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Abstract—Recently a new type of hypercomplex Fourier trans-
form has been suggested. It consequently transforms quater-
nion valued signals (for example electromagnetic scalar-vector
potentials, color data, space-time data, etc.) defined over a
quaternion domain (space-time or other 4D domains) from a
quaternion ”position” space to a quaternion ”frequency” space.
Therefore the quaternion domain Fourier transform (QDFT) uses
the full potential provided by hypercomplex algebra in higher
dimensions, such as 3D and 4D transformation covariance. The
QDFT is explained together with its main properties relevant for
applications such as quaternionic data preprocessing.

I. I NTRODUCTION

The electromagnetic field equations were originally for-
mulated by J. C. Maxwell [22] in the language of Hamil-
ton’s quaternions [12]. Later, among many other applications,
quaternions began to play an important role in aerospace
engineering [21], color signal processing [10], and in material
science for texture analysis [1], [23].

Quaternion Fourier transforms (QFT) are since over 20
years a mathematically well researched and frequently applied
subject [5]. Yet interesting enough most publications on QFTs
concentrate on transformations for signals with domainR2.
Motivated by private communication with T.L. Saaty related
to quaternion valued functions over the domain of quaternions,
we establish here a genuine Fourier transform with a quater-
nionic kernel operating on such functions.

This paper follows the treatment in [18] (which should
be consulted for further details) and begins by introducing
quaternions and their relevant properties, including quaternion
domain functions in Section II. The quaternion domain Fourier
transform (QDFT) is defined in Section III. Many application
relevant properties of the QDFT are investigated in Section
IV.

II. D EFINITION AND PROPERTIES OF QUATERNIONSH

A. Basic facts about quaternions

Gauss, Rodrigues and Hamilton’s four-dimensional (4D)
quaternion algebraH is defined overR with three imaginary
units i, j,k:

ij = −ji = k, jk = −kj = i,

ki = −ik = j, i2 = j2 = k2 = ijk = −1. (1)

Every quaternion can be written explicitly as a linear combi-
nation

q = qr + qii+ qjj + qkk ∈ H, qr, qi, qj , qk ∈ R, (2)

and has aquaternion conjugate

q̃ = qr − qii− qjj − qkk, p̃q = q̃p̃. (3)

This leads to thenorm of q ∈ H

|q| =
√

qq̃ =
√

q2r + q2i + q2j + q2k, |pq| = |p||q|. (4)

The inverseof a non-zero quaternionq 6= H is

q−1 =
q̃

|q|2 . (5)

The (symmetric) scalar partof a quaternion is defined as

〈q〉0 = Sc(q) = qr =
1

2
(q + q̃),

Sc(pq) = Sc(qp) = Sc(p̃q̃),

Sc(pqr) = Sc(qrp) = Sc(rpq). (6)

Every quaterniona ∈ H, a 6= 0, can be written as scalar part
plus (pure) vector part

a = ar + aii+ ajj + akk = ar + a

= |a|(cosα+
a

|a| sinα) = |a|eâα, (7)

with â = a/|a|, cosα = ar/|a|, α ∈ [0, π). A scalar product
of quaternions can be defined forx, y ∈ H as

x · y = Sc(x̃y) = xryr + xiyi + xjyj + xkyk. (8)

Two quaternions interpreted as elements ofR4 are defined to
be orthogonal, if and only if their scalar product is zero

x ⊥ y ⇔ x · y = 0. (9)

Pure quaternions have zero scalar part. A(normed) unit pure
quaternionq squares to−1

q2 = −(q2i + q2j + q2k) = −1. (10)

The set of unit pure quaternions is isomorphic to the unit
sphereS2 ⊂ R3.

If we interpret the four real coefficients ofx ∈ H,
xr, xi, xj , xk ∈ R as coordinatesin R4, with infinitesimal
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volume elementd4x = dxrdxidxjdxk, then the substitution
z = ax, a ∈ H, yields [18]

z = ax ⇒ d4z = |a|4d4x, d4x = |a|−4d4z, (11)

assuminga 6= 0 for the last identity.
For the transformationz = axb, a, b, x ∈ H, we obtain [18]

d4z = |a|4|b|4d4x = |ab|4d4x. (12)

As expected therotation (19) does not change the infinitesimal
volume element

z = axa−1 ⇒ d4x = |aa−1|4d4x = d4x. (13)

