
Machine learning alternatives for the
diagnosis of ADHD from functional
connectivity and phenotypic information

Amrit Baveja
May 2018

	

	

Codebase DOI: https://doi.org/10.5281/zenodo.1227447

GitHub Repository accompanying this paper: https://github.com/abaveja313/bsrp

	 	 	
	

	 -	1	-	

Introduction

ADHD overdiagnosis is an unfortunate and known problem in our society. Currently,
ADHD is diagnosed from surveys and conversations, which are up to the interpretation of the
doctor. [School Mental Health Project, n.d.]. In fact, ADHD is something that organizations push
as “self-diagnosable”: “General and social networking media and ADHD organizations are seen
as contributing to increasing demand, overdiagnosis, and over prescription. For example, a
variety of websites promote initial home-diagnosis based on a small set of symptom-related
questions” [School Mental Health Project, n.d.]

Additionally, as the School Mental Health Project says, a lot of doctors tend to focus very
little on evidence refuting a positive ADHD diagnosis and only acknowledge evidence that
supports their claim: “Confirmation bias suggests the tendency for one to become attached to an
unconfirmed hypothesis and subsequently only attend to and seek information that support the
hypothesis while disregarding and minimizing counter-evidence” [School Mental Health Project,
n.d.]. Furthermore, a very small percentage of doctors actually use multiple sources in deciding a
diagnosis: 15%. [School Mental Health Project, n.d.]. Eighty five percent of patients are being
diagnosed with only one or two sources, so it is probable that evidence pointing to a negative
diagnosis is being suppressed.

Confirmation bias is not the only type of partiality that exists during the ADHD diagnosis
process. In an interview with the Los Angeles Times, Richard M. Scheffler, a health economist
from UC Berkeley, stated that the current process for diagnosing ADHD depends heavily on
biased judgments from parents and clinicians. [School Mental Health Project, n.d.]. Parents,
although they often provide insight into how the child acts and focuses at home, can often use
medication as an easy way out. ADHD medication causes children to be more mellow and more
attentive-- allowing them, in a lot cases, to be easier to handle. However, the problem is
compounded by the doctors themselves. It is beneficial for the doctors, pharmaceutical
companies, and to pharmaceutical distributors to heavily market these drugs because more sales,
regardless of whether or not the patient actually needs them, brings them more revenue. [School
Mental Health Project, n.d.] Also, pharmaceutical companies don’t just push the drugs onto the
doctors and parents, they market them to the consumers themselves[School Mental Health
Project, n.d.]

However bleak ADHD diagnosis seems, there are encouraging signs as well. A study in
the Netherlands found convincingly that ADHD is not something that is created by society;
rather it is a real brain disorder. The scientists in this study found this by using a very large
sample of ADHD/Non ADHD (control group) patients, “Our sample comprised 1713
participants with ADHD and 1529 controls from 23 sites with a median age of 14 years (range

	 	 	
	

	 -	2	-	

4–63 years).” (Hoogman et. al, 2017). Dr. Hoogman and her team found a difference in size of
the brain between certain ADHD and non-ADHD subjects: “The volumes of the accumbens
(Cohen's d=−0·15), amygdala (d=−0·19), caudate (d=−0·11), hippocampus (d=−0·11), putamen
(d=−0·14), and intracranial volume (d=−0·10) were smaller in individuals with ADHD compared
with controls in the mega-analysis. There was no difference in volume size in the pallidum
(p=0.95) and thalamus (p=0·39) between people with ADHD and controls. " (Hoogman et. al,
2017). The clear relationship between brain anatomy and ADHD is very encouraging as
biological evidence which could be used in the future for ADHD diagnosis.

In addition, to using brain anatomy, computerized diagnosis of diseases has become more
and more prevalent in the medical profession. Two extremely powerful tools for doing this are
MRI scans and machine learning.

An MRI scanner, like an X-ray or a CT scanner, is used to create digital renderings of the
human body. [Notter, 2016] In quantum mechanics and particle physics, every particle has a
property called spin, which is decided randomly. The MRI’s powerful magnet (the average MRI
scanner has a strength of 0.5 to 3 tesla, while a household magnet has 0.001 tesla [Monks, 2017]
[HowStuffWorks, 2001]) is able to align particles forming the target part of the body from their
random spin into one uniform direction. [Notter, 2016] Then, a sequence of radiofrequency (RF)
pulses are fired at those particles across the magnetic field created by the scanner and the protons
get aligned with the RF pulse and spin at the same time and in phase. [Notter, 2016]. When the
pulse is removed and then fired again, the protons fall back to their initial state and realign with
the magnetic field at different rates (depending on the type of tissue) and the energy that they
give off can be measured with the MRI scanner. [Notter, 2016] The release of energy can be
used by the MRI scanner to create a 3D/4D image of the brain. [Notter, 2016]

There are three types of MRI scans: Structural Magnetic Resonance Imaging (sMRI),
Functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Magnetic Resonance
Imaging (DW-MRI) [Notter, 2016]:

● Structural Magnetic Resonance Imaging (sMRI) is a category of MRI Imaging
that generates images by measuring the amount of water in a given location.
[Notter, 2016]. Through this process, sMRI is able to create a detailed model of
the target region by measuring water amounts in 2D slices, which are pieced
together to form a complete 3D image. [Notter, 2016]. It is important to note that
the anatomy of the brain is not supposed to change during acquisition of the
sMRI. [Notter, 2016].

● Functional Magnetic Resonance Imaging (fMRI) is one of the most common
categories of MRI scans for neuroscience. Rather than creating 3D renderings of
the target region, like sMRI does, it creates 4D models of the target region—3D

	 	 	
	

	 -	3	-	

images over time. fMRI is most commonly used in the brain for measuring neural
activity. [Notter, 2016]. It works by detecting variations in blood oxygen level
that occur over time series, sometimes as a response to external stimulation (like
pictures or sounds). [Notter, 2016]. If stimulation is present, the location in the
brain where the most neural activity is taking place will have increased blood
oxygen levels. [Notter, 2016]. Following the increase of O2 the blood oxygen
level will recede because of local consumption at the region where the neural
activity is present. [Notter, 2016]. As a result, a new flow of oxygenated blood
will flow to this location. [Notter, 2016]. “After 4-6 seconds, a peak of blood
oxygen level is reached. After no further neuronal activation takes place the signal
decreases again and typically undershoots, before rising again to the baseline
level.” [Notter, 2016]. fMRI scans measure these variations in blood oxygen
levels at specified regions-- the changes in the magnetic field are caused by
differences between the magnetic susceptibility between oxygenated and
deoxygenated blood. [Notter, 2016] This signal is called the Blood Oxygen Level
Dependent (BOLD) response. [Notter, 2016].

There are three different kinds stimuli designs or paradigms for fMRIs:
event related, block design and resting state. “Event-related means that stimuli are
administered to the subjects in the scanner for a short period and in a random
order. Stimuli are typically visual, but auditory and/or other sensory stimuli could
also be used.” [Notter, 2016]. “If multiple stimuli of a similar nature are shown in
a block, or phase, of 10-30 seconds, that is a block design.” [Notter, 2016].
“Resting-state designs acquire data in the absence of stimulation. Subjects are
asked to lay still and rest in the scanner without falling asleep. The goal of such a
scan is to record brain activation in the absence of an external task. This is
sometimes done to analyze the functional connectivity of the brain.” [Notter,
2016]

● The last type of MRI scan is called Diffusion Weighted Magnetic Resonance
Imaging (DW-MRI). DW-MRI works by recording the trajectory of molecules in
a given voxel (3D pixel). [Notter, 2016]. By doing this, one can make inferences
about the structure of the underlying voxel. “For example, if one voxel contains
mostly horizontal fiber tracts, the water molecules in this region will mostly
diffuse (move) in a horizontal manner, as they can’t move vertically because of
this neural barrier.” [Notter, 2016]. Diffusion MRI is used to gain information
about the brain’s white matter connections. [Notter, 2016].

However, in order to do statistical analysis or create a predictive model using an MRI

volume, we have to account for fluctuations (such as the time between slices and head

	 	 	
	

	 -	4	-	

movement) in the MRI data itself. To combat this, we use a strategy called preprocessing on the
volumes to correct and unify them. The most common kinds of preprocessing are slime timing
correction, motion correction, artifact detection, coregistration, normalization and smoothing.
[Notter, 2016]:

● Slice timing correction (fMRI only) is used to correct missing values in between
the 2D slices. [Notter, 2016]. For example, an fMRI with a slice time (the number
of seconds between each slice is generated) of one second, gaps between those
seconds emerge which might skew our functional connectivity. The brain is a
fascinating and very complex part of our body; it is able to complete tasks in an
extremely small amount of time. This means that in one second between the
slices, the BOLD response could change dramatically. The procedure to correct
this is to estimate the image of unknown slices based on known slices. For
example, if at one second, the brain’s activation is x, and at 2 seconds, it is x +
10, it is quite probable that the activation at 1.5 seconds is x + 5. By using this
technique of estimation, we can account for missing values in our 4D fMRI
volume. [Notter, 2016]

● Motion correction (also only used on fMRI) is used to correct for small head
position changes during the course of an fMRI scan. [Notter, 2016] It is
impossible for a human to keep their head perfectly still, especially over long
periods of time, which creates a source of inconsistency. Since the head can rotate
in all three dimensions (X axis, Y axis and Z axis), we need to account for
movement in all three axes. To prevent this, a series of steps are taken. First, the
mean head location in the X, Y and Z axes is computed by taking the average of
the head position over the course of the fMRI’s time series. Then, each slice is
distorted so that the head position in it conforms to the mean head location. Thus,
the head’s location to be uniform over all the slices. [Notter, 2016]

● Artifact detection (only used on fMRI as well) is used to correct for large
abnormalities in head movement. Rather than distorting an image that is
significantly different compared to the average head location, artifact detection
just removes it entirely. [Notter, 2016].

