Cell Stiffness Indicate Tumors

Engineers at MIT and elsewhere have tracked the evolution of individual cells within an initially benign tumor, showing how the physical properties of those cells drive the tumor to become invasive, or metastatic. [38]

The new treatment employs the alpha particle emitting radionuclide ²²⁵Ac. Alpha particles travel a short distance in tissue, thereby limiting their off-target effect. [37]

Minimally invasive surgery is increasingly used to target small lesions and a growing demand exists for miniaturized medical tools. [36]

Agricultural Research Service (ARS) scientists, in cooperation with Pacific Biosciences and Penn State University, have published the first genome of the invasive Spotted Lanternfly (SLF) in the journal Gigascience and they did it from a single caught-in-the-wild specimen. [35]

Predicting and controlling disease outbreaks would be easier and more reliable with the wider application of mathematical modelling, according to a new study. [34]

Scientists have uncovered a novel antibiotic-free approach that could help prevent and treat one of the most widespread bacterial pathogens, using nanocapsules made of natural ingredients. [33]

A chance finding 10 years ago led to the creation by researchers of the Spanish National Cancer Research Centre (CNIO) of the first mice born with much longer telomeres than normal in their species. [32]

Researchers at the Department of Energy's Oak Ridge National Laboratory, the University of Tennessee and Texas A&M University demonstrated bio-inspired devices that accelerate routes to neuromorphic, or brain-like, computing. [31]

The fight against global antibiotic resistance has taken a major step forward with scientists discovering a concept for fabricating nanomeshes as an effective drug delivery system for antibiotics. [30]

The solution consisting of <u>colloidal quantum dots</u> is inkjet-printed, creating active photosensitive layer of the photodetector. [29]

I'm part of a group of nanotechnology and neuroscience researchers at the University of Washington investigating <u>how quantum dots behave in the brain</u>. [28]

Nanotechnology may provide an effective treatment for Parkinson's disease, a team of researchers suggests. [27]

Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26]

Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25]

The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24]

In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23]

For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22]

A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21]

In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20]

Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19]

Researchers have created quantum states of light whose noise level has been "squeezed" to a record low. [18]

An elliptical light beam in a nonlinear optical medium pumped by "twisted light" can rotate like an electron around a magnetic field. [17]

Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16]

Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single

photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14]

Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13]

Condensed-matter physicists often turn to particle-like entities called quasiparticles such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or "topolariton": a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12]

Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump.

Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature.

New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.

Cell stiffness may indicate whether tumors will invade	. 5
Cell tweezing	. 6
Targeted treatment guides radiation directly to pancreatic tumours	. 7
Floating magnetic microrobots for fiber functionalization	. 8

First genome of spotted lanternfly built from a single insect	13
Mathematical modelling vital to tackling disease outbreaks	14
A new approach to tackle superbugs	15
Bacteria posting threats to human health	15
Antimicrobial resistance	16
Novel antibiotic-free approach	16
Researchers obtain the first mice born with hyper-long telomeres	17
13 percent longer, slimmer and free from cancer	17
"Unprecedented results"	18
Bio-circuitry mimics synapses and neurons in a step toward sensory computing	19
Nanomesh drug delivery provides hope against global antibiotic resistance	21
Quantum dots technology to revolutionize healthcare and sensing technology	23
Quantum dots that light up TVs could be used for brain research	24
Quantum dots as next-generation dyes	25
How quantum dots behave in the brain	26
What's the future for quantum dots?	27
Quantum dots show promise for Parkinson's treatment	27
Liquid Light with a Whirl	38
Physicists discover a new form of light	40
Novel metasurface revolutionizes ubiquitous scientific tool	41
New nanodevice shifts light's color at single-photon level	43
Quantum dots enhance light-to-current conversion in layered semiconductors	44
Quasiparticles dubbed topological polaritons make their debut in the theoretical world	45
'Matter waves' move through one another but never share space	46
Photonic molecules	47
The Electromagnetic Interaction	
	47

