2})(p^{n+1} - p^n) \]

Let \(s, t, u \) be integers,

\[s = p_1^{q_1+1} - 1 \]

\[t = p_2^{q_2+1} - 1 \]

\[u = p^{n+1} - 1 \]

are.\[
\text{stu} = 2(p_1^{q_1+1} - 1 - (p_1^{q_1} - 1))(p_2^{q_2+1} - 1 - (p_2^{q_2} - 1))(p^{n+1} - 1 - (p^n - 1))
\]

\[\text{stu} = 2(s - (s + 1)p_1 + 1)(t - (t + 1)p_2 + 1)(u - (u + 1)/p + 1) \]

\[\text{pp}_1p_2\text{stu} = 2((s + 1)p_1 - (s + 1))(t + 1)(t + 1)p_2 + (t + 1)((u + 1)p + (u + 1)) \]

\[\text{pp}_1p_2\text{stu} = 2(s + 1)(p_1 - 1)(t + 1)(p_2 - 1)(u + 1)(p - 1) \]

\[\text{stu}/((s + 1)(t + 1)(u + 1)) = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p) \]

Since \(\text{stu}/((s + 1)(t + 1)(u + 1)) \) is a monotonically increasing function for variables \(s, t \) and \(u \), if

\[s \geq 3^{2+1} - 1 = 26, \quad p_1 = 3, \quad q_1 = 2 \]

\[t \geq 7^{2+1} - 1 = 342, \quad p_2 = 7, \quad q_2 = 2 \]

\[u \geq 5^2 - 1 = 24, \quad p = 5, \quad n = 1 \]

holds,\[
\text{stu}/((s + 1)(t + 1)(u + 1)) \geq 26 \times 342 \times 24/(27 \times 343 \times 25) = 7904/8575
\]

\[2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p) = 2 \times 2 \times 6 \times 4/(3 \times 7 \times 5) = 32/35 \]

Since \(\text{stu}/((s + 1)(t + 1)(u + 1)) \) is limited to 1 when \(s, t \) and \(u \) are infinite, \(\text{stu}/((s + 1)(t + 1)(u + 1)) < 1 \)
If \(f(p_1, p_2, p) = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p) \) holds, it is sufficient to consider a combination where \(f(p_1, p_2, p) < 1 \).

\[
\begin{align*}
f(3, 7, 5) &= 2 \times 2 \times 6 \times 4 / (3 \times 7 \times 5) = 32/35 \\
f(3, 11, 5) &= 2 \times 2 \times 10 \times 4 / (3 \times 11 \times 5) = 32/33 \\
f(3, 13, 5) &= 2 \times 2 \times 12 \times 4 / (3 \times 13 \times 5) = 64/65 \\
f(3, 17, 5) &= 2 \times 2 \times 16 \times 4 / (3 \times 17 \times 5) = 256/255 \\
f(3, 7, 13) &= 2 \times 2 \times 6 \times 12 / (3 \times 7 \times 13) = 96/91 \\
f(3, 5, 17) &= 2 \times 2 \times 4 \times 16 / (3 \times 5 \times 17) = 256/255
\end{align*}
\]

From the above, when \(r = 2 \), combinations \((p_1, p_2, p) = (3, 7, 5), (3, 11, 5), (3, 13, 5) \) can be considered.

Let \(q_k \) be 2 and \(n = 1 \), if \(g(p_1, p_2, p) = (p_1^3 - 1)(p_2^3 - 1)(p^2 - 1)/(p_1^3 p_2^3 p^2) \),

\[
\begin{align*}
g(3, 7, 5) &= 26 \times 342 \times 24 / (3^3 7^3 5^2) = 7904/8575 > 32/35 \\
g(3, 11, 5) &= 26 \times 1330 \times 24 / (3^3 11^3 5^2) = 55328/59895 \\
g(3, 13, 5) &= 26 \times 2196 \times 24 / (3^3 13^3 5^2) = 3904/4225
\end{align*}
\]

Since the function \(g \) is the minimum in the case of \(q_k = 2 \) and \(n = 1 \), there is no solution \(q_k \) and \(n \) when \(g > f \), so the case of \((p_1, p_2, p) = (3, 7, 5) \) becomes unsuitable.

\[
\begin{align*}
stu/((s + 1)(t + 1)(u + 1)) &= 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p) \\
(p_1^{q_1 + 1} - 1)(p_2^{q_2 + 1} - 1)(p^{n+1} - 1)/(p_1^{q_1+1} p_2^{q_2+1} p^{n+1}) \\
&= 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p)
\end{align*}
\]

If \(F(p_1, p_2, p) = (p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p) \),

\[
F(p_1^{q_1+1}, p_2^{q_2+1}, p^{n+1}) = 2F(p_1, p_2, p)
\]
4. Acknowledgement
 In writing this research document, we asked anonymous reviewers to point out several tens of mistakes. We would like to thank you for giving appropriate guidance and counter-arguments.

5. References
 Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017
 Fumio Sairaiji·Kenichi Shimizu "A story that prime is playing" Kodansha, 2015