● The goal of coregistration is similar to artifact detection and motion correction—
trying to keep head location uniform across slices. Coregistration maps the fMRI
slice onto a predefined map. The map acts like tracing paper, and coregistration
tries to move the slice around to get the perfect lineup. [Notter, 2016] Oftentimes,

	 	 	
	

	 -	5	-	

an anatomical (sMRI) image will be used as the map for coregistration as it is at a
fixed point in time. [Notter, 2016]

● Unlike other preprocessing procedures, normalization isn’t used for correcting
individual slices of an MRI volume. Rather, it is used for correcting entire
volumes, so that the computer can compare "apples to apples" when trying to
figure out the relationship between different scans.[Notter, 2016]. Normalization
is used to correct for size and shape differences of different brains by mapping
individual volumes onto a template space (also called an atlas- MSDL and
Harvard Oxford are common). [Notter, 2016] This allows for a group comparison
to be performed with brains of the same shape/size.

● Lastly, smoothing is used to reduce the smallest scale changes in the data,
allowing for only bigger changes to be accounted for by our predictive model.
[Notter, 2016]. This helps make larger scale changes more apparent to the
computer- because the smaller ones are blurred. [Notter, 2016]. By applying a 3D
Gaussian filter to the image (a bell curve like function, but in 3 dimensions), these
smaller scale changes can become minimized and ignored by the computer.
[Notter, 2016]. It is important, however, that the filter size is chosen carefully,
otherwise different regions might get blurred together.

 After preprocessing is done, the corrected scans can be fed into program which will
supposedly return a diagnosis. The only problem with this is that computer programs need to be
very specific-- every possibility needs to be programmed, otherwise an error will occur. With a
program like a “choose your own adventure game”, the rules are inherently very specific: if x is
true, then do y. Otherwise, do z. However, when a very complicated statistical problem is
presented, like recommending music based on previous song choices, it is impossible to break
that down into the simple logic that computers require. This is where the field of machine
learning, the backbone of artificial intelligence, comes in. Machine learning opens a whole new
world of possibilities-- through a series of statistical models, computers can learn the relationship
between different variables [Maini, 2017]. Suddenly, computers that could beat people in chess,
control self-driving cars and give product recommendations. All of these tasks that were
previously thought to be impossible, are now a reality because of the field of machine learning.

 There are two basic schools of machine learning: supervised and unsupervised learning.
Supervised learning is a technique in which the computer is given labeled data. Labeled data
means that you have input data (also known as features) as well as the correct outcome (also
known as labels). [Maini, 2017] In essence supervised learning looks at the input data and the
correct output labels and via a machine learning algorithm, tries to recognize a pattern between

	 	 	
	

	 -	6	-	

them. This is often called training or fitting the model. Using the relationship that the computer
has found between the variables, a predictive model can be built. This allows a set of input data,
without the correct outcome to be given to the trained model, and a predicted outcome will be
returned. [Maini, 2017] However, sometimes you don’t have labeled data, which is a common
use case for unsupervised learning. One aim of unsupervised learning is to cluster similar
portions of input data together [Maini, 2017]. Although unsupervised learning is a very
intriguing technology, supervised learning will be the focus of this paper. Below is a very high-
level description of different supervised learning algorithms-- also known as classifiers.
Although this description should be sufficient for one to understand this experiment, the
captivating mathematics behind each classifier is not explored, to keep the paper open to a wide
audience.

● One of the simplest classification algorithms to conceptually understand is called
the decision tree. A decision tree uses "if-then" statements to define splits in the
data. [Yee, Chu, n.d.] However, instead of the programmer having to write in all
of these if-then statements, the algorithm figures them out on its own. “For
example, if a home's elevation is above some number, then the home is probably
in San Francisco.” (Yee, Chu, n.d.) “In machine learning, these statements are
called forks, and they split the data into two or more branches based on some
value.” (Yee, Chu, n.d.) Like in any other supervised machine learning algorithm,
input data without the correct output can be given into the trained classifier and a
predicted outcome will be returned. For instance, if we give the computer a home
elevation it can will predict whether the home is in San Francisco (given we
provide it with enough examples). The decision tree figures out where to create
these "if-then" statements by using a technique called Gini impurity. “Gini Index
[impurity] is a metric to measure how often a randomly chosen element would be
incorrectly identified. It means an attribute with lower Gini index should be
preferred. It helps us calculate how homogeneous the split in the data is” [Saxena,
2017]. By using this, the computer can create a simple, but powerful algorithm
that can provide an effective implementation of machine learning.

	 	 	
	

	 -	7	-	

[Fig A: A decision tree classifying different flowers from the popular Iris dataset] (Allison, 2016)

● Random Forests and Extra Random Forests are examples of ensemble classifiers
[Benyamin, 2012]. Ensemble classifiers work by combining several "weak
learners" in order to create a stronger one. For both of these ensemble classifiers,
the "weak learners" are decision trees. This is not to say that decision trees are
weak per se, but when you have more complicated data, random forests might be
a better option. Random forests also help to reduce overfitting within the decision
tree. Overfitting occurs when the classifier works well on the data it is trained on,
but it doesn’t work well on any other data; it is overfit (or over trained).
[Benyamin, 2012]. Unfortunately, this is a very common problem with decision
trees, which have a high probability of being overfit. [Benyamin, 2012]. Random
Forest classifiers train decision trees on random subsets (hence the name random
forests) of the original dataset and may duplicate or delete some data. Then, the
voting majority wins and that majority is what the model outputs as its result.
[Benyamin, 2012]. The Extra Random Trees classifier is identical to the Random
Forests classifier except for one aspect. Unlike a random forest, at each step, the
entire sample is used, and decision boundaries are picked at random, rather than

	 	 	
	

	 -	8	-	

the best one. In some scenarios, Extra Random Forests Classifier outperforms
Random Forests and the same thing is true in reverse. [Benyamin, 2012].

● Gradient Boosting is also an ensemble classifier and very similar to Random
Forests. The difference between Random Forests and Gradient Boosting is that
Random Forests trains on “fully grown” decision trees while Gradient Boosting
only trains on child trees (that don't have a large depth). [“Gung” and “Antoine”,
2015 and 2018 respectively.] A fully-grown decision tree is a decision tree that
has as many splits as the algorithm deems appropriate while a tree stump is a
decision tree with only one split. By combining several tree stumps and voting on
the output, like in the Random Forests algorithm, the majority decision is
returned. [“Gung” and “Antoine”, 2015 and 2018 respectively.]

● The Bagging and the AdaBoost classifiers are also ensemble classifiers but are a
lot more generic as the bagging and AdaBoost classifiers can be run on top of any
other classifier. [Pedregosa, et. al, 2011] “A [The] Bagging classifier is an
ensemble meta-estimator that fits base classifiers each on random subsets of the
original dataset and then aggregate[s] their individual predictions (either by voting
or by averaging) to form a final prediction.” [Pedregosa, et. al, 2011] The bagging
classifier is, in essence, a more generic version of the Random Forest classifier,
except the final predictions have the option to be are averaged rather than voted
on. Contrary to the Random Forests algorithm, however, the Bagging classifier
can be run on top of any classifier, not just decision trees. “An AdaBoost [1]
classifier is a meta-estimator that begins by fitting a classifier on the original
dataset and then fits additional copies of the classifier on the same dataset but
where the weights of incorrectly classified instances are adjusted such that
subsequent classifiers focus more on difficult cases.” [Pedregosa, et. al, 2011] The
AdaBoost classifier is very similar to the bagging classifier, except it weights
classifiers that predict incorrectly less in the final average. [Pedregosa, et. al,
2011]

● The current “state of the art” classifier is called a neural network and is modeled
after how the brain works. [Woodford, 2018]. In our brains, each neuron is
composed of three components, the dendrite, the axon and the cell body. The
dendrite is the cell’s input; it is responsible for receiving information from other
neurons. The axon is the cell’s output; it is responsible for sending information
via chemical transmissions to other neurons. Lastly, the cell body is where the
“processing” of information happens. [Woodford, 2018]. Computer scientists
sought out to create a machine learning algorithm modeled after how our brain

	 	 	
	

	 -	9	-	

sends and receives information, and the result was the neural network. Rather than
a series of chemical exchanges, neural networks are a series of mathematical
operations.

[Fig B: A generic diagram of a “vanilla” Multi-Layer Perceptron classifier]

• Neural networks are structured in layers, and each layer is made up of neurons. In
a traditional neural network, the output of each neuron in one layer influences the
output of every neuron in the next layer (a fully connected NN). [Woodford,
2018]. However, during training, the influences are weighted, so some neurons
might have more of an influence on others. Training is done through a process
called backpropagation, which feeds the data backwards from the output to the
input, and then adjusts the weights of connections to create the most accurate
model. [Woodford, 2018] With all of the data fed into a neuron, the neuron
activates or ‘fires’ based on an activation function (ReLU, linear, tanh, logistic,
SoftMax etc.), and sends its output to every other neuron in the next layer.
[Woodford, 2018] By using this process, computers are able to create very
accurate models. A neural network, however, is a broad term that has a lot of
subtypes including deep neural networks, multi-layer perceptrons, and deep belief
networks. Keep in mind that these are just a few of the many different kinds of
neural network algorithms.

