

Instruction Set Completeness Theorem: Concept, Relevance, Proof,
and Example for Processor Architecture

William F. Gilreath (wfgilreath@yahoo.com)
March 2017

Abstract

The Instruction Set Completeness Theorem is first formally defined and discussed in the seminal
work on one-instruction set computing—the book Computer Architecture: A Minimalist
Perspective.

Yet the original formalism of the Instruction Set Completeness Theorem did not provide a
definitive, explicit mathematical proof of completeness, analyze both singular and plural
instruction sets that were either complete or incomplete, nor examine the significance of the
theorem to computer architecture instruction sets.

A mathematical proof of correctness shows the equivalence of the Instruction Set Completeness
Theorem to a Turing machine, a hypothetical model of computation, and thereby establishes the
mathematical truth of the Instruction Set Completeness Theorem. With a more detailed
examination of the Instruction Set Completeness Theorem develops several surprising
conclusions for both the instruction set completeness theorem, and the instruction sets for a
computer architecture.

Keywords: Church-Turing Thesis, computation model, computer architecture, computer
organization, instruction set, instruction set completeness theorem, plural instruction set,
processor architecture, one-instruction computer, one-instruction set computer, singular
instruction set, Turing machine, von Neumann architecture

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -2-

1. Introduction

The Instruction Set Completeness Theorem is formally stated by Gilreath and Laplante [Gilr
2003c] by:

“Any processor with a complete instruction set must be stateful of computation.
That is, a means to alter the state or next state transition by explicit operation or by
implicit computation is needed to deterministically affect processor state.”

The five principles of the Instruction Set Completeness Theorem are stated by Gilreath and
Laplante. Later, an important point is made of the equivalence of a Turing machine to an
instruction set—indirectly stating the equivalence of the Instruction Set Completeness Theorem
to a Turing machine. The statement by Gilreath and Laplante [Gilr 2003d] is:

“An instruction set is complete if it is equivalent to a single tape Turing machine.”

This statement is correct, but no mathematical proof is given by the authors. Showing the
isomorphism between the Instruction Set Completeness Theorem and a Turing machine is a
formal mathematical proof by demonstrating the correspondence.

1.1 Instruction Set Completeness Theorem

The Instruction Set Completeness Theorem is the formal definition for a general proposition of
the principles for the completeness of an instruction set of a processor architecture. There are
five overall principles for the Instruction Set Completeness Theorem, with a distinction made for
four of the principles of implicitness and explicitness of a similar principle.

The five principles are declared by Gilreath and Laplante [Gilr 2003c] and are organized around
explicit or implicit nature of the principle. The principles for the Instruction Set Completeness
Theorem are:

1. Statefulness - The instruction set must be stateful by state and a next state function.

2. Explicit State Change - There must be an instruction to directly and explicitly modify
state.

3. Explicit Next State Change - There must be an instruction to directly and explicitly

modify next state function.

4. Implicit State Change - There must be an instruction to indirectly and implicitly modify
state.

5. Implicit Next State Change - There must be an instruction to indirectly and implicitly

modify next state function.

The General Science Journal March 2017
	

	 -3-

The State Change Principle and the Next State Change Principle are divided into explicit and
implicit operation.

1.2 Simplify the Instruction Set Completeness Theorem

The Instruction Set Completeness Theorem has five principles, but four of the principles are
organized around the explicit or implicit nature of the underlying principle.

1.2.1 Explicit and Implicit Principles

The Instruction Set Completeness Theorem is for a processor architecture—a computer system.
Each instruction of a computer is either explicit or implicit in operation. The contradistinction
between explicit and implicit is:

1. Explicit – operation intentionally by user
2. Implicit – operation automatically by processor

Simply put, an explicit principle is for operations intentional by the user, and the implicit
principle is for operations automatic by the processor. Either way, an operation is governed by
the same principle—whether it is intentional by the user, or automatic by the processor.

1.2.2 Simplify Four Principles to Two Principles

These four principles of the Instruction Set Completeness Theorem are then actually two
principles when the distinction of explicit and implicit is removed. The two resulting principles
are:

1. State Change Principle – There must be an instruction to modify state.
2. Next State Change Principle – There must be an instruction to modify next state function.

1.2.3 Reduction to Three Principles

The statefulness principle of the Instruction Set Completeness Theorem is neither explicit or
implicit thus is not simplified. Combining the three principles is the core of the Instruction Set
Completeness Theorem. The three fundamental principles are:

1. Statefulness Principle – The instruction set must be stateful by state and a next state
function.

2. State Change Principle – There must be an instruction to modify state.
3. Next State Change Principle – There must be an instruction to modify next state function.