The structure of the proton	51
The Strong Interaction	51
Confinement and Asymptotic Freedom	51
The weak interaction	52
The General Weak Interaction	53
Fermions and Bosons	53
The fermions' spin	54
The source of the Maxwell equations	54
The Special Relativity	55
The Heisenberg Uncertainty Principle	55
The Gravitational force	56
The Graviton	56
What is the Spin?	57
The Casimir effect	57
The Fine structure constant	57
Path integral formulation of Quantum Mechanics	58
Conclusions	58
References	59

Author: George Rajna

Cell stiffness may indicate whether tumors will invade

Engineers at MIT and elsewhere have tracked the evolution of individual cells within an initially benign tumor, showing how the physical properties of those cells drive the tumor to become invasive, or metastatic.

The team carried out experiments with a human breast cancer tumor that developed in the lab. As the tumor grew and amassed more <u>CellS</u> over a period of about two weeks, the researchers observed that cells in the interior of the tumor were small and stiff, while the cells on the periphery were soft and more

swollen. These softer, peripheral cells were more apt to stretch beyond the tumor body, forming "invasive tips" that eventually broke away to spread elsewhere.

The researchers found that the cells at the tumor's edges were softer because they contained more water than those in the center. The cells in the center of a tumor are surrounded by other cells that press inward, squeezing water out of the interior cells and into those cells at the periphery, through nanometer-sized channels between them called gap junctions.

"You can think of the tumor like a sponge," says Ming Guo, assistant professor of mechanical engineering at MIT. "When they grow, they build up compressive stresses inside the tumor, and that will squeeze the water from the core out to the cells on the outside, which will slowly swell over time and become softer as well—therefore they are more able to invade."

When the team treated the tumor to draw water out of peripheral cells, the cells became stiffer and less likely to form invasive tips. Conversely, when they flooded the tumor with a diluted solution, the same peripheral cells swelled and quickly formed long, branchlike tips that invaded the surrounding environment.

The results, which the team reports in the journal Nature Physics, point to a new route for Cancer

<u>therapy</u>, focused on changing the physical properties of cancer cells to delay or even prevent a tumor from spreading.

Guo's co-authors include lead author and MIT postdoc Yu Long Han, along with Guoqiang Xu, Zichen Gu, Jiawei Sun, Yukun Hao, Staish Kumar Gupta, Yiwei Li, and Wenhui Tang, from MIT; Adrian Pegoraro and Yuan Yuan of the Harvard John A. Paulson School of Engineering and Applied Sciences; Hui Li of the Chinese Academy of Sciences; Kaifu Li, Hua Kang, and Lianghong Teng of Capital Medical University in Beijing; and Jeffrey Fredberg of the Harvard T. H. Chan School of Public Health in Boston.

Cell tweezing

Scientists suspect that cancer cells that migrate from a main tumor are able to do so in part because of their softer, more pliable nature, enabling the cells to squeeze through the body's labrynthine vasculature and proliferate far from the initial tumor. Past experiments have shown this soft, migratory nature in

individual <u>Cancer cells</u>, but Guo's team is the first to explore the role of cell stiffness in a whole, developing tumor.

"People have looked at <u>Single Cells</u> for a long time, but organisms are multicellular, three-dimensional systems," Guo says. "Each cell is a physical building block, and we're interested in how each single cell is regulating its own physical properties, as the cells develop into a tissue like a tumor or an organ."

The researchers used recently developed techniques to grow healthy human epithelial cells in 3-D and transform them into a human breast cancer tumor in the lab. Over the next week, the researchers watched as the cells multiplied and coalesced into a benign primary tumor that comprised several hundred individual cells. Several times throughout the week, the researchers infused the growing number of cells with **plastic particles**.