● A deep neural network is simply a neural network with many layers. The term
“deep” isn’t a technical term, it is a marketing term. [“franck-dernoncourt”,
2016]. This means that there aren’t a specific number of layers a neural network
needs in order to be considered “deep”, but rather the term is used to talk about a
multi layered neural network in general.

	 	 	
	

	 10	

● A more specific kind of neural network is the Multi-layer perceptron. A multi-
layer perceptron is a neural network that has at least three layers. It is a
feedforward neural network meaning that all of the connections only move in a
forward manner (layer 1 → layer 2 → layer 3). Also, all of the inputs are
processed with a nonlinear activation function. [Multi-Layer Perceptron, 2018]

● A deep belief network is more complicated than a multi-layer perceptron or a
deep neural network. Deep belief networks are special because they can be used
with and without supervision (labeled data). [Deep Belief Network, 2018]. “When
trained on a set of examples without labeled data, a deep belief network can learn
to probabilistically reconstruct its inputs”. [Deep Belief Network, 2018]. The
layers then act as feature detectors (detecting important correlations in the data
input) and can be further trained to perform classification. “A DBN can be looked
at as a composition of Restricted Boltzmann Machines (RBMs) or autoencoders,
which are both examples of unsupervised neural networks.” [Deep Belief
Network, 2018] “One important thing about DBNs that led to them becoming so
powerful is the observation that they can be trained greedily, one layer at a time--
creating a very effective deep learning algorithm”. [Deep Belief Network, 2018]	

● On a simpler note, the KNeighbors algorithm is a lot easier to understand. The
KNeighbors estimator classifies points near each other on a graph (any
dimensional space). The “K” in the KNeighbors classifier refers to the number of
data point labels that the algorithm considers in making its decision. When you
introduce a new point, the algorithm will measure the Euclidean distance to the
“K” closest points (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = /(𝑥2 − 𝑥4)2 + (𝑦2 − 𝑦4)2) and vote on the
label. For example, if the majority of the “k” closest points have the label ‘0’, that
is what the predictor will output. 	

● “Logistic regression is a statistical method for analyzing a dataset in which there
are one or more independent variables that determine an outcome. The outcome
has to be a binary variable (either 0 or 1).” [Stanford UFLDL, n.d.] A logistic
regression relies heavily on probabilities; the output that the model gives is a
probability of the output being 0/1, given by a combination of the inputs.
[Stanford UFLDL, n.d.] The probabilities are calculated by function called the
logistic (or sigmoid) curve: 𝑦 = 	 4

489:;
. This equation gets closer and closer to 0

as x becomes smaller and closer and closer to 1 as it becomes bigger- making it
perfect for probabilities. [Stanford UFLDL, n.d.] By using this curve, the logistic
regression is able to give a very simple and elegant approach to classification.

	 	 	
	

	 11	

• A Support Vector Classifier (SVC) is another type of machine learning classifier.
[Wikipedia, 2018]. Like the KNeighbors classifier, the SVC classifier graphs the
data in n-dimensional space (depending on the number of inputs/outputs in your
data). [Support Vector Machine, 2018]. However, rather than classifying data
based on the distance from other classes, the SVC tries to draw a boundary to
divide the data points into 2 or more groups. [Wikipedia, 2018]. The SVC
classifier has an input called a “kernel” which is how the boundary is drawn
(linear, RBF etc.). [Support Vector Machine, 2018]. The SVC will use this kernel
to draw a decision boundary to divide the data (if it is linear, it will draw a straight
line to divide it and if it is nonlinear, it will draw some other dividing line).
[Support Vector Machine, 2018]. Now if we introduce a new point, if it lies on
one side of the boundary, we will classify it as one label, and if it is on the other,
we will classify it as another label. [Support Vector Machine, 2018]. An SVC is

trained using an algorithm called gradient descent, which can be thought of
iterating on the output incrementally until a spatial minimum is reached. [Support
Vector Machine, 2018]. First, the computer draws a random line and measures the
correctness of the boundary, and then it adjusts the line until the best one is found.
[Wikipedia, 2018].

[Fig C: A full diagram of the gcForest algorithm] [Zhou, Zhi-Hua & Feng, Ji., 2017]	

	 	 	
	

	 12	

• The last algorithm we will discuss is relatively new- the Multi-Grained Cascade
Forest (gcForest). gcForest was proposed in early 2017 as an alternative to deep
neural networks. [Zhou, Zhi-Hua & Feng, Ji., 2017]. Their argument was that
deep neural networks have too many input parameters that need manual adjusting,
and that the training time and processing power needed to run them is very large.
“[gcForest] It is a decision tree ensemble approach with performance highly
competitive to deep neural networks in a broad range of tasks. In contrast to deep
neural networks which require great effort in hyper-parameter tuning, gcForest is
much easier to train; even when it is applied to different data across different
domains in our experiments, excellent performance can be achieved by almost
same settings of hyper-parameters.” [Zhou, Zhi-Hua & Feng, Ji., 2017]. The
gcForest is based off of the cascade structure of a neural network, but it operates
quite differently. [Zhou, Zhi-Hua & Feng, Ji., 2017]. Each layer is made up of a
couple of classifiers, rather than nodes. Inputs are fed into the first layer, where
each classifier predicts and then the outcomes are voted on, creating a vector of
the predictions. [Zhou, Zhi-Hua & Feng, Ji., 2017]. The vector of predictions,
along with the initial vector of input data is then passed onto the next layer which
predicts, votes and passes data onto the next, until it reaches a final prediction.
[Zhou, Zhi-Hua & Feng, Ji., 2017]. To prevent overfitting, the model does cross
validation on each layer, to make sure that predictions are valid. The gcForest
algorithm also employs a technique they called Multi Grained Scanning, which
allows for “representation learning”. [Zhou, Zhi-Hua & Feng, Ji., 2017]. This
allows for not only relationships between features and outputs to be found, but
also relationships between the features themselves. [Zhou, Zhi-Hua & Feng, Ji.,
2017]. Even though there has been some speculation on the validity of the testing
in their paper, as well as the robustness of the algorithm itself, I felt that this
algorithm could be worth trying and testing to see if it could be a robust classifier
for my prediction task.	

 For this project, I chose to use the ADHD200 dataset which contains MRI scans from 362
ADHD subjects and 585 typically developing subjects (control group). The patients whose scans
were taken were 7-21 years old and personally identifiable information was removed before
release. [Pierre Bellec, et. al, 2017]. In the dataset, each subject has one or more resting state
fMRI (no stimulus), one or more anatomical (sMRI) scans and accompanying phenotypic
information (gender, IQ, age, handedness etc.). In the summer of 2011, the ADHD200
consortium challenged teams to create the best model they could using their dataset. [Pierre
Bellec, et. al, 2017]. The consortium was created in the hope that if the consortium could
distribute a dataset to the public, they could find a better solution for diagnosing ADHD. [Pierre
Bellec, et. al, 2017]. The data in the ADHD200 dataset came from 7 sources: Brown University
(although this data was excluded in the actual competition dataset, so it doesn’t count), Peking
University, New York University Child Study Center, Oregon Health and Safety university,

	 	 	
	

	 13	

Washington University in St. Louis, University of Pittsburgh, NeuroIMAGE, and the Kennedy
Krieger Institute. [Pierre Bellec, et. al, 2017]. In sharing this data, the consortium realized the
importance of reaching beyond the imaging community, which typically consists of psychiatrists,
neurologists, and neuroscientists, to broader multidisciplinary scientific disciplines. [Pierre
Bellec, et. al, 2017]. “To recruit the global scientific community to address childhood
psychiatric illness, a competition was announced, with the goals of developing: (1) novel
strategies for predicting diagnostic status based on an individual's intrinsic functional
architecture and brain structure, and (2) novel techniques for identifying brain features that may
yield ADHD biomarkers.” [Pierre Bellec, et. al, 2017]. However, in the competition, they
weren’t only trying to diagnose ADHD, but also the subtypes of it (ADHD-Hyperactive, ADHD-
Inattentive, ADHD-Combined [both hyperactive and inattentive]). In this paper, I chose to only
try to discern ADHD from non-ADHD patients.

 The aim of this project is not to create a clinical replacement for the diagnosis of ADHD
through MRI scans and patient data. Rather, it is to improve on current known model
performance and create the basis for future papers on this subject, so eventually, an algorithm
can become the “gold standard” for ADHD diagnosis. As I said above, ADHD overdiagnosis is a
huge issue that plagues our society. As someone who has ADHD, it is frustrating that a lot of
times, people tell me that ADHD isn’t a “real” disorder-- it is just something made up by lazy
parents or used by lazy kids as an excuse to slack off. I hope that through this project, I can make
a difference and show kids that ADHD is a real disorder, and not an excuse.

 My initial hypothesis when starting this project was that using newer, state of the art
models like the Random Forests algorithm or Gradient Boosting (using the xgboost library) was
going to give the highest accuracy. I based this off the fact that ensemble classifiers (models that
use multiple versions of other models) usually work well on small datasets like ours.
Additionally, the runtime of Random Forests and Gradient Boosting is very fast, so I knew I
could run a lot of optimizations without a massive and expensive computing resources. My aim
was to improve on performance above current known prediction levels from the ADHD200
competition.

	 	 	
	

	 14	

Procedures

Materials

 As discussed in the introduction, the dataset that I used was called the ADHD 200
dataset. It contains 362 ADHD subjects and 585 typically developing subjects (or non-ADHD
subjects). I was able to download the dataset, preprocessed using the Athena pipeline (a
preprocessing pipeline created by the ADHD200 consortium) upon approval by an administrator
from the NITRC website. The Athena preprocessing pipeline was used to smooth, normalize,
mask and map the data to enable standardization across 8 different locations at different times
and under slightly different conditions. This pipeline is the most robust, widely used, and best
documented of all alternative preprocessing pipelines applied to the ADHD200 dataset. There
were 8 phenotypic files inside the data from each site-- the first one was a “global” phenotypic
file containing the labels (ADHD-Combined, ADHD-Inattentive, ADHD-Hyperactive or
Typically Developing), and the other 7 (site specific) contained more specific data (patient age,
gender, dexterity, medication status, IQ etc.).