We follow [19] in defining the followingderivative opera-
tors

∂̃ = ∂xr
+ ∂xi

i+ ∂xj
j + ∂xk

k, (14)

∂ = ∂xr
− ∂xi

i− ∂xj
j − ∂xk

k, (15)

where ∂xr
= ∂/∂xr, etc. are scalar partial derivatives. We

further define the three-dimensionalDirac operator

D = ∂̃−∂xr
= ∂xi

i+∂xj
j+∂xk

k, ∂̃ = ∂xr
+D. (16)

The orthogonal planes splitof q ∈ H with pure unit
quaternionf = g = I, I ∈ H, I2 = −1, [14], [16], [17]
is defined as

q± =
1

2
(q ± IqI), q− = qr + qII,

q+ = qJJ + qKK = (qJ + qKI)J, (17)

with rotation operatorR = (i + I)i, J = RjR−1 andK =
RkR−1, J2 = K2 = −1, qr, qI , qJ , qK ∈ R, similar to [17].
Note, that there is agauge freedomin this split by changing
R → R exp(Iϕ/2), ϕ ∈ [0, 2π), i.e. a rotation freedom in
the q+-plane. The units{1, I, J,K} form anotherequivalent
representationof quaternionsH. Note further, that theq− part
commuteswith I, whereas theq+ part anticommutes

q−I = Iq−, q+I = −Iq+. (18)

Note finally, that the split (17) withI = (i+j+k)/
√
3 as grey

line direction, yields the conventional split of a color image
into luminance and chrominance components [10].

B. Quaternions and reflections and rotations in three and four
dimensions

The geometry of reflections and rotationsin three and
four dimensions, expressed in the language of quaternions is
discussed in [7], [17], [23]. We give an overview of how
important orthogonal transformationsin three-dimensional
and four-dimensional Euclidean space can be expressed by
means of quaternions.

A three-dimensionalrotation of the vector partx of the
quaternionx ∈ H by the angle2α around the axiŝa (compare
eq. (7)), leaving the scalar partxr invariant, is given by [18]

x′ = axa−1. (19)

We further note, that the transformation

x′ = axb, a = eαâ, b = eβâ, (20)

rotates the x−-part by the angleα + β in the q−-plane
(determined by (17), settingI = â), and rotates thex+-part
by α− β in the q+-plane.

The 4D reflectionat the real line is given by quaternion
conjugationx → x̃, leaving the real line pointwise invariant.

The4D reflectionat the3D hyperplaneof pure quaternions
is therefore given byx → −x̃, leaving the 3D hyperplane of
pure quaternions pointwise invariant.

A reflectionat a (pointwise invariant)general linein R4 in
the direction of the unit quaterniona ∈ H, |a| = 1, is given
by x → ax̃a.

A reflection at the (pointwise invariant)three-dimensional
hyperplaneorthogonal to the direction in four dimensions
specified by the unit quaterniona, |a| = 1, is given by
x → −ax̃a.

A general rotationin R4 is given by

x → axb, a, b ∈ H, |a| = |b| = 1. (21)

To understand thegeometry of this rotation[17], we rewrite
the unit quaternionsa, b as

a = eαâ, b = eβb̂. (22)

The pure unit quaternionŝa andb̂ define two orthogonal two-
dimensional rotation planes inR4, where without restriction
of generality we assumêa 6= b̂, because the casêa = b̂ has
already been discussed in (20). Theqa,b+ plane with orthogonal
basis and projection

qa,b+ basis: {â− b̂, 1 + âb̂}, qa,b+ =
1

2
(q + âqb̂), (23)

and the orthogonalqa,b− plane orthogonal basis and projection

qa,b− basis: {â+ b̂, 1− âb̂}, qa,b− =
1

2
(q − âqb̂), (24)

such thatq = qa,b+ + qa,b− , for all q ∈ H. The transformation
x → axb of (21) then means geometrically a rotation by the
angleα − β in the qa,b+ plane (around theqa,b− plane as axis)
and a rotation by the angleα + β in the qa,b− plane (around
the qa,b+ plane as axis). This also tells us, that forα = β the
rotation degenerates to a single two-dimensional rotationby
2α in theqa,b− plane, and forα = −β it degenerates to a single
two-dimensional rotation by2α in the qa,b+ plane.