They then probed each individual cell's stiffness with <u>Optical tweezers</u>, a technique in which researchers direct a highly focused laser beam at a cell. In this case, the team trained a laser on a plastic

particle within each cell, pinning the particle in place, then applying a slight pulse in a attempt to move the particle within the cell, much like using tweezers to pick an egg shell out from the surrounding yolk.

Guo says the degree to which researchers can move a particle gives them an idea for the stiffness of the surrounding cell: The more resistant the particle is to being moved, the stiffer a cell must be. In this way, the researchers found that the hundreds of cells within a single **benign tumor** exhibit a gradient of stiffness as well as size. The interior cells were smaller and stiffer, and the further the cells were from the core, the softer and larger they became. They also became more likely to stretch out from the spherical primary tumor and form branches, or invasive tips.

To see whether altering cells' water content affects their invasive behavior, the team added low-molecularweight polymers to the tumor solution to draw water out from cells, and found that the cells shrank, became more stiff, and were less likely to migrate away from the tumor—a measure that delayed metastasis. When they added water to dilute the tumor solution, the cells, particularly at the edges, swelled, became softer, and formed invasive tips more quickly.

As a last test, the researchers obtained a sample of a patient's breast cancer tumor and measured the size of every cell within the tumor sample. They observed a gradient similar to what they found in their labderived tumor: Cells in the tumor's core were smaller than those closer to the periphery.

"We found this doesn't just happen in a model system—it's real," Guo says. "This means we may be able to develop some treatment based on the physical picture, to target cell stiffness or size to see if that helps. If you make the cells stiffer, they are less likely to migrate, and that could potentially delay invasion."

Perhaps one day, he says, clinicians may be able to look at a tumor and, based on the size and stiffness of cells, from the inside out, be able to say with some confidence whether a **tumor** will metastasize or not.

"If there is an established size or stiffness gradient, you can know this will cause trouble," Guo says. "If there's no gradient, you can maybe safely say it's fine." [38]

Targeted treatment guides radiation directly to pancreatic tumours

Pancreatic cancer remains a leading cause of cancer-related death worldwide. Patients are usually treated with chemotherapy or radiation therapy, but these are not always effective and can have toxic side-effects due to the treatments also impacting healthy cells.

A research collaboration between <u>Osaka University</u> and <u>Heidelberg University Hospital</u> is exploring an alternative approach: targeted radionuclide therapy, in which a radioactive molecule travels through the bloodstream to the tumour to deliver radiation directly to cancer tissue (<u>J. Nucl.</u> <u>Med. 10.2967/jnumed.119.233122</u>).

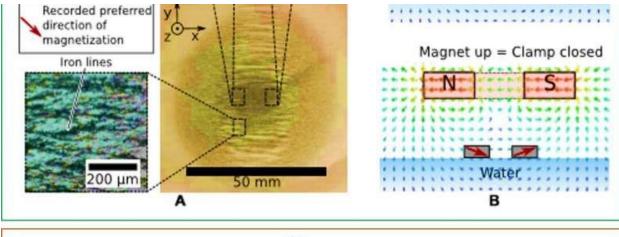
"With traditional anti-cancer therapies, there's a trade-off between efficacy against cancer cells and off-target effects in non-cancerous cells," explains lead author <u>Tadashi Watabe</u> from <u>Osaka</u> <u>University Graduate School of Medicine</u>. "We're focused on finding ways to re-balance this trade-off in radiotherapy, by increasing the dose of radiation delivered to cancer cells while keeping it localized to those cells as much as possible."

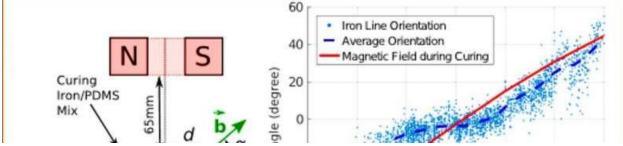
The new treatment employs the alpha particle emitting radionuclide ²²⁵Ac. Alpha particles travel a short distance in tissue, thereby limiting their off-target effect. The researchers targeted the therapy at the fibroblast activation protein (FAP), which promotes tumour growth and progression and is found almost exclusively on stroma cells surrounding pancreatic tumours and various other cancer types. The low expression of FAP in normal tissue makes it an excellent target for this approach.