1.3 Significance of Instruction Set Completeness Theorem

The Instruction Set Completeness Theorem is relevant to processor architecture because a
question asked by Gilreath and Laplante [Gilr 2003a] is:

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -4-

“What is the minimal functionality of an instruction needed to perform all other
kinds of operations in a processor?”

and later state [Gilr 2003a]:

“The question of instruction set completeness, is to determine what is the minimal
instruction set functionality necessary to have effective computability.”

Thus “completeness” of an instruction set for a processor architecture is for computation, or the
capability for computing tractable problems with a particular processor architecture. A processor
architecture that follows the Instruction Set Completeness Theorem is by definition a complete
instruction set—effectively computing any tractable problem.

Considering the question in the converse or opposite, an incomplete instruction set is by design
unable to compute all tractable computation problems. An incomplete instruction set limits a
processor architecture to a subset of all possible problems that are computable.

The relevance of the Instruction Set Completeness Theorem is more germane to a singular
instruction set, a one-instruction set computer, more so than with a plural instruction set. A
computer with only one instruction must follow all the principles of the Instruction Set
Completeness Theorem for the singular instruction set effectively computable.

The General Science Journal March 2017
	

	 -5-

2. Proof

The mathematical proof is simply to show an isomorphism or mapping between the Instruction
Set Completeness Theorem and a Turing machine. A Turing machine is formally defined, the
Instruction Set Completeness Theorem is simplified, and then the correspondence between a
Turing machine and the Instruction Set Completeness Theorem is given.

2.1 Turing Machine

The Turing machine was developed by Alan Turing in 1936 [Turi 1936] who created the
“automatic machine” or “a-machine” as Turing originally called his construct, for a
mathematical solution and proof of computability—what is effectively computable. Savage
[Sava 1997] describes the utility of a Turing machine:

“The Turing machine (TM) is believed to be the most general computational model
that can be devised (the Church-Turing thesis). Despite many attempts, no
computational model has yet been introduced that can perform computations
impossible on a Turing machine.”

A Turing machine is elegant in simplicity and operation, so ideal theoretically, but impractical
for application in the real world.

2.1.1 Turing Machine Description

Gilreath and Laplante [Gilr 2003b] describe a Turing machine as:

“The Turing machine is a simple model consisting of an infinite tape and read/write
unit that can write a single symbol at a time to the tape or read a symbol from the
tape. While the symbols can be from any alphabet, a simple binary alphabet is
sufficient. In any case, the read/write head moves one position either to the right or
left depending on the symbol read on the tape at the position immediately below
the read/write head. The read/write unit may also output a new symbol to the tape
(overwriting what was previously there).”

The important point made by Gilreath and Laplante [Gilr 2003b] about a Turing machine is:

“The most important observation is that anything computable by a Turing machine
is computable by a more sophisticated and complex computer or processor.”

Thus, logically a Turing machine is an ideal mathematical abstraction for the proof of the
Instruction Set Completeness Theorem.

2.1.2 Turing Machine Definition

For the mathematical proof of the Instruction Set Completeness Theorem, a comprehensive
definition of a Turing machine is first required. The definitions for a Turing machine given by

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -6-

Linz [Linz 2011], Rosen [Rose 2012], and Hopcroft et al. [Hopc 2006] are utilized in the overall
definition.

The formal definition for a Turing machine is described with a 7-tuple consisting of the
elements:

M = {Q, S, G, f, q0, b, F}

where the elements are defined as:

Q – The finite set of states.
S – The set of symbols in the alphabet.
G – The set of symbols in the tape alphabet where G Í S.
f – The transition function where f : Q ´ G ® Q ´ G ´ {L, R}.
q0 – The initial or starting state where q0 Î Q.
b – The blank symbol where b Î G where b Ï S.
F – The set of final or accepting states where F Í Q.

The blank symbol b is a tape symbol thus an output symbol, but not an input symbol.

The transition function f is a partial function from the 2-tuple of state and input symbol (qx Î Q,
si Î G) to the 3-tuple of state, output symbol, and direction (qy Î Q, so Î G È {b}, d Î {L, R})
where f : (qx, si) ® (qy, so, d). For the transition function f some (state, symbol) pairs of the
domain the partial function are possibly undefined—an implicit halt state for Turing machine M.

2.2 Turing Machine Equal to Instruction Set Completeness Theorem

A Turing machine is equal to the Instruction Set Completeness Theorem, or the principles of the
Instruction Set Completeness Theorem. But, the Instruction Set Completeness Theorem is
redundant in duplicating principles for inclusiveness.