 The primary neuroimaging library I used for this project is called nilearn and is
implemented in Python. It provides a fast and flexible API (application programming interface -
a set of rules and methods that one can integrate into their program) for manipulating NiFTi files
(the most common MRI format). Nilearn already had a method (a function) to retrieve a
subsample from the ADHD 200 data set, but it only retrieved 40 images, which I didn’t feel
would be utilizing the dataset to its full potential. To fix this, I downloaded the data onto a hard
drive, and wrote a script to find the paths of each resting state fMRI scan and created an object
from it, that was similar the 40 images object that nilearn provided (attached in the appendix and
also on GitHub). The script looked into the “global” phenotypic file and found the label for each
subject, so that we could do supervised machine learning.

Iteration 0 - Keras CNN using raw fMRI volumes

Objective

The objective in the first iteration was to test the raw data on a simple neural network
model to see if it would demonstrate any signal.

Procedures

	 	 	
	

	 15	

Without prior knowledge of the Athena pipeline, I used a library called nipype to do
preprocessing on the data (normalization, slice time correction etc.) and then fed it into 4D CNN
(convolutional neural network - a neural network that does matrix convolutions, or matrix
multiplications on images to find features, because an image is essentially a matrix of RGB
values for each pixel). I built this CNN using a library called Keras, which makes it easy to build
neural networks using Python.

Results

However, this didn’t give me a good model- it predicted all non-ADHD every time.
Additionally, it took an extremely long time to train (around 3 days, even on GPUs (graphics
processors)), and also used a lot of computing capacity, because each scan is around 200MB
(roughly equivalent to a 10-minute low resolution video). Even though using a CNN might have
contributed to the flawed model, I felt that the sheer run time and computing requirements made
feeding the basic preprocessed data into a machine learning model impossible.

Revisions

 I reached out to Dr. Kai Zhang, Ph.D., a Post-Doctoral Research Fellow at the Stanford
University School of Medicine, because I needed some input on how to proceed. He
recommended that I use "functional connectomes", a method used in analysis of brain images to
reduce the amount of data, while still keeping useful information in the scans.

 “Functional connectomes capture brain interactions via synchronized fluctuations in the
functional magnetic resonance imaging signal. If measured during rest, they map the intrinsic
functional architecture of the brain. [...] Analyzing their variability across subjects and conditions
can reveal markers of brain pathologies and mechanisms underlying cognitivity” (Varaquaux &
Craddock, 2013). In essence, it measures the variance between MRI signal response in different
regions of the brain. Functional connectivity can be a very effective tool to gathering useful
information from a large amount of data. To extract these connectomes, we have to specify
something called a “mask”, or the set of regions for the computer to look at when analyzing the
connectivity. These set of regions are found is something called an atlas. Luckily, nilearn, a
Python library for neuroimaging analysis, provides an easy to use API to make this process easy.
We can apply this to each NiFTi volume and retrieve a signal from the volume. The Nilearn API
provides five different functions to extract these connectivity signals: correlation, partial
correlation, tangent, precision and covariance. I decided to focus on tangent, as, based on nilearn
documentation, it is the most cutting-edge technique of feature extraction because it includes
both correlation and partial correlation in its calculation.

	 	 	
	

	 16	

Iteration 1 - Common ML Algorithms with functional
connectivity using the MSDL atlas

Objective

 The objective of this iteration was to use functional connectivity as a feature in an
initial exploration to get a sense of which models were worth focusing on in the future, using a
simple pipeline, brain atlas, and machine learning library.

Procedures

 I rewrote my Python script to extract functional connectomes from each NiFTi scan using
the MSDL atlas (a common atlas for mapping brain regions) with nilearn. By doing this, I was
able to turn the verbose and complex four-dimensional raw fMRI data into a one-dimensional
vector, which is a lot easier for the computer to process. In all, we now had 417 features that the
model could use for its prediction. I tried using a lot of the most common models trained on the
ADHD200 supplied training and testing datasets and had varying degrees of success.

Results

 To evaluate my model, I used the most commonly used metrics to evaluate classification
models: F1 score, Precision and Recall. To understand these, a common example used is a test
that you might take in school. If you take a test and answer 7 out of 10 questions, but within
those 7 questions you answered you answered 5 correctly, your recall is 70%, or 7/10 (how many
you answered) and your precision is 5/7 or 62.5% (how many you answered correctly within the
ones you answered). To evaluate both precision and recall performance, the F1 score was created
as another metric to measure the correctness of a model. F1 score is the harmonic mean of
precision and recall. It is calculated with 𝐹1	 = 	 2	∗	(>?9@ABACD	∗	E9@FGG)

(>?9@ABACD	8	E9@FGG)
. Using this metric, we can

get a good idea of how accurate a model is, when we calculate the precision, recall and F1 score
for both ADHD and Non-ADHD labels. Another metric that was explored during this project,
was accuracy. However, accuracy (@C??9@H	@GFBBAIA@FHACDB

HCHFG	@GFBBAIA@FHACDB
) didn’t seem like a significant metric as a

model could get a 66% accuracy by predicting all non-ADHD, because ⅔ of the dataset is non-
ADHD patients.

The model was tested on the ADHD200 supplied training and testing datasets using these
classifiers: Decision Tree, Random Forests, Extra Random Forests, K Nearest Neighbors, SVC
with a linear kernel, and Logistic Regression. The connectomes were extracted through the
tangent method.

	 	 	
	

	 17	

Metric Decision Tree Extra Random Trees K-Neighbors SVC (Linear)

ADHD F1 Score 0.43 0.12 0.1 0.33

ADHD Precision 0.35 0.2 0.13 0.32

ADHD Recall 0.54 0.08 0.08 0.33

Non-ADHD F1 Score 0.64 0.76 0.71 0.7

Non-ADHD Precision 0.74 0.68 0.66 0.7

Non-ADHD Recall 0.56 0.55 0.76 0.69

Metric Logistic Regression Random Forest

ADHD F1 Score 0.29 0.19

ADHD Precision 0.29 0.43

ADHD Recall 0.29 0.12

Non-ADHD F1 Score 0.69 0.8

Non-ADHD Precision 0.69 0.93

Non-ADHD Recall 0.69 0.71

[Table 1. Positive and Negative F1, Precision and Recall from the first iteration of this experiment]

	 	 	
	

	 18	

[Fig D: Graph of Metrics from Iteration 1]

 As we can see from Table 1 and Fig C, functional connectivity, even on the default
implementations of each machine learning algorithm, provides an excellent baseline for future
iterations. It seems, from Table 1 and Fig C, especially that the decision tree based models seem
to have the best performance across the classifiers we tested. Decision tree based models include,
but are not limited to decision trees, extra random forests and random forests. Not only do they
seem to provide high averages of results, but they also have certain strong points that make them
a good choice to proceed with. For example, Random Forests has a recall of 0.93, meaning that
out of the patients it classified as not having ADHD, 93% of them didn't have the disease.
Additionally, Extra Random Forests was able to recognize 85% of non ADHD patients. Lastly,
the decision tree provided to be a good average model, with an ADHD F1 score of 0.43, it is
higher than any of the other models we tested in this iteration.

 However, it is interesting to note that all of the non-decision tree classifiers seem to be
very stratified between ADHD and non ADHD metrics. Logistic regression, for example, has an
ADHD F1, Precision and Recall of 0.29 and a non ADHD F1, precision and recall of 0.69.
Similarly, the SVC with a linear kernel predicted 0.33, 0.32 and 0.33 for ADHD metrics,
respectively and 0.7, 0.7 and 0.69 respectively for non ADHD. For K-Nearest Neighbors, the
stratification isn't as clear as the results within each class (positive ADHD or negative ADHD)

0.
43

0.
12

0.
1

0.
33

0.
29

0.
19

0.
35

0.
2

0.
13

0.
32

0.
29

0.
43

0.
54

0.
08

0.
08

0.
33

0.
29

0.
12

0.
64

0.
76

0.
71

0.
7

0.
69

0.
8

0.
74

0.
68

0.
66 0.

7

0.
69

0.
93

0.
56

0.
85

0.
76

0.
69

0.
69 0.

71

D E C I S I O N T R E E E X T R A R A N D O M
T R E E S

K - N E I G H B O R S S V C (L I N E A R) L O G I S I T I C
R E G R E S S I O N

R A N D O M F O R E S T

ITERATION 1 RESULTS
ADHD F1 Score ADHD Precision ADHD Recall Non-ADHD F1 Score Non-ADHD Precision Non-ADHD Recall

	 	 	
	

	 19	

vary by around 0.08, but the same division is still present. One plausible explanation for this
strange result could be that the non-decision tree classifiers were predicting completely random
results; 0.7 and 0.3 are roughly the division between non ADHD and ADHD samples in the
training/test set.

Revisions

After this iteration, I realized that changes needed to be made. First, I realized that we
needed a method to prevent overfitting when evaluating a classifier. As a result, I decided to
implement a new method of evaluation. Instead of using the ADHD200 supplied training and
testing datasets, I combined them into one large dataset. Using the train_test_split method in
scikit-learn (an excellent Python machine learning library), I used a random 20% as a test dataset
and the remaining 80% for training. Using a specified number of iterations to use for cross
validation, I revised the script to run the model the specified cross validation times, using a
different 20% each time, and average the F1, Precision and Recall over each iteration. By doing
this cross validation, we can make sure that overfitting isn’t an issue.