A general rotary reflection(rotation reflection) inR4 is
given by

x → ax̃b, a, b ∈ H, |a| = |b| = 1. (25)

This rotary reflection has the pointwise invariant line through
a+ b. In the remaining three-dimensional hyperplane, orthog-
onal to thea + b line, the axis of the rotary reflection is the

line in the directiona− b, becausea(̃a− b)b = −(a− b). The
rotation plane of the rotary reflection is spanned by the two
orthogonal quaternionsv1,2 = [a, b](1± ãb), [a, b] = ab− ba,
and the angle of rotation isΓ = π − acrccos(Sc(ãb)), [17].



C. Quaternion domain functions

Every real valued quaternion domain functionf mapsH →
R:

f : x 7→ f(x) ∈ R, ∀x ∈ H. (26)

Every quaternion valued quaternion domain functionf maps
H → H, its four coefficient functionsfr, fi, fj , fk, are in turn
real valued quaternion domain functions:

f : x 7→ f(x) = fr(x)+fi(x)i+fj(x)j+fk(x)k ∈ H. (27)

We define for two functionsf, g : H → H the following
quaternion valued inner product

(f, g) =

∫

H

f(x)g̃(x)d4x (28)

with d4x = dxrdxidxjdxk ∈ R. Note that quaternion
conjugation yields

(̃f, g) = (g, f). (29)

This means that the real scalar part of theinner product(f, g)
is symmetric

〈f, g〉 = 1

2
[(f, g) + (g, f)] =

∫

H

〈f(x)g̃(x)〉0d4x ∈ R,

〈f, g〉 = 〈g, f〉. (30)

We further define theL2(H;H)-norm1 as

||f || =
√
(f, f) =

√
〈f, f〉 =

√∫

H

|f(x)|2d4x ≥ 0. (31)

Thequaternion domain moduleL2(H;H) is the set of all finite
L2(H;H)-norm functions

L2(H;H) = {f |f : H → H, ||f || ≤ ∞}. (32)

The convolutionof two functionsf, g ∈ L2(H;H) is defined
as

(f ∗ g)(x) =
∫

H

f(y)g(x− y)d4y. (33)

For unit norm signalsf ∈ L2(H;H), ||f || = 1, we define the
effective spatial widthor spatial uncertainty (or signal width)
of f in the directionof the unit quaterniona ∈ H, |a| = 1, as
the square root of the variance of the energy distribution off
along thea-axis

∆xa = ||(x · a)f || =
√∫

H

(x · a)2|f(x)|2d4x. (34)

Also for unit norm signalsf , we define theeffective spatial
width (spatial uncertainty) as the square root of the variance
of the energy distribution off

∆x = ||xf || =
√∫

H

|x|2|f(x)|2d4x. (35)

1Note that in equation (13) of [14] the square root is missing over the
integral in the definition of theL2(R2;H)-norm.

III. T HE QUATERNION DOMAIN FOURIER TRANSFORM

Since the traditional quaternion Fourier transform (QFT)
[9], [11], [14] is only defined for real or quaternion valued
signals over the domainR2, we newly define thequaternion
domain Fourier transform(QDFT) for h ∈ L1(H;H) as

F{h}(ω) = ĥ(ω) =
1

(2π)2

∫

H

h(x)e−Ix·ωd4x, (36)

with x, ω ∈ H, d4x = dxrdxidxjdxk ∈ R, and some constant
I ∈ H, I2 = −1. The constant unit pure quaternionI can be
chosen specific for each problem.

Note that the QDFT of (36) issteerabledue to the free
choice of the unit pure quaternion unitI ∈ S2.

This QDFT definition isleft linear

F{αh+ βg}(ω) = αĥ(ω) + βĝ(ω), (37)

for g, h ∈ L1(H;H) and constantsα, β ∈ H.
Applying the orthogonal planes split (17) to the signal

function h = h+ + h− and to the QDFT̂h we find

ĥ(ω) = ĥ+(ω) + ĥ−(ω), (38)

ĥ+(ω) =
1

(2π)2

∫

H

h+(x)e
−Ix·ωd4x

=
1

(2π)2

∫

H

e+Ix·ωh+(x)d
4x, (39)

ĥ−(ω) =
1

(2π)2

∫

H

h−(x)e
−Ix·ωd4x

=
1

(2π)2

∫

H

e−Ix·ωh−(x)d
4x. (40)

Example. Following the suggestion of T. L. Saaty, we QDFT
transform thefunctional quaternion equation

h(ax) = bh(x), h : H → H, (41)

with quaternion constantsa, b ∈ H. We define the auxiliary
function ha(x) = h(ax) and compute [18]

ĥa(ω) = |a|−4ĥ(ã−1ω). (42)

Using relationship (42) and left linearity we arrive at the QDFT
of (41)

|a|−4ĥ(ã−1ω) = bĥ(ω), (43)

or equivalently

ĥ(ã−1ω) = |a|4bĥ(ω), (44)

which seems neither less nor more complicated to solve than
the original equation (41).