2.2.1 Instruction Set Completeness Theorem Simplified Principles

The simplified Instruction Set Completeness Theorem principles, without explicit and implicit
operation, are:

1. Statefulness Principle
2. State Change Principle
3. Next State Change Principle

2.2.2 Map Instruction Set Completeness Theorem Principles onto Turing Machine

Each of the three principles has a corresponding element in the definition of a Turing machine.
Thus for each Instruction Set Completeness Theorem Principle, there is an element or elements
from the 7-tuple formal definition of a Turing machine.

The General Science Journal March 2017
	

	 -7-

1. Statefulness Principle – Ms where Ms Í M. The statefulness principle involves two sets
of elements elements: state {Q, q0, F} of a Turing machine M, and also next state
function f = fMc È fMn of a Turing machine M. The statefulness principle elements are Ms
= {Q, q0, F, f}.

2. State Change Principle – Mc where Mc Í M. The state change principle involves two sets

of elements: input symbols {S} of a Turing machine M, and also the next state function f
of a Turing machine M. The state change principle elements are Mc = {fMc, S}.

The state transition function fMc reads an input symbol si Î S from the tape in a
state qx from the tape, and transitions to another state qy:

fMc: (qx, si) ® (qy)

When the state qy Ï {F} È {Q} the resulting state is undefined.

3. Next State Change Principle – Mn where Mn Í M. The next state change principle

involves two sets of elements: output symbols {G, b} of a Turing machine M, and also
next state change principle f of a Turing machine M. The next state change principle
elements are Mn = {fMn, G, b}.

The next state transition function fMn is in state qx to write a symbol so in {G, b} to
the tape, and then shift the tape in a direction d = {L, R} to the left or right.

fMn: (qx, si) ® (so, d) where d = {L, R}.

2.2.3 Constructing a Turing Machine

The original Turing machine M can be constructed using the set of elements from the three
principles of the Instruction Set Completeness Theorem. This requires the transition function f,
and the set of elements for symbols and state.

2.2.3.1 Transition Functions

The union of the image or range for the functions of state change fMc, next state change fMn,
result in the overall transition function f for Turing machine M. Thus for the two functions:

fMc: (qx, si) ® (qy) Ù fMn: (qx,si) ® (so, d).

Both functions have the same domain, but map to a different range. The union of both functions
fMc and fMn in the range is then the overall state change function f:

f : (qx, si) ® (qy) È (so, d) º f : (qx, si) ® (qy, so, d).

Thus the overall state change function f is then:

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -8-

f : (qx, si) ® (qy, so, d).

2.2.3.2 State Change, Next State Change, Statefulness Elements

The union of the subsets of the Turing machine state change Mc, next state Mn is the subset of
state change and next state or Mcn:

Mcn = {fMc, G, S} È {fMn, G, b} = {f, G, b, S}

The set of elements Mcn Í M, thus is a Turing machine M, but stateless.

The transition function f is defined for symbols the blank symbol b, and the set of tape symbols
G	Í S the set of symbols in the alphabet.

With the union with the set of elements for statefulness Ms, with the set of elements for state
change and next state Mcn forms a stateful Turing machine M:

Mcns = {f, G, b, S} È {Q, q0, F, f} = {f, G, b, S, Q, q0, F} º M

Thus the overall union of the three sets of elements: Ms, Mn, Mc, results in the 7-tuple of
elements that define a Turing machine M. So each of the three principles of the Instruction Set
Completeness Theorem correspond to elements in the definition of a Turing Machine.

\ All three principles of the Instruction Set Completeness Theorem together form an overall 7-
tuple of elements that define a Turing machine.

Since by the Church-Turing Thesis, Horsten [Hors 2006] states:

“…states that every function on the natural numbers that is effectively computable,
is computable by a Turing machine.”

More simply stated, anything computable is computable by means of a Turing machine;
therefore anything computable is computable on a processor architecture that uses the principles
of the Instruction Set Completeness Theorem.

Q.E.D.

The General Science Journal March 2017
	

	 -9-

2.3 Summary of Mathematical Proof

The Instruction Set Completeness Theorem is shown to directly correspond to a Turing machine.
Therefore, the Instruction Set Completeness Theorem is the same as a Turing machine, thus by
the Church-Turing Thesis is equivalent computationally.

The three principles of the Instruction Set Completeness Theorem, in the context of
corresponding to a Turing machine are then:

1. statefulness – have state, a memory of previous operation in current operation.
2. state change – read input data to compute next state
3. next state change – write output data for computation

An important consideration is that the Instruction Set Completeness Theorem is not specific to a
processor architecture, or any intrinsic features for a processor architecture.

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -10-

3. Instruction Sets

Instruction sets for a processor architecture can be either plural or singular. A plural instruction
set consists of more than one instruction, and a singular instruction set has only one instruction.
The cardinality of the instruction sets is either one instruction or many (greater than one)
instructions.

