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Abstract—Recently a new type of hypercomplex Fourier trans- Every quaternion can be written explicitly as a linear combi-
form has been suggested. It consequently transforms quater- nation
nion valued signals (for example electromagnetic scalar-vector
potentials, color data, space-time data, etc.) defined over a  ¢=g¢, +qi+qj+akcH, q¢,¢,q9,%€R, (2)
quaternion domain (space-time or other 4D domains) from a
quaternion “position” space to a quaternion "frequency” space. and has ajuaternion conjugate
Therefore the quaternion domain Fourier transform (QDFT) uses ~ . . L
the full potential provided by hypercomplex algebra in higher q=¢qr— ¢t — q;J — qk, Pq = qp- 3)
dimensions, such as 3D and 4D transformation covariance. The .
QDFT is explained together with its main properties relevant for 1 hiS leads to theworm of ¢ € H

applications such as quaternionic data preprocessing. gl = \/? _ \/q% N qu ) pal = llal. ()

The inverseof a non-zero quaternioq # H is

The electromagnetic field equations were originally for- . q
mulated by J. C. Maxwell [22] in the language of Hamil- 9 = W (®)
ton’s quaternions [12]. Later, among many other applications, . o i
quaternions began to play an important role in aerospabge (Symmetric) scalar parof a quaternion is defined as

engineering [21], color signal processing [10], and in material 1 -
J g [21] gnar b g [10] (@)o = Sclq) = ¢» = 5(q+q),

I. INTRODUCTION

science for texture analysis [1], [23]. 2
Quaternion Fourier transforms (QFT) are since over 20 Sc(pq) = Sc(qp) = Se(pq),
years a mathematically well researched and frequently applied Se(pqr) = Sc(qrp) = Sc(rpq). (6)

subject [5]. Yet interesting enough most publications on QFTs

concentrate on transformations for signals with donath Every quaternioru € H, a # 0, can be written as scalar part

Motivated by private communication with T.L. Saaty relate@lUs (pure) vector part

to quaternion valued functions over the domain of quaternions,

we establish here a genuine Fourier transform with a quater- a X

nionic kernel operating on such functions. = lal(cosa + al sina) = |ale®?, @)
This paper follows the treatment in [18] (which should

be consulted for further details) and begins by introducinfith & = a/lal, cosa = a,/lal, a € [0, 7). A scalar product

quaternions and their relevant properties, including quaterniBhduaternions can be defined fory € H as

domain functions in Section Il. The quaternion domain Fourier

transform (QDFT) is defined in Section Ill. Many application

relevant properties of the QDFT are investigated in Sectidivo quaternions interpreted as elementsRéfare defined to

V. be orthogonal, if and only if their scalar product is zero

a=a,+al+a;j+ark=a,+a

z -y = Sc(Ty) = xpyr + iy + 295 + Tryr. (8)

[l. DEFINITION AND PROPERTIES OF QUATERNIONEI zly & =z-y=0 ©)

Pure quaternions have zero scalar parinarmed) unit pure

A. Basic facts about quaternions i
uaternionq squares to-1

Gauss, Rodrigues and Hamilton’s four-dimensional (4D ) s o
quaternion algebraH is defined oveiR with three imaginary a”=—(q¢ +q; +q;) = -1 (10)

units ¢, j, k: The set of unit pure quaternions is isomorphic to the unit

sphereS? c R3.
If we interpret the four real coefficients of € H,
Ty, Ty, 25, € R as coordinatesin R*, with infinitesimal

tj=—Jgi=k, jk=—-kj =1,
ki=—ik=3j, i°=j>=k*>=ijk=—1. (1)



volume element*z = dz,dz;dz;dzy, then the substitution We further note, that the transformation
z =ax, a € H, yields [18] N o= eod, b= cfa. (20)