Second, after reading a couple of papers, in which advanced neural networks were used
to achieve high accuracies, I decided to also explore using Multi-Layer Perceptron Classifiers
and Deep Belief Networks.

Third, I decided that one way we could improve the model’s accuracy was by adding
another feature. The natural feature to incorporate seemed to be phenotypic information.
Unfortunately, a lot of the fields inside the site-specific phenotypic files were missing values,
which can degrade the performance of a classifier. However, there were columns that were
(mostly) filled out: age, dexterity (handedness) and gender. To include these, I decided to write a
separate model using only phenotypic information, which was a Random Forest with a Bagging
Classifier. In the next iteration of models, I included the probability that a given subject was
ADHD solely from the phenotypic information as a feature. In order to use this data, without
having it conflict with the functional connectivity, I surrounded the probability with 0s with the
hope that if every subject’s probability was surrounded by 0s, it wouldn’t be picked up as an
important feature

Fourth, I decided to switch the atlas from MSDL to HarvardOxford as it seemed logical
to experiment with different brain maps. I thought that it might have a positive impact on the
usefulness of the functional connectivity.

Lastly, in order to make the data easier to understand for the neural networks, I decided to
equalize the data- by removing non-ADHD data so that ADHD samples and non-ADHD samples
have the same number of samples.

	 	 	
	

	 20	

Iteration 2 - Multi Layer Perceptrons and Deep Belief
Networks on Functional Connectivity and Phenotypic
Information using Cross Validated Optimization

Objective

The objective of this iteration was to apply newer neural network models in a rigorous way to
develop a baseline understanding of how well they could perform on the ADHD200 dataset.	

Procedures

Rather than using a scikit-learn algorithm like GridSearchCV or RandomizedSearchCV, to find
optimal hyperparameters, because they are computationally expensive as well as only rank by
one accuracy metric, I used the optimizer that I specified in the last revisions section. With the
MLP and DBN, after lots of experimentation, I found that the hyperparameter that most
dramatically affected the F1, precision and recall was the number of nodes in a layer.
Unfortunately, there is no real rule of thumb to determine the optimal number of layers and
nodes, besides experimentation. By using the optimizer I wrote to try all node values up to 500 in
a one layer DBN/MLP (to make it simpler and take less time to run) with 4 cross validation
iterations, I was able to locate a couple of layer sizes that stood out. The ADHD probability from
the phenotypic model (RF + Bagging) was included as a feature with this model, along with the
functional connectivity

Results

	 	 	
	

	 21	

[Figure E: Metrics from Iteration 2]

Metric

Multi-Layer Perceptron (fMRI) + Random
Forest (w bagging) for phenotypic

Deep Belief Network (fMRI) +
Random Forest (w bagging)

for phenotypic

Optimal number of layers 403 434

ADHD F1 0.5 0.47

ADHD Precision 0.49 0.74

ADHD Recall 0.51 0.19

Non-ADHD F1 0.64 0.65

Non-ADHD Precision 0.42 0.35

Non-ADHD Recall 0.7 0.87

Matthews Correlation
Coefficient

0.24 0.22

[Table 2: Optimal Layer Numbers, Positive and Negative F1, Precision, Recall and MCC.]

0.5

0.49

0.51

0.64

0.42

0.7

0.24

0.47

0.24

0.61

0.65

0.35

0.87

0.22

ADHD Max F1

ADHD Precision

ADHD Recall

Non-ADHD Max F1

Non-ADHD Precision

Non-ADHD Recall

Matthews Correlation Coefficient

ITERATION 2 RESULTS
Deep Belief Network Multi-Layer Perceptron

	 	 	
	

	 22	

 The results from Table 2 and Figure B lead us to believe that in fact Multi-Layer
Perceptron and Deep Belief Networks, even with coupled cross validation, perform better than
the first iteration. The cross validation is important to note as testing our algorithm on five
different random subsets of data is a much harder test than the first iteration. Regardless our
ADHD F1 was higher in both iterations, which signifies that this might be a better model. Since
the decision tree proved to be the best average model in the previous iteration, we can use it as a
comparison point for this iteration. 0.43, 0.64. The ADHD F1 score for the Decision Tree in the
first iteration was 0.43, and in this iteration, for DBN, it was 0.47. Although a change of 0.04
might not seem like a lot, like I said before, it is important to note the harshness of our test. For
the Multi-Layer Perceptron, we were able to achieve an even better ADHD F1 score of 0.5-- 0.07
better than the decision tree. For non ADHD F1, the F1 scores didn't differ drastically-- the
decision tree non ADHD F1 score was 0.64 while the MLP also had 0.64 and DBN, 0.65. This
large change in ADHD F1 scores shows that not only do neural networks provide a more
effective and accurate alternative to diagnosing ADHD, but also a much more robust one.

 However, neural networks are not without their weak points-- the DBN was only able to
recognize 19% of ADHD patients which definitely is sub optimal. For the Multi-Layer
Perceptron, within the subjects it diagnosed as having ADHD, only 47% of them actually had the
disease. Still, these results, especially using this harsher test, shows that using neural networks on
functional connectivity and random forests + bagging on phenotypic information provides an
excellent tool for ADHD diagnosis.

 In this iteration, we introduced Matthews Correlation Coefficient which I found to be a
very telling metric as to how well a certain model performs. The Matthews Correlation
Coefficient is calculated, like a lot of other metrics, from a confusion matrix. A confusion matrix
is a simple table that allows you to see the results from a classifier.

 Predicted: NO Predicted: YES

Actual: NO True Positives False Positive

Actual: YES False Negative True Negative

[Fig F: Diagram of a confusion matrix]

 Matthews Correlation Coefficient is calculated with this equation, where TP = True
Positives, FP = False Positives, FN = False Negatives and TN=True Negatives: 𝑀𝐶𝐶	 =
	 (L>×LN)O(P>×PN)
/(L>8P>)	×(L>8PN)×(LN8P>)	×(LN8PN)

. The reason that MCC is such a powerful metric for our

scenario is that if the result is random (there is no trend between actual and predicted, like it
predicts all 1s or 0s), it gives an MCC of 0.0. If the predicted results are completely the opposite
of the actual, the MCC is -1.0, while if they are exactly the same, our MCC is 1.0. This allows us

	 	 	
	

	 23	

to see how our result compares to a completely random result. The fact that these neural
networks are able to achieve an MCC of 0.24/0.22, shows that there is in fact a trend between the
inputs and the outputs. This is a very motivating result.

Revisions

 Although employing neural networks was a step in the right direction, they took too long
to run, as well as require tens of thousands of samples to work effectively, rather than hundreds
like our dataset. After reading the gcForest paper, which was proposed as an alternative to neural
networks-- requiring much less data and processing power, I decided to implement it

I decided to make three major changes for the next iteration. The first one regarded
phenotypic information. Instead of using the phenotypic probability as a feature into the gcForest
model, I used the phenotypic information (gender, dexterity and age) directly as features into the
gcForest model. The gcForest algorithm was providing a much higher MCC than the phenotypic
model, so I decided that it was worthwhile to try putting a new feature into the better performing
model.

 Second, I decided to write an automated optimizer for the gcForest algorithm. Randomly,
the optimizer altered gcForest parameters such as the order of the layers, the classifiers used and
the parameters of those classifiers. It exports the mean, max, min, std recall, precision, f1,
accuracy and MCC into a CSV, so tools like Apache Spark (a tool to gather insights from data by
writing MapReduce type scripts), SQL (a database language) and simple spreadsheet
applications like Excel can be utilized to gather insights from these massive files.

 Lastly, I extended the default gcForest classifier to use two new classifiers, LinearSVC
and Multi-layer Perceptron. In previous iterations, those two results have been very promising,
so using them with gcForest’s cascade structure seemed like a good idea. By adding these
classifiers as possibilities for the optimizer to pick, I hope to achieve a better model.

	 	 	
	

	 24	

Iteration 3- Computerized Random Search on Phenotypic
Information (as a feature) and fMRI volumes using gcForest

Objective

My objectives in this last iteration were to improve my integration of phenotypic features in the
model, to use an automated optimization technique and most of all, to use the gcForest model to
see if I could improve on the performance of neural network models from Iteration 2.

Procedures

For this iteration, as I mentioned in the previous iteration's revisions sections, I used a
computerized random searching to find optimal parameters for the gcForest algorithm. This is
necessary as not only do the gcForest hyperparameters need to be tuned, but each individual
classifier inside gcForest's cascade structure also needs to be tuned. Here are the parameters:

I considered the following classifiers:

1) Multi-Layer Perceptron Classifier (MLP)
2) Support Vector Machine Classifier (SVC)
3) Logistic Regression
4) XGBoost Gradient Boosting Classifier (XGB)
5) Random Forests (RF)

The computerized searcher altered these attributes:

1) Number of Logistic Regressions between each classifier chosen
2) MLP Solver (adam, lbfgs, sgd)
3) SVC Kernel (polynomial, radial basis, linear)
4) Number of XGB Estimators (up to 130 by default)
5) Number of Random Forest Estimators (up to 130 by default)
6) The order of the models (xgb-->logit or svc-->mlp)
7) Early stopping iterations (how many iterations in a row need to be below the best average

for the model’s training to be terminated)
8) Whether to use each classifier (varied probabilities)

 As I mentioned previously cross validated results running over 5 random subsets of the
data were exported to a CSV file.