More simply put, a plural instruction set is for a non-one-instruction set computer (NOISC),
whereas a singular instruction set is for a one-instruction set computer (OISC). The concept of
instruction set completeness is applicable to both plural and singular instruction sets of a
processor architecture. A complete instruction set for a processor instruction, singular or plural,
follows all the principles of the Instruction Set Completeness Theorem.

3.1 Complete Instruction Sets

Consider a complete instruction set for a processor architecture, such a processor can be
evaluated for each of the principles of the Instruction Set Completeness Theorem for both plural
and singular instruction sets.

3.1.1 Example Plural Instruction Set Processor Architecture

The example for a plural instruction set is the RISC I processor architecture [Patt 1981] which
has thirty-one instructions and one addressing mode. The RISC I processor architecture is
complete, therefore meets the principles for the Instruction Set Completeness Theorem. The
RISC I instruction set is:

Assembly Language Definition for RISC I

Instr. Operands Comments

ADD ¬
ADDC ¬
SUB ¬
SUBC ¬
SUBR ¬
SUBCR ¬
AND ¬
OR ¬
XOR ¬
SLL ¬
SRL ¬
SRA ¬

Rs,S2,Rd ¬
Rs,S2,Rd ¬
Rs,S2,Rd ¬
Rs,S2,Rd ¬
Rs,S2,Rd ¬
Rs,S2,Rd ¬
Rs,S2,Rd ¬
Rs,S2,Rd ¬
Rs,S2,Rd ¬
Rs,S2,Rd ¬
Rs,S2,Rd ¬
Rs,S2,Rd ¬

Rd ¬ Rs + S2
Rd ¬ Rs + S2 + carry
Rd ¬ Rs – S2
Rd ¬ Rs – S2 – carry
Rd ¬ S2 – Rs
Rd ¬ S2 – Rs – carry
Rd ¬ Rs & S2
Rd ¬ Rs | S2
Rd ¬ Rs xor S2
Rd ¬ Rs shifted by S2
Rd ¬ Rs shifted by S2
Rd ¬ Rs shifted by S2

integer add ¬
add with carry ¬
integer subtract ¬
subtract with carry ¬
integer subtract ¬
subtract with carry ¬
logical AND ¬
logical OR ¬
logical EXCLUSIVE OR ¬
shift left ¬
shift right logical ¬
shift right arithmetic ¬

LDL ¬
LDSU ¬
LDSS ¬
LDBU ¬
LDBS ¬
STL ¬
STS ¬
STB ¬

(Rx)S2,Rd ¬
(Rx)S2,Rd ¬
(Rx)S2,Rd ¬
(Rx)S2,Rd ¬
(Rx)S2,Rd ¬
(Rx)S2,Rm ¬
(Rx)S2,Rm ¬
(Rx)S2,Rm ¬

Rd ¬ M[Rx+S2]
Rd ¬ M[Rx+S2]
Rd ¬ M[Rx+S2]
Rd ¬ M[Rx+S2]
Rd ¬ M[Rx+S2]
M[Rx+S2] ¬ Rm
M[Rx+S2] ¬ Rm
M[Rx+S2] ¬ Rm

load long ¬
load short unsigned ¬
load short signed ¬
load byte unsigned ¬
load byte signed ¬
store long ¬
store short ¬
store byte ¬

The General Science Journal March 2017
	

	 -11-

JMP ¬
JMPR ¬
CALL ¬
¬
CALLR ¬
¬
RET ¬
RETINT¬
CALLINT ¬
LDHI ¬
GTLPC ¬
GETPSW ¬
PUTPSW ¬

CON,S2(Rx) ¬
CON,Y ¬
S2(Rx),Rd ¬

Y,Rd ¬
¬¬
(Rx)S2 ¬
(Rx)S2 ¬
Rd ¬
Y,Rd ¬
Rd ¬
Rd ¬
Rm ¬

pc ¬ Rx + S2
pc ¬ pc + Y
CWP--; Rd ¬ pc, next
pc ¬ Rx + S2
CWP--; Rd ¬ pc, next
pc ¬ pc + Y
pc ¬ Rx + S2, next CWP++
pc ¬ Rx + S2, next CWP++
CWP--; Rd ¬ last pc
Rd<31:13> ¬ Y; Rd<12:0> ¬ 0
Rd ¬ last pc
Rd ¬ PSW
PSW ¬ Rm

conditional jump ¬
conditional relative ¬
call reg. indexed ¬
and change window ¬
call relative ¬
and change window ¬
return, change window ¬
also enable interrupts ¬
also disable interrupts ¬
load immediate high ¬
to restart delayed jump ¬
read status word ¬
set status word ¬

Table of Instruction Set for RISC I Processor Architecture

For each of the Instruction Set Completeness Theorem principles, the processor architecture
instruction set has a corresponding subset of instructions within the instruction set that follow the
Instruction Set Completeness Theorem. Likewise, the processor architecture has registers in the
register set follow the Instruction Set Completeness Theorem. In summary, for the three
principles, one principle involves the register set, and the other two principles involve subsets of
the instruction set.