— Z 444, 4, —4 74
z=ar = dz=laf'dz, d'z =la|"d"z, (11) potates the r_-part by the anglea + 3 in the ¢_-plane
assuming # 0 for the last identity. (determined by (17), setting = a), and rotates the:, -part

For the transformation = axb, a, b,z € H, we obtain [18] PY @ — /5 in the ¢, -plane. S _
The 4D reflectionat thereal line is given by quaternion

d*z = |a*|b[*d*x = |ab|*d*z. (12) conjugationz — Z, leaving the real line pointwise invariant.
. o The 4D reflectionat the3D hyperplaneof pure quaternions
As expected theotation (19) does not change the infinitesimalg therefore given by: — —, leaving the 3D hyperplane of
volume element pure quaternions pointwise invariant.
=  dz = |aa " ds = dia. (13) A r_eflec_tionat a (poir)twise invgriantgeneral Iineip R% in
the direction of the unit quaterniom € H, |a| = 1, is given
We follow [19] in defining the followingderivative opera- by x — aza.

2 =axa !

tors A reflectionat the (pointwise invariant)hree-dimensional
~ ) ) hyperplaneorthogonal to the direction in four dimensions
0 = Oy, + 0zt + 0y,5 + Ok, (14)  specified by the unit quaternion, |a| = 1, is given by
0= 0y, — Op,i — 0y, — Oz, k, 15) z — —aza.

. - A general rotationin R* is given by
where 9, = 0/0x,, etc. are scalar partial derivatives. We

further define the three-dimensioriairac operator T — azxb, a,b e H, la| = [b| = 1. (21)

D=0-0, =0yi+0,j+0.k, =20, +D. (16) To understand thgeometry of this rotatioff17], we rewrite
- o o the unit quaternions, b as
The orthogonal planes splitof ¢ € H with pure unit

quaternionf = g = I, I € H, I? = —1, [14], [16], [17] a=e  b=eP (22)
is defined as The pure unit quaternions andb define two orthogonal two-
dimensional rotation planes iR*, where without restriction

I+ = 5(‘1 + Iql), ¢- = +arl, of generality we assumé + b, because the case= b has
9+ = qiJ +qx K = (q7 + qr1)J, (17) already been discussed in (20). Tdﬁ}re” plane with orthogonal

basis and projection
with rotation operatorR = (i + )i, J = RjR~' and K = R ) 1 K
RER™', J? = K? = -1, ¢,q1,q97,9x € R, similar to [17]. qi’bbasiS: {a—b,1+ ab}, qj‘r’b = §(q+éqb), (23)
Note, that there is gauge freedonin this split by changing
R — Rexp(Ip/2), ¢ € [0,27), i.e. a rotation freedom in and the orthogonaj‘i’b plane orthogonal basis and projection
the ¢;-plane. The unit1, 7, J, K'} form anotherequivalent

a,b o (A - AT ab _ A T
representatiorof quaternions. Note further, that the_ part ~ ¢= basis: {a+b,1—ab},  ¢2" = j(¢—agb), (24)
commuteswith 7, whereas the, partanticommutes ab . ab _
such thatg = ¢7” 4 ¢2”, for all ¢ € H. The transformation
q-I=1Iq_, g+1 = —1Iq4. (18) 2z — axb of (21) then means geometrically a rotation by the

_ _ _ o anglea — f in the ¢ plane (around the™” plane as axis)
Note f_mally, that_ the split (17) W'm. ~ (Z+J.+k)/\/§ as g% and a rotation by the angle + 3 in the g™’ plane (around
line direction, yields the conventional split of a color igea the qi’b plane as axis). This also tells us, that for= 3 the

into luminance and chrominance components [10]. rotation degenerates to a single two-dimensional rotatipn

. b o . .
B. Quaternions and reflections and rotations in three and fode in the¢”” plane, and forv = —4 it de%enerates to a single
dimensions two-dimensional rotation bga in the ¢¢” plane.

