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Abstract

We give a sequence of easy inferences that relate to the fundamental

theorem of algebra. We then prove the theorem in three different ways: one

way requires the least pre-requisites (the basic proof); the other two ways

require results from complex analysis.

Introduction

How close can a typical high school algebra student come to understanding

the fundamental theorem of algebra? Currently some of the ingredients for

a good understanding are present after a typical algebra 1, algebra 2, and

pre-calc (or trigonometry) sequence, but the dots aren’t connected. Thus

students are familiar with quadratics and cubics and general polynomials, as

well as Euler’s and DeMoivre’s formula and theorem; they also are told the

fundamental theorem of algebra; but, in no course are they encouraged to

see how polynomials might always have roots in the complex numbers, the

fundamental theorem of algebra. There are inferences that can be made that

suggest that this is a plausible conclusion. Indeed, it is possible to give a

proof of this result with just a few unproven assumptions. That’s the main

trajectory of this article.

We use proofs and results from Rudin’s Principles of Mathematical Anal-

ysis [2] and Spiegel’s Complex Variables [3].
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Review

We know using the quadratic formula [1] that all quadratics can be solved in

the complex numbers. So z2 C 1 D 0 is solved by ˙i . We also know that

some quadratics have graphs that don’t show any x-intercepts. z2 touches

the origin and has a double root at .0; 0/. It is concave up, meaning it opens

up or holds water. When transformed vertically up by 1, its vertex moves

away from the origin; it has no real roots. The fundamental theorem of

algebra states that all polynomials of degree n with rational coefficients have

roots – all n of them in the complex plane. But given that a quadratic formula

like formula for the general degree n polynomial’s roots is not given in a high

school text book, can we explore the situation enough to suspect the truth of

the theorem?

Here’s a start: suppose we didn’t know the quadratic formula. Can we

show that all quadratics can still be solved in the complex numbers? If

we had an exploratory avenue for this easy case, maybe it would suggest a

general approach to higher degree polynomials. There is hope via a simple

observation from a chapter on trigonometry, Blitzer’s Chapter 7, Section 5:

you can solve any nth degree polynomial of the form

zn C a D 0: (1)

The n solutions are the nth roots of

z D n
p

a D n

p

jaj.cos
� C 2�k

n
C sin

� C 2�k

n
/;

where 0 � k � n � 1.

Of course polynomials like (1) are not the rule, but we can discern why

polynomials might always be solved by complex numbers. The complex

numbers, when evaluated by a function, tend to move points around a lot.

So with the reals x2 C 2 can’t be solved; the function doesn’t move a given

point around a lot. A related mind experiment is to imagine the x C iy of

one complex plane mapping to u C iv of another. Imagine two computer

windows and as you drag your mouse around on the far left plane the point

your mouse pointer is on is given a corresponding cross-hair on the right

window. You would hope you could adjust the mouse pointer so as to find

the origin on the right window. The connection between the two windows

is the function in question. For x2 C 1 D 0, i and �i map to the right

window’s origin. For zn C a D 0 tracing a circle on the left generates

periodic bulls-eyes at the origin on the right.

Notice that a quadratic like ax2 C bx C c D 0 has the standard form

a.x � h/2 C k. This is really another z2 C k, only its transformed a little
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– moved to the right or left and the shape of the parabola legs are squeezed

together or spread apart. Relative to a complex number moving this to the

origin, the y part of the vertex, it’s the same situation. We note that higher

powers of the form .z �a/3 Cb D 0 will just be up and over transformation

of z3. Using the binomial theorem, we know the .z � a/3 part will generate

all terms in a cubic:

.z � a/3 D z3 � 3az2 C 3a2z � a3:

Are all polynomials just transformations of the base type zn? and so just as

zn D 0 has z D 0 a root of multiplicity of n so do all polynomials. Later

when we look at Rouche’s theorem will get something close to this level

surprise result.

What is an example of a function that doesn’t seem to move a complex

point all over the u-v plane. It turns out, in a lot of ways, only the constant

function behaves in this way. From a different angle, suppose a polynomial

doesn’t have a root. This implies that there is a point that never is reached

in the range of the polynomial. This means that 1=p.z/ is defined for all

z – there is no division by zero. Using Liouville’s theorem, this forces our

polynomial to be a constant, something we know that it is not. The theorems

of Rouche and Liouville are covered in courses in complex variables and

require evolving complex differentiation and integration. We seek an easier

approach that is almost within the range of high school algebra – no calculus.

Problems

Here are a few problems which will help you become familiar with the ideas

of a proof of the fundamental theorem of algebra, FTA. Do the following for

linear, quadratic, and cubic polynomials p.z/. Assume coefficients can be

complex numbers.

1. Show that jp.z/j values go to infinity.

2. Show that jp.z/j values can be made less than the absolute value of

p.z/’s constant term.

Lemma 1.

jA C Bj � jAj � jBj (2)

Proof. By the triangle inequality,

jA C B C .�B/j � jA C Bj C jBj

and this gives (2).
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Lemma 2.

jA C B C C j � jAj � jBj � jC j (3)

Proof. By the triangle inequality,

jA C B C C j � jAj � jB C C j

� jAj � .jBj � jC j/ D jAj � jBj C jC j

� jAj � jBj � jC j

and this gives (3).