 We considered mostly considered the mean, maximum, minimum and standard deviation
(STD) of these metrics

	 	 	
	

	 25	

1) F1 Score (mean, min, max, std)
2) Accuracy (mean, min, max, std)
3) Precision (mean, min, max, std)
4) Recall (mean, min, max, std)
5) Matthews Correlation Coefficient (mean)

 I ran this searcher on two Amazon EC2 instances (c5.xlarge) as well as various old
laptops from around the house. By aggregating all of the CSV files and running Apache Spark,
and loading it into Microsoft Excel, I was able to find a couple of parameter combinations that
stood out.

Results	

[Table 3: Results Part 1 of 2- models 1 to 3 from Iteration 3]

Metric GC Forest: Optimal 4 GC Forest: Optimal 5 GC Forest: Optimal 6

Metric GC Forest: Optimal 1 GC Forest: Optimal 2 GC Forest: Optimal 3

Layer Order SVC > Logit3 RandFor > Logit > RandFor Logit > MLP > XGB > MLP

MLP Nodes

(114); (11)
MLP Solver

SGD, SGD

SVC Kernel Poly

XGB Estimators

(76)
Random Forest

Estimators

(34); (134)

Early Stopping Iterations 2 4 1

ADHD F1 0.47 0.48 0.48
ADHD Precision 0.75

0.74

ADHD Recall 0.34 0.34 0.36

Non-ADHD F1 0.81 0.77 0.81
Non-ADHD Precision 0.71 0.66 0.72

Non-ADHD Recall 0.94 0.93 0.93

Matthews Correlation
Coefficient

0.36 0.35 0.36

	 	 	
	

	 26	

Layer Order RandFor > XGB > XGB > Logit
> RandFor

MLP > MLP > MLP >
Logit

Logit > Logit > Logit >
RandFor > RandFor

MLP Nodes

(93,114); (136,29);
(21,75,132)

MLP Solver

LBFGS; SGD; SGD

SVC Kernel

XGB Estimators (57); (3)

Random Forest
Estimators

(106,108)

(15);(77)

Early Stopping Iterations 3 2 3

ADHD F1 0.5 0.52 0.53

ADHD Precision 0.74 0.75 0.72

ADHD Recall 0.39 0.4 0.41

Non-ADHD F1 0.81 0.81 0.8

Non-ADHD Precision 0.73 0.72 0.72

Non-ADHD Recall 0.92 0.93 0.9

Matthews Correlation
Coefficient

0.38 0.39 0.38

[Table 4: Results Part 2 of 2 - models 3 to 6 from Iteration 3]

	 	 	
	

	 27	

[Fig G: Results from each layer order combination]

 As evident from the tables and graphs above, gcForest provides a much more accurate
and robust solution to diagnosing ADHD than any of the other classifiers we experimented with.
The Non ADHD Recall doesn't go below 0.9 each entry in Table 3, which is much improved
from previous iterations. Additionally, the Matthews Correlation Coefficient increased by
almost 0.1 from the neural network, reinforcing the fact that there is a reasonably strong trend
between functional connectivity, phenotypic information (as a feature) and the labels assigned to
each subject. After analysis through Apache Spark and Microsoft Excel, I concluded that
gcForest optimizer number 5 has the best average result-- which is furthered by the 0.39 MCC.
However, as you can see from the tables, each model has their own unique strong point and also
some common weak points.

 Within the models included in Table 3, the maximum ADHD recall attained is 0.4
(gcForest optimizer #5). This shows a definite area for improvement. With the Multi-Layer
Perceptron in iteration 2, a mean ADHD recall of 0.51 was achieved, showing that gcForest,
although it has very promising results, struggles to recognize ADHD patients. However, within
the patients it did recognize, 75% of them actually had the disease.

 In iteration 1, we found that decision tree based classifiers gave the best results.
However, a lot of the models in the best gcForest cascade structures had other classifiers, such as
SVC and Logistic Regression. This is interesting because as we speculated, this could suggest a

SVC > Logit3 RandFor > Logit >
RandFor

Logit > MLP > XGB
> MLP

RandFor > XGB >
XGB > Logit >

RandFor

MLP > MLP > MLP
> Logit

Logit > Logit > Logit
> RandFor >

RandFor
ADHD F1 0.47 0.48 0.48 0.5 0.52 0.53
ADHD Precision 0.75 0.78 0.74 0.74 0.75 0.72
ADHD Recall 0.34 0.34 0.36 0.39 0.4 0.41
Non-ADHD Max F1 0.81 0.77 0.81 0.81 0 0.8
Non-ADHD Precision 0.71 0.66 0.72 0.73 0.72 0.72
Non-ADHD Recall 0.94 0.93 0.93 0.92 0.92 0.9
Matthews Correlation Coefficient 0.36 0.35 0.36 0.38 0.39 0.38

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
E

T
R

IC
 S

C
O

R
E

ITERATION 3 RESULTS

	 	 	
	

	 28	

random prediction from these models. When used in the gcForest, they seemed to make more
powerful models, rather than random ones.

 Also, within the table, there is a noticeable trend that as precision goes up, recall goes
down and vice versa. As an experiment, I graphed the ADHD Precision vs ADHD Recall to see
if there was in fact a trend.

	

[Fig H: ADHD Precision vs ADHD Recall (using all results: ≈10,000 combinations)]

 As we can see from the graph above, there does seem to be a negative correlation
between precision and recall, which was interesting to find out. It is also noteworthy that the
MCC for this iteration is higher than previous ones, where the best average result (#5) almost has
a 0.4 MCC vs a baseline which would be 0. Additionally, the negative mean F1 is 0.81, showing
that we have a very powerful model for recognizing non-ADHD patients. This shows that
gcForest provides a very robust, accurate and powerful model for diagnosing ADHD from
functional connectivity and phenotypic features.

0

0.1

0.2
0.3

0.4

0.5

0.6
0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
D

HD
 P

re
ci

sio
n

ADHD Recall

ADHD Precision vs ADHD Recall

	 	 	
	

	 29	

Discussion

Sources and issues in results improvement over study iterations

Metric Iteration 1 Iteration 2 Iteration 3

Non ADHD F1 0.64 0.64 0.81

ADHD F1 0.43 0.5 0.52

MCC 0.24 0.39

What Changed? MSDL Atlas

No Phenotype Info

Untuned (default)
sklearn classifiers

Athena Pipeline

No CV

Best (shown in
table): Decision
Tree

Harvard-Oxford Atlas

Phenotypic
probability as feature

Neural network
models

5 iteration CV

Hidden layer
searching- best: single
layer: 403 nodes

Equalized Data

Best: MLP

Harvard-Oxford Atlas

Phenotypic
information,
surrounded by 0s as
feature

gcForest models

5 Iteration CV

Computerized random
searching

Unequalized data

Best: gcForest-
MLP>MLP>
MLP>Logit

[Table 7: Iteration Summary]

 As we can see from Table 7, all of our key metrics increased over the three iterations.
Although I was not able to quantify each source of the improvement, it seemed from observation
that using cross validated searching and adding phenotypic information contributed most to the
difference between the first and the second. Even though the atlas type was changed from MSDL
to HarvardOxford, throughout my experimentation, I realized that HarvardOxford and MSDL are
remarkably similar and thus, the choice of atlas didn’t make a big difference. Additionally,
equalizing the data would not have been a large source of improvement in the metrics- rather this
was done to combat the fact that neural networks are traditionally thrown off by imbalanced
datasets (the ADHD200 is roughly two thirds non ADHD and one third ADHD). As a result,

	 	 	
	

	 30	

equalizing the data might have allowed the neural networks to generate better results. Even
though the Matthews Correlation Coefficient wasn't calculated for the first iteration, it is a fair
assumption to make that it would improve upon in the second iteration.

 Between the second and third iterations, the major changes were the switch from neural
networks to randomized search on gcForest and the inclusion of phenotypic information as a
feature. The gcForest model, as we can see, has a significant positive impact on non ADHD F1,
MCC and a slight impact on ADHD F1. One possible reason for this is the fact that gcForest is
said to be an alternative to deep neural networks that performs well even with small amounts of
data. [Zhou, Zhi-Hua & Feng, Ji., 2017]. The randomized searching algorithm applied to the
gcForest also could play a role in the high result attained as it allows all possibilities (within
reason) to be explored. The layer structure of the best average result, MLP > MLP > MLP >
Logistic Regression is interesting as it incorporates the objectively best result from the previous
iteration into an ensemble classifier-- creating an extremely powerful meta-estimator. Logistic
regression, however was one of the worst models in the first iteration, so the return of it into our
gcForest meta estimator comes as an interesting surprise.

 Rather than using a deep neural network (which might not be extremely well suited for
this task given the small amount of data), which take a lot of processing, financial resources
(GPU instances on EC2 are not cheap) and time to run, gcForest provided to be an effective
alternative—delivering good results in a fraction of the time.

However, there has been some prior speculation as to the legitimacy of the gcForest algorithm,
with prior researchers arguing that the classifiers and data sets used as the baseline used in the
gcForest papers for comparison were outdated:

“It [gcForest] could turn out to be extremely good. However, I would say that they
haven't proven their point. You can see on the test datasets, the performance is not much
better than classic algorithms like SVM. I think they will need to use more difficult image
datasets, where classic algorithms do not have a chance against deep learning.”
[“Travers” - Deep Review, 2017].

 We have found in this study that gcForest can prove to be an effective algorithm,
especially when coupled with randomized searching, and systematic exploration of the optimal
cascade structure and hyperparameters. As a side note, the gcForest authors, in their paper did
say that gcForest has many less parameters to tune than a neural network, which I didn’t find to
be the case. In fact, the number of parameters to tune led to my need for a randomized searching
algorithm.