; . ) o
The geometry of reflections and rotatioria three and _A general rotary reflection(rotation reflection) inR* is
. . . . iven by
four dimensions, expressed in the language of quaternmnsgl
discussed in [7], [17], [23]. We give an overview of how T — axb, a,beH, la| = |b] = 1. (25)
important orthogonal transformationsn three-dimensional This rotary reflection has the pointwise invariant line tigh

and four-dlmenspnal Euclidean space can be expressedab_z b. In the remaining three-dimensional hyperplane, orthog-
means of quaternions.

A three-dimensionafotation of the vector partx of the onal to thea + b line, the axis of the rotary reflection is the

quaternionz € H by the angle2a around the axis (compare i€ in the directioru — b, because(a — b)b = —(a —0). The
eq. (7)), leaving the scalar patt. invariant, is given by [18] rotation plane of the rotary reflectlon~|s spanned by the two
orthogonal quaternions, o = [a, b](1 + ab), [a,b] = ab — ba,
¥ =azxat. (19) and the angle of rotation iE = 7 — acrccos(Sc(ab)), [17].



C. Quaternion domain functions Il1. THE QUATERNION DOMAIN FOURIER TRANSFORM

Every real valued quaternion domain functipmapsH — Since the traditional quaternion Fourier transform (QFT)

R: [9], [11], [24] is only defined for real or quaternion valued

frxw— f(x) €R, Vo cH. (26) signals over the domaiR?, we newly define theuaternion
domain Fourier transform(QDFT) for h € L!(H; H) as

(er>2 /Hh(x)e_lx""d‘lx, (36)

. . with z,w € H, d*x = dx,dz;dz;dz, € R, and some constant
frawm f(2) = fr(@)+ filz)it fj(@)j + fi(x)k € H. (27) [ c g 12 — _1. The constant unit pure quaternidncan be

We define for two functionsf,g : H — H the following Chosen specific for each problem.

Every quaternion valued quaternion domain functignmaps
H — H, its four coefficient functiong,, f;, f;, fx, are in turn F{h}(w) = h(w) =
real valued quaternion domain functions:

quaternion valued inner product N.ote that the.QDFT of (36). isteerabledue to the free
choice of the unit pure quaternion udite S2.
(f,9) = / f(@)g(z)d s (28) This QDFT definition isleft linear
H 7 ~
: _ Flah + Bg}(w) = ah(w) + B4(w), (37)
with d*z = dz,dv;dz;dz, € R. Note that quaternion L
conjugation yields for g,h € L' (H; H) and constants:, 5 € H. .
Tl 29) Applying the orthogonal planes split (17) to the signal
(f:9) = (g, /). ( function h = hy + h_ and to the QDFTh we find
Thls means that the real scalar part of thieer product(f, g) B(w) _ B+(w) 4 E_(w), (38)
is symmetric ) 1
1 hy(w) = L / hy(z)e ®d's
(1) = 51(0.9)+ (0.0 = [ G@a@ad'a € (@ U
— +I:I?~wh d4 , 39
(f.9) = 9.) (30) o f, s (39)
We further define thel(IH; H)-norm! as :( )= ﬁ/ hﬁ(x)e—fﬂwd‘ix
)" Ju
1

171l = VD) = VT = /H f@)Pdiz > 0. (31) = G /H e 1P _()d'a. (40)

) .. Example. Following the suggestion of T. L. Saaty, we QDFT
is the set of all finite 4nsform thefunctional quaternion equation

h(ax) = bh(z), h:H - H, (41)

with quaternion constants,b € H. We define the auxiliary
The convolutionof two functions f, g € L?(H; H) is defined function h,(z) = h(ax) and compute [18]

Thequaternion domain module? (H; H)
L?(H; H)-norm functions

L*(E;H) = {fIf : H— H[|f]| < oo}. (32)

as , ha(w) = Ja]~*h(@1w). (42)
()@ = [ Fale - v)a'y. @ o
H Using relationship (42) and left linearity we arrive at thB I
For unit norm signals’ € L2(H; H), ||f|| = 1, we define the ©Of (41) e .
effective spatial widtfor spatial uncertainty (or signal width) la|"*h(a™ w) = bh(w), (43)

of f in the directionof the unit quaterniom € H, |a| =1, as g equivalently
the square root of the variance of the energy distributionf of N "
along thea-axis h(a™ w) = |a|"bh(w), (44)

which seems neither less nor more complicated to solve than
Azg = ||(z-a)f]| = \// (z-a)?|f(z)|2d4z. (34) the original equation (41).