The researchers used the positron emitter ⁶⁴Cu and ²²⁵Ac to label small-molecule FAP inhibitor (FAPI) probes. They employed ⁶⁴Cu-FAPI-04 to evaluate tumour uptake in mice bearing human pancreatic cancer xenografts, and ²²⁵Ac-FAPI-04 to assess radionuclide therapy of the tumours.

PET scans of mice injected with ⁶⁴Cu-FAPI-04 revealed mild uptake in tumours and relatively high uptake in the liver and intestine, with rapid clearance through the kidneys and slow washout from tumours. Immunohistochemical staining revealed abundant FAP expression in the stroma of tumour xenografts, while cellular uptake analysis demonstrated minimal accumulation in the tumour cells themselves.

For the targeted therapy using an alpha emitter, the researchers injected ²²⁵Ac-FAPI-04 (at a dose of 34 kBq) into the tail veins of six tumour-bearing mice. They observed significant reduction in tumour growth in these mice compared with control mice. Importantly, the treatment did not significantly change the animals' body weights, indicating that it likely had few toxic side effects.


"We are very encouraged by these initial results," says Watabe. "We think the approach has enormous therapeutic potential, particularly for patients with pancreatic cancer who've exhausted their other treatment options. What's especially exciting is that our method of targeting the stroma can in principle work against many other types of cancer. We think this could represent a new path forward in radiation therapy." [37]


Floating magnetic microrobots for fiber functionalization

Minimally invasive surgery is increasingly used to target small lesions and a growing demand exists for miniaturized medical tools. These include microcatheters, articulated micro-forceps or tweezers to sense and actuate during precision surgery. The accurate integration and functionalization of chemical and physical sensors still remain a major challenge. In a new study on *Science Robotics*, Antoine Barbot and colleagues at the Institute of Medical Robotics in China and the Hamlyn Centre for Robotic Surgery in London developed a novel microrobotic platform to functionalize fibers ranging from 140 to 830 micrometers (μ m). They then aligned the 2 mm x 3 mm and 200 μ m-thick microbots to floating electronic circuits on a fiber using a wet transfer process.

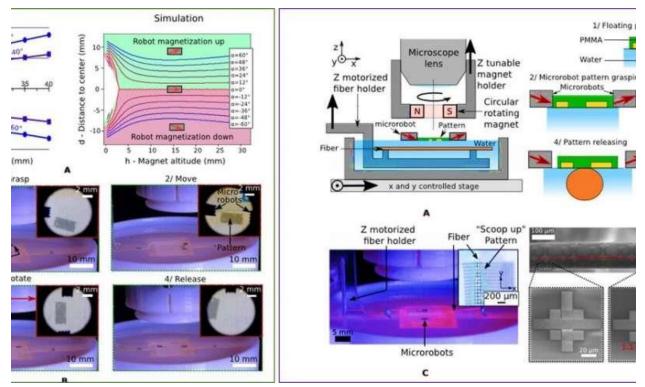
The scientists controlled the position and orientation of the microrobots at the air-water interface using a <u>**Dermanent magnet**</u>. Using the nonhomogeneous magnetic field of the magnet they controlled the precise distance between the two microrobots and facilitated maneuvers of "grab and release" with floating electronic patterns. Barbot et al. proposed a model of this control process, including interactions of the microrobots through surface tension for detailed performance validation. They demonstrated a variety of example sensor embodiments on a 200 μ m diameter fiber and 3-D devices.