3.1.2 Plural Instruction Set Completeness Theorem RISC I Instructions

The processor architecture RISC I follows each of the Instruction Set Completeness Theorem
principles is:

1. Statefulness Principle – The instruction set must be stateful by state and a next state
function.

For the RISC 1, state and next state function that make the processor architecture stateful
are, for state the Processor Status Word (PSW) register, and for the next state function the
Program Counter (PC) register.

2. State Change Principle – There must be an instruction to modify state.

The state change is from the Processor Status Word register, instructions that affect the
PSW register relate to the state change. For the RISC 1, the instructions are:

GETPSW, PUTPSW explicit affect for PSW register.

3. Next State Change Principle – There must be an instruction to modify next state function.

The next state change is the Program Counter register, instructions that affect the PC
register relate to the next state change. For the RISC 1, the instructions are:

CALL, CALLR, CALLINT, RET, RETINT explicit for PC register.

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -12-

The instructions in the instruction set: JMP, JMPR implicit for PC, implicit for PSW in
effect, these instructions impact state change and next state change principles. The
arithmetic instructions for addition and subtraction indirectly affect the carry bit in the PSW
register...thus the state change principle.

The other instructions in the instruction set can possibly follow the Instruction Set Completeness
Theorem, but are not necessarily.

3.1.3 Example Singular Instruction Set Processor Architecture

There are many complete singular instructions that are used in a one-instruction computer
processor architecture—a variety of one instructions [Esol 2017a]. The example used is the
subtract and branch on result less than or equal to zero [Esold 2017d] singular instruction or
“subleq” instruction.

3.1.3.1 SUBLEQ Instruction

The description of SUBLEQ or “subleq” instruction is given in C programming language [Kern
1988] pseudocode by [Nürn 2003] as:

 subleq a, b, c:

 *b-= *a;
 if (*b <= 0) goto c;

Code in C for the SUBLEQ Instruction

The subleq singular instruction is a variation on the subtract and branch if negative instruction
(SBN) [Esol 2017c] and reverse subtract and skip on borrow (RSSB) instruction [Esol 2017b].

Some other complete singular instructions are bitwise logical such as NOR [Demi 2012].
Another singular instruction, the Move instruction, is complete on a transport triggered
architecture (TTA) [Corp 1997].

The General Science Journal March 2017
	

	 -13-

3.1.3.2 SUBLEQ Instruction Operations

The subleq instruction consists of two operations, the subtraction operation, and the jump
conditionally operation. In assembly pseudocode with both operations forming the subleq
instruction:

 subleq opa, opu, addr:

 sub opa, opu, opu ; opu = opa – opu
 jle opu, #0, addr ; if(result <= #0) goto addr

Code in Assembly for the SUBLEQ Instruction

3.1.4 Singular Instruction Set Completeness Theorem SUBLEQ

With a single instruction, the principles of the instruction set completeness theorem relate to the
operations within the single instruction and the registers more so than the instruction set.

1. Statefulness Principle – The instruction set must be stateful by state and a next state
function.

The state and next state function that make the processor architecture stateful are,
for state the status register (SR), and for the next state function the Program Counter
(PC) register.

2. State Change Principle – There must be an instruction to modify state.

The state change is from the status register, the operation that affects the status
register relate to the state change. The subtraction operation indirectly affects the
status register.

3. Next State Change Principle – There must be an instruction to modify next state function.

The next state change is the program counter register, the operation that affects the
PC register is the conditional jump operation.

3.2 Incomplete Instruction Sets

An incomplete instruction set does not follow one of the three principles of the Instruction Set
Completeness Theorem. Starting with the complete instruction sets of the RISC I and SUBLEQ
processor architectures, both can be modified for incompleteness with a specific Instruction Set
Completeness Theorem principle.

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -14-

3.2.1 Incomplete Plural Instruction Set

The modification to the complete plural instruction set for the RISC I processor architecture
involves removing instructions from the instruction set, and then removing registers from the
processor architecture.

The registers removed are:

1. PC the program counter register.
2. PSW the program status word register (i.e., status register).

The instructions removed are:

1. GETPSW, PUTPSW instructions for PSW register.
2. CALL, CALLR, CALLINT, RET, RETINT, GTLPC instructions for PC register.
3. JMP, JMPR for PC register and PSW register.