	 	 	
	

	 31	

While I did find that using phenotypic features improved model performance
substantially, there were some interesting choices to make around how best to incorporate
phenotypic features into the models. Initially, I felt that using 0’s to equalize the matrix size
between the phenotypic and functional connectome information would lead to better model
results, so this was the approach I was using. However, a machine learning expert I consulted,
Mr. Anton Bossenboek, shed some light on the fact that surrounding phenotypic information
with 0s might confuse the model and not help it. Nevertheless, I was surprised to find out that
after removing the zeros around the phenotypic information, the MCC, F1 and Precision were all
lower by an average of 5%. The recall increased by 1%, which wasn't significant enough to
prove that removing the zeros was a good idea. Therefore, I left the 0’s surrounding the
phenotypic information in the feature data in order to ensure that the phenotypic input data
matrix conformed to the size of the functional connectome matrix.

Evaluation of results versus initial hypothesis

 The best result from the ADHD200 Consortium Challenge was Johns Hopkins
University. By deriving their confusion matrix from their results and comparing it to our mean
confusion matrix, I was able to see how my model compares. It is important to note that my
testing dataset changed with each cross validation run to a random 20% of the original dataset.
This means that the number of subjects in the testing data, for us, is slightly more than in the
ADHD200 supplied testing dataset.

 Johns Hopkins University gcForest Optimal #5 (mean)

 True False

True 12 6

False 45 92

 True False

True 25 9

False 39 105

[Tables 7, 8: Johns Hopkins and gcForest Optimal #5 (mean) confusion matrix]

 From these confusion matrixes, we were able to find their precision, recall, F1 and MCC
and compare it to ours.

	 	 	
	

	 32	

Metrics Johns Hopkins
University

gcForest Optimizer
#5

Improvement

ADHD Precision 0.67 0.75 +0.08

Non ADHD Precision 0.67 0.72 +0.05

ADHD Recall 0.21 0.4 +0.19

Non ADHD Recall 0.94 0.93 -0.01

ADHD F1 0.32 0.52 +0.20

Non ADHD F1 0.77 0.81 +0.04

Matthews Correlation
Coefficient

0.22 0.39 +0.17

 While Johns Hopkins University's non-ADHD recall is still 0.01 better than ours (93% vs
94%), we were able to improve noticeably in every other category. Specifically, ADHD F1,
ADHD Recall and Matthews Correlation Coefficient are around 0.2 higher with the gcForest
model. Even though more repetition of this experiment could be done for further validation and
whilte there are certainly areas of improvement, it seems as that my objective to improve on
prior studies was met.

My other hypothesis from Iteration 1 about how random forests and gradient boosting
would provide the best models was somewhat correct, as they did provide some of the best
models when used in combination as the layers of the gcForest.

Potential sources of error and bias

 Even though gcForest seems to provide a stable and robust alternative to diagnosing
ADHD, there are some possible sources of error and inconsistency within our study. Two key
possible sources of error for our experiment are source validity and over diagnosed labels.

 The sites that the data came from sometimes opened up possible sources of error. Some
source sites for the data like NYU gave much lower results in the original ADHD200 competition,
as we can see below in table 5. As an experiment, I removed the NYU portion of the dataset from
the 3rd iteration optimizer and reran it. Surprisingly, it gave a much higher prediction accuracy
(80%), but lower F1 and MCC, which are more rigorous metrics for this comparison. Nevertheless
removing other sources with noise, such as Pittsburgh and Brown, might have allowed for an
increased F1 and MCC, just like NYU did for accuracy.

	 	 	
	

	 33	

[Table 5: Chance, Prediction Accuracy and Performance Increase for each source]

 Over diagnosed labels is also a potential source of error or this experiment. As I
discussed in my introduction, ADHD overdiagnosis is a very predominant issue. Unfortunately,
as I found while discussing with Mr. Haomiao Huang, this same issue has a good chance of
impacting the validity of our data. The patients who were given the label: “ADHD” were
diagnosed using the same subjective methods and processes that we are trying to improve in this
study, opening up a significant potential avenue for inconsistency in this experiment. However,
using unsupervised learning techniques might help with creating a more effective model in the
future—using the labels as guidelines, rather than as true labels.

Future directions

 The most obvious area for improvement in the future would be for researchers to repeat
this study to further test the robustness of the gcForest models proposed in this paper. Doing this
would certainly require improvements in the process of finding optimal results from the
randomized searching algorithm. To find optimal results out of the ≈ 10,000 results generated
over 5 different computers (two of which are on Amazon Web Services EC2 Instances), I
imported the data into a Python Spark RDD. What I did not do, however was take the standard
deviation (or variance) of the results across the 5 cross-validation runs into account, which might
have thrown off what the best results actually were. Furthermore, the Randomized Searching
algorithm was inefficient- it took 2 days to return 2000 results (per searcher). Recently, after
conversing with Mr. Bossenboek, I learned of optimizers such as TPOT and auto-ml that,
through genetic algorithms (based on evolution) can find optimal hyperparameters more
efficiently than the random searching algorithm I was using. By using these optimizers, either on
simpler ensemble classifiers like xgboost and random forests or extending the implementation to
work with gcForest, better results might be found.

 Additionally, adding new inputs to the model, such as doing feature extraction from the
also provided sMRI volumes could improve the model. As I learned from Dr. Zhang, sMRI

	 	 	
	

	 34	

volumetric analysis using Freesu mbvhkfg ik6rfer or SPM can provide a very useful feature. In
addition, using more phenotypic information (medication status, IQ), while still accounting for
the blank values in the CSV file might provide sources of further improvement.

Finally, even though neural networks didn’t provide better results than gcForest, there are
a lot of additional advanced neural networks such as Extreme Learning Machines, Long Short-
Term Memory Networks and Convolutional Neural Networks which I didn’t explore in the course
of this experiment that should be explored by researchers in the future.

Works Cited

Allison. “Machine Learning Part 2: Visualizing a Decision Tree.” Tech Trek, 22 Apr. 2016,
 www.techtrek.io/machine-learning-part-2-visualizing-a-decision-tree/.

Benyamin, D. (2012, October 11). A Gentle Introduction to Random Forests, Ensembles, and
Performance
 Metrics in a Commercial System [Blog post]. Retrieved from CitizenNet website:
 http://blog.citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-
metrics

Bossenbroek, A. (n.d.). [Personal interview by the author].

Deep Belief Networks. (2018, April 4). Retrieved April 26, 2018, from Wikipedia website:
 https://en.wikipedia.org/wiki/Deep_belief_network

franck-dernoncourt. (n.d.). Minimum number of layers in a deep neural network [Online forum
post].
 Retrieved from Stack Exchange: Stats website: https://stats.stackexchange.com/q/229659

Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS.
(2011). Nipype: a
 flexible, lightweight and extensible neuroimaging data processing framework in Python.
Front.
 Neuroinform. 5:13.

Hoogman, M., Bralten, J., Hibar, D., Mennes, M., Zwiers, M., Schweren, L., & Frank, B. (2017).
 Subcortical brain volume differences in participants with attention deficit hyperactivity

	 	 	
	

	 35	

 disorder in children and adults: A cross-sectional mega-analysis. The Lancet, 4(4).
 https://doi.org/10.1016/S2215-0366(17)30049-4

How strong are the magnets in an MRI machine? [Blog post]. (2001, August 9). Retrieved from
 howstuffworks.com website: https://science.howstuffworks.com/question698.htm

Huang, H. (2018, April 4). [Telephone interview by the author].

Maini, V. (2017, August 19). Machine Learning for Humans, Part 2.2: Supervised Learning II
[Blog
 post]. Retrieved from Medium website: https://medium.com/machine-learning-for-humans/
 supervised-learning-2-5c1c23f3560d

McGonagle, John. “Feedforward Neural Networks.” Brilliant Math & Science Wiki,
 brilliant.org/wiki/feedforward-neural-networks/.

Monks, M. (2017, April 24). How strong is a standard magnet? [Blog post]. Retrieved from
Sciencing
 website: https://sciencing.com/strong-standard-magnet-6853786.html

MRI interpretation Introduction. (n.d.). Retrieved from https://www.radiologymasterclass.co.uk/
 tutorials/mri/mri_scan

Multi-Layer Perceptron. (2018, January 25). Retrieved April 26, 2018, from Wikipedia website:
 https://en.wikipedia.org/wiki/Multilayer_perceptron

Notter, M. (2016). Introduction to neuroimaging. Retrieved January 5, 2018, from Nipype
 beginners guide website: http://miykael.github.io/nipype-beginner-s-
 guide/neuroimaging.html

Pedregosa, F., Varoquaux, G., Gramfort, A. & Michel, V. (2011). Scikit-learn: Machine
Learning
 in Python. Journal of Machine Learning Research, 12, 2825-2830.