The clinical emphasis on improved medical surveillance and diagnosis has steered the future of surgery toward <u>precision intervention</u>. The recent introduction of robotic tools on fibers to <u>form</u> <u>fiberbots</u> has allowed researchers to combine imaging, sensing and micromanipulation within a single fiber. Sophisticated microgrippers can be directly engineered on the tip of a fiber <u>USing two-</u><u>photon polymerization</u>. Researchers can establish microactuation using hydraulic links that leverage microcapillary function to use the device for targeted drug delivery and focused energy such as laser ablation. Optical fibers are a versatile substrate to develop flexible microtools. Their surfaces provide an ideal location to include multiple sensors along its length.

TOP: Floating microrobots with different preferred magnetization directions: Fabrication and control principles. (A) Fabrication of microrobots. Different magnetization directions were programmed in the material with a ring magnet. (B) Clamping mechanism used in this study. Microrobots were moved together or apart depending on the vertical position of the magnet, allowing effective clamping of the pattern to be transferred, followed by rotational and orientation control. BOTTOM: Iron line orientation inside the PDMS matrix. (A) Micro-CT reconstruction of the polymer/iron mix. The iron lines aligned with the magnetic field direction during the polymer curing. (B) Iron line direction versus position. The direction of the iron lines followed the curing magnetic field direction. Credit: Science Robotics, doi: 10.1126/scirobotics.aax8336

However, the direct patterning of microelectronics onto small, curved objects used for clinical applications is challenging, since existing microfabrication processes are primarily tailored to flat substrates. Researchers have hitherto used two main transfer methods; including <u>dry transfer</u> and the <u>wet transfer</u>

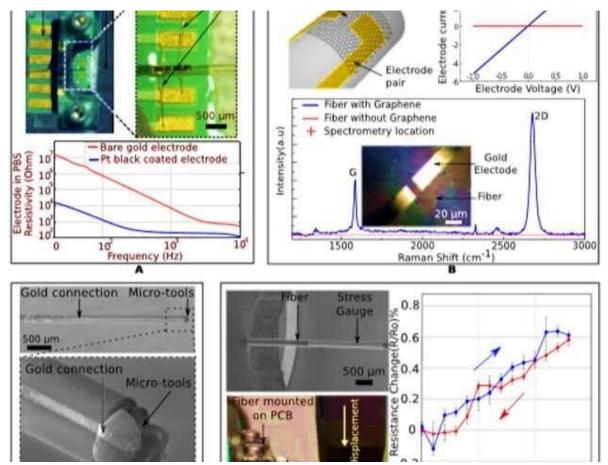
technique. Dry transfer typically offers better cleanliness and higher precision compared to wet transfer due to the absence of wet etchant and fluid perturbation. Wet transfer techniques likely to occur at surgical interventions are limited by difficulties of accurately positioning and scooping floating devices. This is due to a lack of precision tools or robotic platforms for a precise practical approach. Microrobot manipulators can therefore address some of the major issues faced by manual wet transfer methods.


In the present work, Barbot et al. proposed the use of mobile microrobots at the air/water interface to precisely control pattern movement during wet transfer. To facilitate simple and precise control, the scientists proposed to develop a pair of microrobots to grasp floating patterns. They achieved this using a magnetic field generated with a single permanent magnet coupled to tune the magnetization direction of the robot's constituent material. Barbot et al. used the interaction between the microrobots and the magnetic field to position the <u>microrobot</u> pair at two different sites of the air/water interface and form a gripper.

Microrobot-based pattern grasping and manipulation. Credit: Science Robotics, doi: 10.1126/scirobotics.aax8336

The researchers controlled the distance between the two microrobots by controlling the distance between the device and the magnet. They constructed the devices using an elastomer

and <u>polydomethylsiloxane (PDMS)</u> mixed with iron powder. For a given experiment, Barbot et al. magnetized each microrobot to react similarly to a given magnetic field. The scientists used a 200 μ m layer of the PDMS and iron mixture under the influence of a weak magnetic field to assemble iron lines into the PDMS matrix. They thermally cured the PDMS to keep the iron line structures in place and evaluated the orientation of the product using X-ray microtomography.