H An application of (42) is the four-dimensional inversion at
Also for unit norm signalsf, we define theeffective spatial 1€ Originz — —a which results in
width (spatial uncertainty) as the square root of the variance ﬁ_l(w) - ;}(fw)_ (45)

of the energy distribution o
9 f The QDFT carseparatethe two components of a "complex”

o) f - i - AN
A= [[ef]] = \//H I signal f : H — R +3R, f(z) = f,(z) +ifi(x), into evenand

(35)  odd componentwith respect to the inversiom — —x. Let

!Note that in equation (13) of [14] th is missingrath J) = Jrw)+ 8]
Note that in equation (13) of [14] the square root is missingroe o . .
integral in the definition of the.?(R?; H)-norm. fr(@) + f7 (@) +i(f7 (z) + i f (@), (46)



with

—_

fi=x) = fi(x) = 5 (fr(@) + fr(=2)),

Fo(=) =~ f2(w) = (@) — fo(-2),
fe@) = fo-a), F) = 1)

[\

(47)

QDFT transformations of théirac operator D applied
from the left and right, respectively, give

D"h(w) = w™h(w)I™,  hD™(w) = hw™(w)I™
m € N.

)

(57)

where the pure quaternion part of the quaternion frequency

Then forI = j (we could also sef = k or any other pure is w = w — w;,.

quaternionl %) we have by linearity
Fw) = fiw) + f2w) +3(ff W) + iff (w))
= / fe(x) cos(z - w)d*w + ]/ fo(z) sin(z - w)d*w
H H
+i/ ff(x) cos(z - w)d*w
H

+k/ f2(z) sin(z - w)diw. (48)
H

Compare [20] for a similar approach to the symmetry analysig®z" 2" 2],

of signalsf : R — C.

IV. PROPERTIES OF THEQDFT

Properties of the QDFT that can easily be established are

transforminversion(Plancherel theorem)
1

_ 7 +Iz-w 34
h(z) = )2 /Hh(x)e d*w, (49)
a shift theoremfor g(x) = h(z — a), constanta € H,
§(w) = h(w)e ", (50)

The QDFT of m-fold powers of coordinatesr;, [ €
{r,i,7,k}, m € N, times the signal functionh leads to (dual
to (53))

2 h(w) = O h(w)I™, (58)
For example fori = » we obtain
Trh(w) = O, h(w)I. (59)

If P(‘TW Lis xj’ mk) = Zmr,miﬂnj,mk OémT,m,;,mj s M
J with quaternion coefficients
Qo my,my,m;, € H, iS apolynomial of the four coordinates
{zy,z;,xj, 1}, then the QDFT yields
>

My, Mg, M Mg

My MG MG M 7, My+mi+m;+myg
a’mr,miﬂnjﬂ”kawr 8wi 8wj] awkk h(w)l ! k. (60)

F{P(xy, i, zj, x1)h}(w) =

For example forP(z) = a - = a,x, + a;x; + a;z; + apTy
we obtain

F{la-2)h}(w) = (a- du)h(w)], (61)

and amodulation theorenfor m(x) = h(x)e’™“°, constant with , = 8, + 0,4 + o j + du k anda - 9, = a,8,, +
- ; j : -

w()EH,

m(w) = hw — wo). (51)