An application of (42) is the four-dimensional inversion at
the originx → −x which results in

ĥ−1(ω) = ĥ(−ω). (45)

The QDFT canseparatethe two components of a ”complex”
signalf : H → R+ iR, f(x) = fr(x)+ ifi(x), into evenand
odd componentswith respect to the inversionx → −x. Let

f(x) = fr(x) + ifi(x)

= fe
r (x) + fo

r (x) + i(fe
i (x) + ifo

i (x)), (46)



with

fe
r (−x) = fe

r (x) =
1

2
(fr(x) + fr(−x)),

fo
r (−x) = −fo

r (x) =
1

2
(fr(x)− fr(−x)),

fe
i (x) = fe

i (−x), fo
i (x) = −fo

i (x). (47)

Then for I = j (we could also setI = k or any other pure
quaternion⊥ i) we have by linearity

f̂(ω) = f̂e
r (ω) + f̂o

r (ω) + i(f̂e
i (ω) + if̂o

i (ω))

=

∫

H

fe
r (x) cos(x · ω)d4ω + j

∫

H

fo
r (x) sin(x · ω)d4ω

+i

∫

H

fe
i (x) cos(x · ω)d4ω

+k

∫

H

fo
i (x) sin(x · ω)d4ω. (48)

Compare [20] for a similar approach to the symmetry analysis
of signalsf : R → C.

IV. PROPERTIES OF THEQDFT

Properties of the QDFT that can easily be established are
transforminversion(Plancherel theorem)

h(x) =
1

(2π)2

∫

H

ĥ(x)e+Ix·ωd4ω, (49)

a shift theoremfor g(x) = h(x− a), constanta ∈ H,

ĝ(ω) = ĥ(ω)e−Ia·ω, (50)

and amodulation theoremfor m(x) = h(x)eIx·ω0 , constant
ω0 ∈ H,

m̂(ω) = ĥ(ω − ω0). (51)

Linear combinations with constant quaternion coefficients
α, β ∈ H from the right lead due to (18) to

F{hα+ gβ}
= ĥ(ω)α+ + ĥ(−ω)α− + ĝ(ω)β+ + ĝ(−ω)β−. (52)

We definegl(x) = ∂xl
h(x), l ∈ {r, i, j, k} for the partial

derivativeof the signal functionh and obtain its QDFT as

ĝl(ω) = ĥ(ω)Iωl. (53)

For example forl = r we obtain

∂̂xr
h(ω) = ωrĥ(ω)I. (54)

This leads to the QDFT of thederivative operators

̂̃
∂mh(ω) = ωmĥ(ω)Im, ∂̂mh(ω) = ω̃mĥ(ω)Im,

m ∈ N. (55)

Applying thederivative operators from the rightto the signal
function h we further obtain

ĥ∂̃m(ω) = ĥωm(ω)Im, ĥ∂m(ω) = ĥω̃m(ω)Im,

m ∈ N. (56)

QDFT transformations of theDirac operator D applied
from the left and right, respectively, give

D̂mh(ω) = ωmĥ(ω)Im, ĥDm(ω) = ĥωm(ω)Im,

m ∈ N. (57)

where the pure quaternion part of the quaternion frequencyω
is ω = ω − ωr.