For all the principles of the Instruction Set Completeness Theorem the removal of the
instructions and registers affects each principle:

1. stateful

Remove the PC register and PSW register.

2. explicit modify state

Remove the GETPSW, PUTPSW instructions.

3. explicit modify next state function

Remove the CALL, CALLR, CALLINT, RET, RETINT, GTLPC instructions.

4. implicit modify state

Remove the JMP, JMPR instructions.

5. implicit modify next state function

Remove the JMP, JMPR instructions.

The removal of the JMP, JMPR instructions affects both the implicit modify state function and
implicit modify next state function principles. Removing the other instructions affects the
principles of explicit modify state function and explicit modify next state function.

The removal of the registers from the processor architecture impacts the statefulness principle,
and without state, the other principles of the Instruction Set Completeness Theorem.

The General Science Journal March 2017
	

	 -15-

The removal of the PSW register requires that the PSW register be a parameter for each
instruction, both passed in and out with the instruction. The removal of the PC register requires
that a condition, a next address for the condition, and the next address otherwise as a parameter
passed into the instruction.

The loss of either register impacts global state of the processor architecture, and as both an input
and output parameter of each instruction, localizes state. If the same memory address is used for
both the input and output parameter for each register, then there is global state.

The instructions that utilize the carry, ADDC, SUBC, SUBCR, are redundant with the PSW
register (that contains the carry bit) as a parameter for input and output, so are refactored from
the RISC I instruction set. The carry bit is through the PSW parameter passed into and from each
instruction.

The resulting incomplete instruction set with the removed registers for the RISC I is summarized
in the table.

Incomplete Assembly Language Definition for RISC I

Instr. Operands Comments

ADD¬¬
SUB ¬
SUBR¬
AND ¬
OR ¬
XOR ¬
SLL ¬
SRL ¬
SRA ¬

PSWin,Rs,S2,Rd,PSWout,CON,PCcond,PCnext¬¬
PSWin,Rs,S2,Rd,PSWout,CON,PCcond,PCnext¬
PSWin,Rs,S2,Rd,PSWout,CON,PCcond,PCnext¬
Rs,S2,Rd,CON,PCcond,PCnext¬ ¬
Rs,S2,Rd,CON,PCcond,PCnext¬ ¬
Rs,S2,Rd,CON,PCcond,PCnext¬ ¬
Rs,S2,Rd,CON,PCcond,PCnext¬¬
Rs,S2,Rd,CON,PCcond,PCnext¬ ¬
Rs,S2,Rd,CON,PCcond,PCnext

Rd ¬ Rs + S2
Rd ¬ Rs – S2
Rd ¬ S2 – Rs
Rd ¬ Rs & S2
Rd ¬ Rs | S2
Rd ¬ Rs xor S2
Rd ¬ Rs shifted
by S2
Rd ¬ Rs shifted
by S2
Rd ¬ Rs shifted
by S2

integer add¬¬
integer subtract¬ ¬
integer subtract¬ ¬
logical AND¬ ¬
logical OR¬ ¬
logical EXCLUSIVE OR¬
shift left¬ ¬
shift right logical¬
shift right arithmetic¬

LDL ¬
LDSU¬
LDSS
LDBU¬
LDBS
STL ¬
STS ¬
STB ¬

(Rx)S2,Rd,CON,PCcond,PCnext¬¬
(Rx)S2,Rd,CON,PCcond,PCnext¬¬¬
(Rx)S2,Rd,CON,PCcond,PCnext¬¬¬
(Rx)S2,Rd,CON,PCcond,PCnext¬¬
(Rx)S2,Rd,CON,PCcond,PCnext¬¬
(Rx)S2,Rm,CON,PCcond,PCnext¬¬
(Rx)S2,Rm,CON,PCcond,PCnext¬¬
(Rx)S2,Rm,CON,PCcond,PCnext¬¬ ¬

Rd ¬ M[Rx+S2]
Rd ¬ M[Rx+S2]
Rd ¬ M[Rx+S2]
Rd ¬ M[Rx+S2]
Rd ¬ M[Rx+S2]
M[Rx+S2] ¬ Rm
M[Rx+S2] ¬ Rm
M[Rx+S2] ¬ Rm

load long¬ ¬
load short unsigned¬
load short signed¬ ¬
load byte unsigned¬
load byte signed¬ ¬
store long¬¬
store short¬ ¬
store byte¬ ¬

LDHI
¬

Y,Rd,CON,PCcond,PCnext¬ Rd<31:13> ¬ Y;
Rd<12:0> ¬ 0

load immediate high to
restart delayed jump¬¬

Table of Incomplete Instruction Set for RISC I Processor Architecture

The resulting instruction set has only eighteen instructions, the load-store instructions for data
movement into the processor architecture, and the operational instructions for arithmetic and
logical operations.