Linear combinations with constant quaternion coefficients

«, 8 € H from theright lead due to (18) to
F{ha + g8}
= h(w)ay +h(-w)a- +§(w)Bs +§(-w)B-.  (52)

We defineg;(x) = 0y, h(z), | € {r,i,j,k} for the partial
derivativeof the signal function, and obtain its QDFT as

a;Oy; + a;0,, + axd.,,. We have thedual to (60) result that

>

Moy Mg MG, Mg

-F{P(arr7aamaaﬂtjaaﬂfk)h}(w) =

Xm,. m; s, M

merwimiwjmj wkm,k il(w)lmr+mi+m] +my , (62)
with the special case (dual to (61))
F{(a-d)h}(w) = (a-w)h(w)I. (63)

Note that (62) shows how the QDFT (with= zq, 1 = 3,

Gi(w) = ;L(W)le. (53) T2 = Tj, T3 = x1) can be used tdreat important partial
differential equations in physic®.g. the heat equation, wave
For example forl = r we obtain equation, Klein-Gordon equation, the Maxwell equations in
@(w) _ wrﬁ(w)I. (54) \[/2617c:]l.1um, free particle Schdinger and Dirac equations [24]-
This leads to the QDFT of theerivative operators Equation (60) leads further (dual to left side of (55)) to,
Imh(w) = (W)™, Ih(w) = T h(w) ™, wh(w) = Oh(w)I,  x™h(w) = 0" h(w)I™,
m e N. (55) m e N. (64)

Multiplying instead with thequaternion conjugaté we obtain
(dual to right side of (55))

Applying thederivative operators from the righb the signal
function h we further obtain

Fh(w) = 0h(w)I, Fmh(w) = 0" h(w)I™,
m € N.

hom () = R ()T™, RO (w) = R (w)T™,

m e N. (56) (65)



Taking only thepure vector partof x, x = = — z,, we obtain
(dual to (57))

xh(w) = Dy,h(w)I, x™h(w) = D™ h(w)I™,

m € N, (66)

where D, = 0y, + 0.,,J + O, k.

We further obtain the following@DFT Plancherel identity
which expresses, that the quaternion valireter product(28)
of two quaternion domain module functiorfsg € L?(H; H)

Fourier domain) of eguaternion domain signaf : H — H
with a pair of complex filtersgi (z) = g1,-(z) + g1.:(2) =
g-(2), g2(x) = g2.-(2) + g2,:(2)i = g4 (2)(—J), choosing
I =14in (36).

Next, we study thecovariance propertieof the QDFT
under orthogonal transformationsWe find that athree-
dimensional rotation(19) of the argumeny(z) = h(a='za)
leads to

§(w) = h(a"'wa). (76)

is given by the quaternion valued inner product of the correhe reflection atthe pointwise invarianteal scalar linez —

sponding QDFTsf and §
(f,9) = (f,9).

As corollaries we get the correspondif@gDFT Plancherel
identity for the scalar inner productof equation (30)

(67)

(f.9) = {f.9), (68)
as well as theQDFT Parseval identity
1711 =111l (69)

The QDFT Parseval identity means, that the QDFT preserves

the signal energy when applied in signal processing.

Z, g(z) = h(Z) gives
§(w) = —h(@).

The reflection atthe three-dimensionahyperplane of pure
quaternionse — —&, g(x) = h(—Z) results in

(w) = —h(-a).

The reflection atthe pointwise invariantine througha € H,
la| =1, x — aZa, g(x) = h(aZa) gives

(77)

(78)

§(w) = —h(a"'@a"") = —h(awa), (79)

becausei~! = a for |a|] = 1. The reflection atthe three-

We now define analogous to (34) for unit norm signalgimensionahyperplane orthogonal tthe line through: € H,

f e L?(H; H), ||f]| = 1, the effective spectral widtlor band
width) of f in the directionof the unit quaterniom: € Hi,

la] = 1, as the square root of the variance of the frequency

spectrum off along thea-axis

Aw, = |- a)fl] = \//H(w -a)?|f(w)Pd*w.  (70)