The QDFT of m-fold powers of coordinatesxl, l ∈
{r, i, j, k}, m ∈ N, times the signal functionh leads to (dual
to (53))

x̂m
l h(ω) = ∂m

ωl
ĥ(ω)Im. (58)

For example forl = r we obtain

x̂rh(ω) = ∂ωr
ĥ(ω)I. (59)

If P (xr, xi, xj , xk) =
∑

mr,mi,mj ,mk
αmr,mi,mj ,mk

xmr
r xmi

i x
mj

j xmk

k , with quaternion coefficients
αmr,mi,mj ,mk

∈ H, is a polynomial of the four coordinates
{xr, xi, xj , xk}, then the QDFT yields

F{P (xr, xi, xj , xk)h}(ω) =
∑

mr,mi,mj ,mk

αmr,mi,mj ,mk
∂mr
ωr

∂mi
ωi

∂mj
ωj

∂mk
ωk

ĥ(ω)Imr+mi+mj+mk . (60)

For example forP (x) = a · x = arxr + aixi + ajxj + akxk

we obtain

F{(a · x)h}(ω) = (a · ∂̃ω)ĥ(ω)I, (61)

with ∂̃ω = ∂ωr
+ ∂ωi

i + ∂ωj
j + ∂ωk

k anda · ∂̃ω = ar∂ωr
+

ai∂ωi
+ aj∂ωj

+ ak∂ωk
. We have thedual to (60) result that

F{P (∂xr
, ∂xi

, ∂xj
, ∂xk

)h}(ω) =
∑

mr,mi,mj ,mk

αmr,mi,mj ,mk

ωr
mrωi

miωj
mjωk

mk ĥ(ω)Imr+mi+mj+mk , (62)

with the special case (dual to (61))

F{(a · ∂̃)h}(ω) = (a · ω)ĥ(ω)I. (63)

Note that (62) shows how the QDFT (witht = x0, x1 = xi,
x2 = xj , x3 = xk) can be used totreat important partial
differential equations in physics, e.g. the heat equation, wave
equation, Klein-Gordon equation, the Maxwell equations in
vacuum, free particle Schrödinger and Dirac equations [24]–
[27].

Equation (60) leads further (dual to left side of (55)) to,

x̂h(ω) = ∂̃ĥ(ω)I, x̂mh(ω) = ∂̃mĥ(ω)Im,

m ∈ N. (64)

Multiplying instead with thequaternion conjugatẽx we obtain
(dual to right side of (55))

̂̃xh(ω) = ∂ĥ(ω)I, ̂̃xmh(ω) = ∂mĥ(ω)Im,

m ∈ N. (65)



Taking only thepure vector partof x, x = x− xr we obtain
(dual to (57))

x̂h(ω) = Dωĥ(ω)I, x̂mh(ω) = Dm
ω ĥ(ω)Im,

m ∈ N, (66)

whereDω = ∂ωi
i+ ∂ωj

j + ∂ωk
k.

We further obtain the followingQDFT Plancherel identity,
which expresses, that the quaternion valuedinner product(28)
of two quaternion domain module functionsf, g ∈ L2(H;H)
is given by the quaternion valued inner product of the corre-
sponding QDFTsf̂ and ĝ

(f, g) = (f̂ , ĝ). (67)

As corollaries we get the correspondingQDFT Plancherel
identity for the scalar inner productof equation (30)

〈f, g〉 = 〈f̂ , ĝ〉, (68)

as well as theQDFT Parseval identity

||f || = ||f̂ ||. (69)

The QDFT Parseval identity means, that the QDFT preserves
the signal energy when applied in signal processing.

We now define analogous to (34) for unit norm signals
f ∈ L2(H;H), ||f || = 1, the effective spectral width(or band
width) of f in the directionof the unit quaterniona ∈ H,
|a| = 1, as the square root of the variance of the frequency
spectrum off along thea-axis

∆ωa = ||(ω · a)f̂ || =
√∫

H

(ω · a)2|f̂(ω)|2d4ω. (70)

We further define the heeffective spectral width(frequency
uncertainty) as the square root of the variance of the energy
distribution of f̂

∆ω = ||ωf̂ || =
√∫

H

|ω|2|f̂(ω)|2d4ω. (71)

We can now state thedirectional uncertainty principlefor the
QDFT of unit norm signalsf ∈ L2(H;H), ||f || = 1 as

∆xa∆ωb ≥
|a · b|
2

. (72)

The uncertainty principletakes the form

∆x∆ω ≥ 1. (73)

Equality holds in (72) and (73) forGaussian signals[18].
The QDFT of theconvolution(33) of two functionsf, g ∈

L2(H;H) results in

(̂f ∗ g)(ω) = (2π)2[f̂(ω)ĝ−(ω) + f̂(−ω)ĝ+(ω)]. (74)

Note that forĝ+(ω) = 0 or if f̂(ω) = f̂(−ω) we obtain

(̂f ∗ g)(ω) = (2π)2f̂(ω)ĝ(ω). (75)

An application of the QDFT convolution (74) is, e.g., thefast
convolution (via simple multiplication of the QDFTs in the

Fourier domain) of aquaternion domain signalf : H → H

with a pair of complex filtersg1(x) = g1,r(x) + g1,i(x)i =
g−(x), g2(x) = g2,r(x) + g2,i(x)i = g+(x)(−j), choosing
I = i in (36).