Clearly, an induction proof will yield the general result. One can, of

course, simply say that if you start with A and subtract rather than add po-

tentially positive numbers you will decrease its value. I.e. it’s kind of obvi-

ous.

Theorem 1. jp.z/j can be made as large as we please.

Proof. Quadratic case: Let jzj D R and suppose

p.z/ D a2z2 C a1z C a0:

Then

jp.R/j D ja2R2 C a1R C a0j � (4)

ja2jR2 � ja1jR � ja0j D R2Œja2j � ja1jR�1 � ja0jR�2�:

We’ve used our lemma. The factor in brackets shrinks to ja2j with growing

R and this implies jp.z/j can be made as large as we please.

Of course one could use the end-behavior of real polynomials to make

the same conclusion: the left and right tails of all absolute values of real

polynomials will go to infinity. Positive headed to the x-axis bounce off of it

and head north, for example. But in this theorem we allow for complex co-

efficients, so this image can’t necessarily be relied upon. The complication

of allowing complex coefficients forces the constant reliance on conversion

to statements with absolute values. We see this in the next theorem.

We need that the function rei� has as its range all of C. This is not hard

to imagine. Using

rei� D r.cos � C i sin �/;

we see that any point in the complex plane can be expressed in polar coor-

dinates – that’s it.
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Theorem 2. jp.z/j can be made less than the absolute value of its constant.

Proof. Cubic case: Let p.z/ D a0 C a1z C a2z2 C a3z3. We always

will have a non-zero constant and here we assume a1 is the first non-zero

coefficient. It could be a2 or a3. The argument won’t change. Then

p.rei� / D a0 C a1rei� C a2r2e2i� C a3r3e3i� :

The sign of a1 can be flipped by multiplication with ei� so that a1ei� D
�ja1j. So now we have

jp.rei� /j D ja0 � ja1jr C a2r2e2i� C a3r3e3i� j

and taking the absolute value of the first constant term and the terms after

�ja1jr increases the value of the right hand side. So

jp.rei� /j � ja0j � ja1jr C ja2jr2 C ja3jr3: (5)

We’ve used r > 0 and jeik� j D 1. Rearranging (5),

jp.rei� /j � ja0j � rfja1j � ja2jr1 � ja3jr2g:

Now for small enough r the value in the braces is positive, so the right hand

side drops below ja0j, as needed.

We are now in a position to prove, with a couple of assumptions from

advanced mathematics, the FTA. The assumptions are not difficult to in-

tuitively understand. First, polynomials are continuous on any disc in the

complex plane and will reach their maximum and minimum values with a

large enough disc (think circle of sufficient radius with its interior). Abso-

lute values are bounded by 0. This is all to say polynomials are not rational

functions. Rational functions, like r.z/ D 1=x, do not reach their mini-

mum value of 0. It asymptotically approaches it; there is no z0 such that

r.z0/ D 0. In contrast, jp.z/j will have a value z0 such that jp.z0/j is its

minimum value. Certainly one sees this with the real quadratics with con-

cave up graphs. Consider a.x � h/2 C k with k > 0. If a > 0, its minimum

is k. Apart from the horizontal shift, this function is x2 C k. We have

shown that using complex numbers its value can fall below k, its constant.

It reaches zero when evaluated at ˙i
p

k.

The following proof of the FTA is based on that given in Rudin [2].

Theorem 3. If p.z/ is a polynomial, then there exists z0 2 C such that

p.z0/ D 0.
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Proof. We assume jp.z/j is a continuous function and that its minimum is

z D z0. To derive a contradiction, we will assume jp.z0/j D � ¤ 0.

Consider the polynomial defined by

Q.z/ D p.z C z0/

p.z0/
:

Then the constant of Q.z/ is, as it is with all polynomials, given by Q.0/;

Q.0/ D 1. As p.z0/ is the minimum value, all other z values make jQ.z/j >

1. But this contradicts Theorem 2. We can’t get below this polynomial’s

constant.

Conclusion

The fastest avenue to believing and proving the FTA is to notice that p.z/ D
zn C 1 D 0 can be solved in C and this means that C values drop this func-

tion’s absolute value below its constant. Show that for all absolute values

of polynomials there are values in C that are less than the absolute value of

the polynomial’s constant. Note: if a polynomial has no constant, then its

terms have a common z factor; z D 0 is a root; done. Next, show that with

the assumption that the minimum value of jp.z/j > 0, there is a polynomial

that never goes below its constant, a contradiction.

References

[1] R. Blitzer, Algebra and Trigonometry, 4th ed., Pearson, Upper Saddle,

NJ, 2010.

[2] W. Rudin, Principles of Mathematical Analysis, 3rd ed.,

McGraw-Hill, New York, 1976.

[3] M. R. Spiegel and J. Liu, Complex Variables, 2nd ed., McGraw-Hill,

New York, 1999.

6