We further define the heffective spectral widtl{frequency

la| =1 2 — —aZa, g(x) = h(—aZa) results in
(80)

A generalffour-dimensional rotationn R*, z — axb, a,b € H,
la| = 1b] =1, g(z) = h(axb) leads to

§(w) = h(awb). (81)
We have thus studied the behavior of the QDFT unalér

§(w) = —h(—aBa).

uncertainty) as the square root of the variance of the enenggint group transformation# three and four dimensions (re-

distribution of f

Aw = [|wf]| = \/ /H ]2 (@) Pd4w.

We can now state thdirectional uncertainty principldor the
QDFT of unit norm signalsf € L*(H; H), ||f|| =1 as

(V1)

AzqAwy > la-b) (72)
The uncertainty principletakes the form
AxAw > 1. (73)

Equality holds in (72) and (73) foGaussian signal$18].
The QDFT of theconvolution(33) of two functionsf, g €
L?(H; H) results in

(F+ 9)@) = 2m)*[f)g- (@) + F(—w)gs @))-
Note that forg, (w) = 0 or if f(w) = f(—w) we obtain

(74)

o — “

(f * 9)(w) = (2m)* f(w)g(w). (75)
An application of the QDFT convolution (74) is, e.g., thast

flections, rotations, rotary reflections, inversions), athare of
importance in crystallography. We note, that quaternicaseh
already been employed for the description of crystallogi@p
symmetry in [1] and for the description of root systems of
finite groups in three and four dimensions in [8].

V. CONCLUSION

We first reviewed quaternion algebyaorthogonal trans-
formations expressed in quaternion algebra, and quaternio
calculus.

We established theteerable quaternion domain Fourier
transform (QDFT) with a free choice a single constant pure
unit quaternion in the kernel. We examined thmperties
of left and right linearity, orthogonal plane split propert
and gave an example of the QDFT of a functional equation.
Further properties studied are the inverse QDFT, shift and
modulation theorems, the QDFT of quaternion coordinate
polynomials multiplied with quaternion domain sigrfalss
well of products with powers of the signal argument

’Note that real and complex polynomial generated moment invartzave
recently been successfully used for translation, rotatiod scale invariant
normalized moment description of vector field features, inclgdlow fields

convolution (via simple multiplication of the QDFTs in the [2]-[4].



and the corresponding dual properties (polynomials of pafe]

tial

differential operators, quaternion derivatives and Dirac

derivatives). We found that the QDFT can separate the sy i
metry components of complex signals, and can be applied to

many partial differential eugations in physics. Quaternion-

(8]

commutativitymeans, that multiplication from the right and
left need to be distinguished carefully. Next we establishegb]
Parseval and Plancherel identities, uncertainty principles and
convolution properties for the QDFT. The convolution allows
e.g. fast filtering with pairs of complex filters. Finally we studf10]
ied the covariance properties of the QDFT under orthogonal
transformations of the signal arguments, which may a.o. be[g){]
importance for applications in crystallography.

We expect that this new quaternionic Fourier transformatid#?!

may find rich applicationsin mathematics (e.g. higher di-[13

mensional holomorphic functions [19]) and physics, including
relativity and spacetime physics, in three-dimensional col&¥l

field processing, neural signal processing, space color Viqﬁ
the

processing, crystallography, quaternion analysis, and for
solution of many types of quaternionic differential equations.
We further expect that the QDFT can be successkttgnded

to localized transforms, e.g., quaternion domain window
Fourier transforms, and continuous quaternionic wavelets Al
quaternionic ridgelets [8] Further research should be don?n]
into operator versionsof the QDFT, and its relatedinear
canonical transforms, which may open up many further areas
of interesting applications, including quantum physics and
guantum information processing. Especially for applications,
discretizationand fast implementatiomnwith pairs of complex

fast Fourier transforms will be of great interest.
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