Next, we study thecovariance propertiesof the QDFT
under orthogonal transformations. We find that a three-
dimensional rotation(19) of the argumentg(x) = h(a−1xa)
leads to

ĝ(ω) = ĥ(a−1ωa). (76)

The reflection atthe pointwise invariantreal scalar linex →
x̃, g(x) = h(x̃) gives

ĝ(ω) = −ĥ(ω̃). (77)

The reflection at the three-dimensionalhyperplane of pure
quaternionsx → −x̃, g(x) = h(−x̃) results in

ĝ(ω) = −ĥ(−ω̃). (78)

The reflection atthe pointwise invariantline througha ∈ H,
|a| = 1, x → ax̃a, g(x) = h(ax̃a) gives

ĝ(ω) = −ĥ(ã−1ω̃ã−1) = −ĥ(aω̃a), (79)

becausẽa−1 = a for |a| = 1. The reflection at the three-
dimensionalhyperplane orthogonal tothe line througha ∈ H,
|a| = 1 x → −ax̃a, g(x) = h(−ax̃a) results in

ĝ(ω) = −ĥ(−aω̃a). (80)

A generalfour-dimensional rotationin R4, x → axb, a, b ∈ H,
|a| = |b| = 1, g(x) = h(axb) leads to

ĝ(ω) = ĥ(aωb). (81)

We have thus studied the behavior of the QDFT underall
point group transformationsin three and four dimensions (re-
flections, rotations, rotary reflections, inversions), which are of
importance in crystallography. We note, that quaternions have
already been employed for the description of crystallographic
symmetry in [1] and for the description of root systems of
finite groups in three and four dimensions in [8].

V. CONCLUSION

We first reviewed quaternion algebra, orthogonal trans-
formations expressed in quaternion algebra, and quaternion
calculus.

We established thesteerable quaternion domain Fourier
transform (QDFT) with a free choice a single constant pure
unit quaternion in the kernel. We examined theproperties
of left and right linearity, orthogonal plane split property,
and gave an example of the QDFT of a functional equation.
Further properties studied are the inverse QDFT, shift and
modulation theorems, the QDFT of quaternion coordinate
polynomials multiplied with quaternion domain signals2, as
well of products with powers of the signal argumentx,

2Note that real and complex polynomial generated moment invariants have
recently been successfully used for translation, rotationand scale invariant
normalized moment description of vector field features, including flow fields
[2]–[4].



and the corresponding dual properties (polynomials of par-
tial differential operators, quaternion derivatives and Dirac
derivatives). We found that the QDFT can separate the sym-
metry components of complex signals, and can be applied to
many partial differential euqations in physics. Quaternionnon-
commutativitymeans, that multiplication from the right and
left need to be distinguished carefully. Next we established
Parseval and Plancherel identities, uncertainty principles and
convolution properties for the QDFT. The convolution allows
e.g. fast filtering with pairs of complex filters. Finally we stud-
ied the covariance properties of the QDFT under orthogonal
transformations of the signal arguments, which may a.o. be of
importance for applications in crystallography.

We expect that this new quaternionic Fourier transformation
may find rich applications in mathematics (e.g. higher di-
mensional holomorphic functions [19]) and physics, including
relativity and spacetime physics, in three-dimensional color
field processing, neural signal processing, space color video
processing, crystallography, quaternion analysis, and for the
solution of many types of quaternionic differential equations.
We further expect that the QDFT can be successfullyextended
to localized transforms, e.g., quaternion domain window
Fourier transforms, and continuous quaternionic wavelets and
quaternionic ridgelets [6]3. Further research should be done
into operator versionsof the QDFT, and its relatedlinear
canonical transforms, which may open up many further areas
of interesting applications, including quantum physics and
quantum information processing. Especially for applications,
discretizationand fast implementationwith pairs of complex
fast Fourier transforms will be of great interest.
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