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -16-

3.2.2 Incomplete Singular Instruction Set

An incomplete single instruction set cannot be affected by the removal of instructions from the
instruction set. With only one instruction in the instruction set, there are no other instructions to
remove to impact the principles of the Instruction Set Completeness Theorem.

 subleq srin, opa, opu, addr, srout, pcnext:

 sub srin, opa, opu, opu, srout, pcnext
 jle srin, opu, #0, addr, srout, pcnext

Code in Assembly for the Incomplete SUBLEQ Instruction

But, by removing the stateful registers and making them a parameter to the one instruction, the
instruction set is incomplete. Statefulness is local to each instruction, although it is possible by
using the same memory address to have global state.

The General Science Journal March 2017
	

	 -17-

4. Analysis

The Instruction Set Completeness Theorem is commensurate with the Church-Turing Thesis,
only specifically for the attributes of a processor architecture and the instruction set for such a
processor architecture.

4.1 Instruction Set Completeness Theorem

A processor architecture has operations, or instructions that are explicit and implicit in execution.
Hence, the Instruction Set Completeness Theorem makes a distinction in such operations in the
principles, but in the mathematical proof such a distinction is unnecessary.

4.2 Mapping between Turing Machine and Instruction Set Completeness Theorem

The mathematical proof for the truth of the Instruction Set Completeness Theorem is
demonstrating the correspondence between the principles of the Instruction Set Completeness
Theorem and the elements in the definition of a Turing machine, and then taking the elements
and constructing the original definition of a Turing machine. This is a mapping between the two
abstractions, but showing that one is equivalent to the other—the two are synonymous. A
processor architecture that follows the Instruction Set Completeness Theorem is capable of any
computation that a Turing machine can compute.

4.3 Processor Instruction Sets

Both plural and singular instruction sets must be complete for computability. For both instruction
sets, simply removing statefulness is enough to make an instruction set incomplete—although
this requires a change in the processor architecture and the instruction set.

4.3.1 Instruction Sets

Modifying the instruction set by removing instructions that allow both explicit and implicit
operation on the program counter (PC) and/or processor status word (PSW) registers removes
completeness by not following a principle of the Instruction Set Completeness Theorem. The
emphasis is on instruction sets, but the modified or removed instructions in the instruction set
impact state and statefulness of the processor architecture.

4.3.2 Serial Processor

For the von Neumann processor architecture [vonN 1998], statefulness is from the program
counter register (PC) and status register (SR). The principles of the Instruction Set Completeness
Theorem follow the requirement for statefulness, and then modifying processor architecture
state, and the function that modifies the state.

Thus, for an alternative, serial non-von Neumann processor architecture, the elements of the
processor architecture for statefulness are the paramount, and then the instructions in the
instruction set that impact the elements of statefulness. Example of non-Von ???

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -18-

4.3.3 Parallel Processor

For a parallel processor (the processor architecture has been implicitly a serial processor) the
Instruction Set Completeness Theorem applies equally. As parallel computer architecture
involves multiple or many processors that communicate, each individual processor must follow
the Instruction Set Completeness Theorem.

Simply stated, the overall union of each processor in the parallel processor architecture must
follow the Instruction Set Completeness Theorem for the overall parallel system to follow the
Instruction Set Completeness Theorem. For a parallel processor architecture, there is a
mathematical union or functional composition of each individual processor architecture.
However, the Instruction Set Completeness Theorem equally applies to a parallel processor as it
does to a serial processor.

The General Science Journal March 2017
	

	 -19-

5. Future Work

The original definition and discussion of the Instruction Set Completeness Theorem creates the
groundwork, and this research monograph further examines and develops the Instruction Set
Completeness Theorem. The most significant development is a formal mathematical proof of the
Instruction Set Completeness Theorem. But, despite the amount of endeavour, there is still future
work around the Instruction Set Completeness Theorem.

Future work on the Instruction Set Completeness Theorem involves three specific areas:

1. Examination of the Instruction Set Completeness Theorem for a serial non-von Neumann
computer architecture.

2. Examination of the Instruction Set Completeness Theorem for a parallel computer

architecture.

3. Develop incomplete instruction sets for each of the principles of the Instruction Set
Completeness Theorem.

Such efforts evaluate the Instruction Set Completeness Theorem more widely across different
processor architectures, and also by creating deliberately incomplete instruction sets for a
hypothetical processor architecture.