Saxena, R. (2017, January 30). How decision tree algorithm works. Retrieved April 26, 2018,
from
 Dataaspirant website: http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/

School Mental Health Project, Dept. of Psychology, UCLA. (n.d.). Arguments About Whether

	 	 	
	

	 36	

 Overdiagnosis Of ADHD is a Significant Problem* [Fact sheet]. Retrieved March 1, 2018,
from
 http://smhp.psych.ucla.edu/pdfdocs/overdiag.pdf

Support Vector Machine. (2018, April 20). Retrieved April 26, 2018, from Wikipedia website:
 https://en.wikipedia.org/wiki/Support_vector_machine

Team, U. (n.d.). The 3 Types of ADHD. Retrieved from https://www.understood.org/en/
 learning-attention-issues/child-learning-disabilities/add-adhd/the-3-types-of-adhd

Travers. (2017, March 2). Deep Forest: Towards an Alternative to Deep Neural Networks #268
[Online
 forum post]. Retrieved from Deep Review website: https://github.com/greenelab/deep-review/
 issues/268

UFLDL. (n.d.). Unsupervised Feature Learning and Deep Learning Tutorial. Retrieved April 26,
2018,
 from Stanford Deep Learning Department website:
http://ufldl.stanford.edu/tutorial/supervised/
 LogisticRegression/

Varoquaux, G., & Craddock, R. C. (2013). Learning and comparing functional connectomes
across
 subjects. NeuroImage, 80, 405-415. doi:10.1016/j.neuroimage.2013.04.007

Woodford, C. (2018, March 14). Introduction to Neural Networks. Retrieved April 9, 2018, from
 Explain That Stuff website: http://www.explainthatstuff.com/
 introduction-to-neural-networks.html

Yee, S., & Chu, T. (n.d.). A visual introduction to machine learning [Blog post]. Retrieved from
 R2D3 website: http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Zhang, K., Ph.D. (n.d.). [LinkedIn interview by the author].

Zhou, Zhi-Hua & Feng, Ji. (2017). Deep Forest: Towards an Alternative to Deep Neural
Networks.
 3553-3559. 10.24963/ijcai.2017/497.

Acknowledgements

	 	 	
	

	 37	

	 This	work	would	not	have	been	possible	if	it	hadn't	been	for	the	many	people	who	
assisted	me	throughout	the	and	research,	programming,	writing	of	this	experiment.	In	
particular,	I	would	like	to	acknowledge	Mr.	Sarabjit	Baveja,	Mr.	Carl	Ma,	Mr.	Karl	Schmidt,	
Dr.	Haomiao	Huang,	Ph.D.,	and	Dr.	Kai	Zhang,	Ph.D.	for	being	amazing	mentors	and	
resources	throughout	this	process.	

I pledge to uphold the Branson Honor Code. I have neither received nor given unauthorized aid

Glossary
Term Definition

Python Python is an interpreted high-level
programming language for general-purpose
programming.

API An API is a set of clearly defined methods of
communication between various software
components.

MRI MRI uses a powerful magnetic field, radio
frequency pulses and a computer to produce
detailed pictures of organs, soft tissues, bone
and virtually all other internal body structures.

fMRI Volume Functional magnetic resonance imaging or
functional MRI (fMRI) measures brain
activity by detecting changes associated with
blood flow. fMRI volumes are a 4D image
containing the visualization from the fMRI
scan.

Functional Connectivity Functional connectivity refers to the
functionally integrated relationship between
spatially separated brain regions.

Classifier/Estimator/Model In machine learning and statistics,
classification is the problem of identifying to
which of a set of categories (sub-populations)
a new observation belongs. A

	 	 	
	

	 38	

classifier/estimator/model is what is used to
identify this.

nilearn Nilearn is a Python module for fast and easy
statistical learning on NeuroImaging data.

sklearn Machine Learning in Python. Simple and
efficient tools for data mining and data
analysis;

CNN In machine learning, a convolutional neural
network (CNN, or ConvNet) is a class of
deep, feed-forward artificial neural networks
that has successfully been applied to
analyzing visual imagery.

Keras Keras is a high-level neural networks API,
written in Python

Random Forests Random forests or random decision forests
are an ensemble learning method for
classification, regression and other tasks, that
operate by constructing a multitude of
decision trees

Decision Tree Decision tree learning uses a decision tree (as
a predictive model) to go from observations
about an item (represented in the branches) to
conclusions about the item's target value
(represented in the leaves).

Logistic Regression Logistic regression is a statistical method for
analyzing a dataset in which there are one or
more independent variables that determine an
outcome.

KNearest Neighbors In pattern recognition, the k-nearest neighbors
algorithm (k-NN) is a non-parametric method
used for classification and regression. In both
cases, the input consists of the k closest
training examples in the feature space.

SVC A Support Vector Machine (SVM) is a
discriminative classifier formally defined by a
separating hyperplane. In other words, given
labeled training data (supervised learning),
the algorithm outputs an optimal hyperplane
which categorizes new examples.

	 	 	
	

	 39	

Restricted Boltzmann Machine A restricted Boltzmann machine (RBM) is a
generative stochastic unsupervised artificial
neural network that can learn a probability
distribution over its set of inputs.

Autoencoder An autoencoder is an artificial neural network
used for unsupervised learning of efficient
codings. The aim of an autoencoder is to learn
a representation (encoding) for a set of data,
typically for the purpose of dimensionality
reduction.

Multi Layer Perceptron A multilayer perceptron (MLP) is a class of
feedforward artificial neural network. An
MLP consists of at least three layers of nodes.
Except for the input nodes, each node is a
neuron that uses a nonlinear activation
function. MLP utilizes a supervised learning
technique called backpropagation for training.

Neural Network An artificial neural network is an
interconnected group of nodes, akin to the
vast network of neurons in a brain.

Deep Belief Network In machine learning, a deep belief network
(DBN) is a generative graphical model, or
alternatively a class of deep neural network,
composed of multiple layers of latent
variables ("hidden units"), with connections
between the layers but not between units
within each layer. When trained on a set of
examples without supervision, a DBN can
learn to probabilistically reconstruct its
inputs. The layers then act as feature
detectors. After this learning step, a DBN can
be further trained with supervision to perform
classification.

MRI Preprocessing Preprocessing is the term used to for all the
steps taken to improve our data and prepare it
for statistical analysis. We may correct or
adjust our data for a number of things
inherent in the experimental situation: to take
account of time differences between acquiring
each image slice, to correct for head
movement during scanning, to detect
‘artifacts’ – anomalous measurements – that
should be excluded from subsequent analysis;

	 	 	
	

	 40	

to align the functional images with the
reference structural image, and to normalize
the data into a standard space so that data can
be compared among several subjects; to apply
filtering to the image to increase the signal-to-
noise ratio; finally, if sMRI is intended, a
segmentation step may be performed.

Extra Random Forests With respect to random forests, the method
[Extra Random Forests] drops the idea of
using bootstrap copies of the learning sample,
and instead of trying to find an optimal cut-
point for each one of the K randomly chosen
features at each node, it selects a cut-point at
random.

Gradient Boosting Gradient boosting is a machine learning
technique for regression and classification
problems, which produces a prediction model
in the form of an ensemble of weak prediction
models, typically decision trees.

XGBoost XGBoost (Extreme Gradient Boosting) is an
open-source software library which provides
the gradient boosting framework for C++,
Java, Python, R, and Julia.

Phenotypic relating to the observable characteristics of an
individual resulting from the interaction of its
genotype with the environment.

Confusion Matrix A confusion matrix is a table that is often
used to describe the performance of a
classification model (or “classifier”) on a set
of test data for which the true values are
known.

F1 Score The F1 score is the harmonic average of the
precision and recall, where an F1 score
reaches its best value at 1 (perfect precision
and recall) and worst at 0.

Precision Precision is the fraction of relevant instances
among the retrieved instances

	 	 	
	

	 41	

Recall Is the fraction of relevant instances that have
been retrieved over the total amount of
relevant instances.

Matthews Correlation Coefficient Matthews Correlation Coefficient. The
Matthews Correlation Coefficient (MCC) has
a range of -1 to 1 where -1 indicates a
completely wrong binary classifier while 1
indicates a completely correct binary
classifier. Using the MCC allows one to
gauge how well their classification
model/function is performing.

Accuracy Accuracy is the number of correct
classifications out of the total number of
classifications

Standard Deviation a quantity calculated to indicate the extent of
deviation for a group as a whole.

gcForest gcForest is a decision tree ensemble approach
with performance highly competitive to deep
neural networks.

a feature In machine learning and pattern recognition, a
feature is an individual measurable property
or characteristic of a phenomenon being
observed. Choosing informative,
discriminating and independent features is a
crucial step for effective algorithms in pattern
recognition, classification and regression.

Cross Validation Cross-validation is a technique to evaluate
predictive models by partitioning the original
sample into a training set to train the model,
and a test set to evaluate it.

Machine Learning Machine learning is a field of computer
science that uses statistical techniques to give
computer systems the ability to "learn" (e.g.,
progressively improve performance on a
specific task) with data, without being
explicitly programmed.

NiFTi NiFTi is a file format for the storage of MRI
scans

Apache Spark Apache Spark is a unified analytics engine for
big data processing, with built-in modules for

	 	 	
	

	 42	

streaming, SQL, machine learning and graph
processing.

RDD The main abstraction Spark provides is a
resilient distributed dataset (RDD), which is a
collection of elements partitioned across the
nodes of the cluster that can be operated on in
parallel.

SQL SQL is a standard language for storing,
manipulating and retrieving data in databases.

AWS (Amazon Web Services) Amazon Web Services offers reliable,
scalable, and inexpensive cloud computing
services

EC2 Amazon Elastic Compute Cloud (Amazon
EC2) is a web service that provides secure,
resizable compute capacity in the cloud. It is
designed to make web-scale cloud computing
easier for developers. Amazon EC2's simple
web service interface allows you to obtain and
configure capacity with minimal friction.

Gini Impurity Gini Index is an indicator of how the
classification split is with respect to the
classes.

Extreme Learning Machine Extreme learning machines (ELM) are single-
hidden layer feedforward neural networks
(SLFNs) which randomly chooses the input
weights and analytically determines the
output weights of SLFNs. In theory, this
algorithm tends to provide the best
generalization performance at extremely fast
learning speed.

LSTM Long Short Term Memory networks – usually
just called “LSTMs” – are a special kind of
RNN, capable of learning long-term
dependencies.