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -20-

6. Conclusion

The Instruction Set Completeness Theorem principles directly correspond to elements of a
Turing machine. The Instruction Set Completeness Theorem is equivalent to a Turing machine,
and thus is a restatement of effective computability from the Church-Turing thesis.

The emphasis of the Instruction Set Completeness Theorem is for a processor architecture with
state that is stateful, and with instructions in an instruction set—either plural or singular
instruction sets. The Instruction Set Completeness Theorem is not specific to any processor
architecture.

The illustrative example is from the von Neumann computer architecture, where state is from the
program counter and status registers. For other alternative processor architectures, the stateful
elements of the processor architecture are significant, and the instructions in the instruction set
that modify both state and the change of state—the Instruction Set Completeness Theorem.

Consequently, the Instruction Set Completeness Theorem is not only a list of requirements for
completeness for effectively computable—but also a model of what is significant about a
processor architecture—any processor architecture that is complete by the Church-Turing Thesis.

The General Science Journal March 2017
	

	 -21-

7. References

1. [Corp 1997] Corporaal, Henk. Microprocessor Architectures: From VLIW to TTA, John
Wiley and Sons Inc., Hoboken, New Jersey, 1997.

2. [Demi 2012] Demin, Alexander. “The NOR Machine: Build a CPU with Only One

Instruction,” Pragmatic Bookshelf, PragPub, Number 33, March 2012, pp. 6 – 24,
https://pragprog.com/magazines/2012-03/the-nor-machine.

3. [Esol 2017a] “OISC - Esolang,” https://esolangs.org/wiki/OISC, Accessed Feburary 17,

2017.

4. [Esol 2017b] “RSSB - Esolang,” https://esolangs.org/wiki/RSSB, Accessed Feburary 17,
2017.

5. [Esol 2017c] “SBN - Esolang,” https://esolangs.org/wiki/SBN, Accessed Feburary 17,

2017.

6. [Esol 2017d] “Subleq - Esolang,” https://esolangs.org/wiki/subleq, Accessed Feburary
17, 2017.

7. [Gilr 2003a] Gilreath, William F. and Laplante, Philip A. Computer Architecture: A

Minimalist Perspective, Springer Science+Business Media, New York, New York, 2003,
p. 55.

8. [Gilr 2003b] ibid, p. 56.

9. [Gilr 2003c] ibid, p. 63.

10. [Gilr 2003d] ibid, p. 66.

11. [Hors 2006] Horsten, Leon. “Formalizing Church’s Thesis,” Church’s Thesis After 70

Years, Transaction Books, Piscataway, New Jersey, 2006, p 253.

12. [Hopc 2006] Hopcroft, John E., Motwani, Rajeev, and Ullman, Jeffrey D. Introduction to
Automata Theory, Languages, and Computation, 3rd edition. Pearson Education, Boston,
Massachusetts, 2007, p. 319.

13. [Kern 1988] Kernighan, Brian W. and Ritchie, Dennis M. The C Programming

Language, 2nd edition, Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1988.

14. [Linz 2011] Linz, Peter. An Introduction to Formal Languages and Automata, 5th
edition, Jones and Bartlett Learning, Sudbury, Massachusetts, 2011, p. 223.

Instruction Set Completeness Theorem: Concept, Relevance, Proof, and Example for Processor Architecture	

	 -22-

15. [Nürn 2003] Nürnberg, Peter J., Wiil, Uffe K., and Hicks, David L., “A Grand Unified
Theory for Structural Computing,” Metainformatics, International Symposium, MIS
2003, Graz, Austria, September 17-20, p. 4, 2003.

16. [Patt 1981] Patterson, David A. and Sequin, Carlo H. “RISC I: A Reduced Instruction Set

VLSI Computer,” Proceedings of the 8th International Symposium on Computer
Architecture (ISCA '81), IEEE Computer Society Press, Los Alamitos, CA, USA, pp.
443-457, 1981.

17. [Rose 2012] Rosen, Kenneth H. Discrete Mathematics and Its Applications, 7th edition.

McGraw-Hill, New York, New York, 2012, p. 889.

18. [Sava 1997] Savage, John E. Models of Computation: Exploring the Power of
Computing, Addison-Wesley Longman Publishing Company, Inc. Boston,
Massachusetts, 1997, p. 209.

19. [Turi 1936] Turing, A. “On computable numbers, with an application to the

Entscheidungsproblem,” Proceedings of London Mathematical Society, Number 2,
Volume 42, 1936, pp. 230–236. Correction, ibid, Volume 43, 1937, pp. 544–546.

20. [vonN 1998] von Neumann, John, “First Draft of a Report on the EDVAC,” IEEE Annals

of the History of Computing, Volume 15, Number 4, 1993, pp. 27-75.