The scientists developed pairs of microrobots with custom magnetization directions using different parts of the iron/PDMS layers to form rectangular robots measuring 2mm by 3mm at 200 μ m thickness. They added small tooth-like structures to the microrobots to limit the movement of the pattern during grasping processes. The team observed the positions of different microrobot pairs and their respective response to different vertical positions of the magnet to obtain two motion patterns for the microrobot pairs, depending on the angle (α) between their magnetization and the horizontal plane.

LEFT: Magnetic control of the microrobot pair. (A) Different equilibrium positions of the microrobot pair as influenced by the vertical position of the magnet. Left: Experimental results. Right: Simulation results acquired using finite element modeling of the magnetic field. (B) Optical images showing the microrobot pair manipulating a floating pattern. RIGHT: Fiber patterning using microrobot-assisted wet transfer. (A) Side view of the transfer pool with the microrobot pair holding a pattern to be transferred. (B) Fabrication workflow for patterning Au microdevices on the fiber using the proposed microrobot-assisted wet transfer. (C) Floating pattern (grid structures) transferred onto a 200-µm-diameter optical fiber as viewed from the microscope. (D) Scanning electron microscopy (SEM) (Tescan SEM/FIB LYRA3 XM) images of two successive transfer position markers for assessing the achievable transfer accuracy of the proposed system. Credit: Science Robotics, doi: 10.1126/scirobotics.aax8336

Barbot et al. designed the microrobots and allowed the height of the magnet to control the distance between the two robots and regulate opening and closing of microrobot grippers. The scientists compared the experimental results with a simulation to understand the interaction between the microrobots. They observed four degrees of freedom (DOFs) to control the microrobot pairs. These included grasping (one DOF), positioning (two DOFs) and orientations (one DOF) during wet transfer. The scientists manipulated the floating pattern using these four controllable inputs. They characterized the magnetization property of the iron/PDMS mixture as a general guide for consistent microrobot designs.

During the experiments, the team first lowered the magnet to move the microrobots apart and position them around the target pattern. They then raised the magnet to close the gap between the microrobots and grasp the pattern for subsequent alignment to the target fiber substrate. The grasping force of the microrobots did not cause any deformation of the pattern. Finally, they lowered the magnet again for the gripper to release the pattern and move the robot pair away. Using the setup, the researchers performed wet transfer of the floating pattern onto an optical fiber. During the six-step, microrobot fabrication process, the scientists transferred arbitrary gold (Au) patterns such as electrodes or strain gauges onto the fiber. To understand the precision of pattern transfer, they measured the shift between two complementary patterns deposited on the fiber. Barbot et al. observed challenges to long-term pattern adhesion on curved contact locations of the fiber.

Example applications of microrobot-assisted wet transfer for fiber functionalization. (A) Top: Interface between fiber-supported electrodes and a dedicated PCB. Bottom: Impedance characterization of a two-electrode device with and without electrodeposition of Pt black. (B) Fiber-based 2D graphene devices. Sequential wet transfers were made to successively pattern the Au track and then the graphene film. The presence of graphene was assessed with Raman spectrometry and a plasma destructive test. (C) SEM picture of a functionalized microtool 3D printed to the tip of a fiber. The Au track was aligned and transferred onto the 3D structure with good conformity. (D) Fiber-based strain gauge designed for measuring fiber deformation based on its resistivity change. SEM picture of the device, picture of the experience, and resulting signal. Credit: Science Robotics, doi: 10.1126/scirobotics.aax8336

The team optimized the proposed microrobot-assisted wet transfer method to engineer a variety of devices. They formed electronic devices by transferring fibers with patterns onto a printed circuit board and realized electrical connections using 25 µm Au wires. They formed such electrochemical sensors for <u>Potential applications in microcatheters</u> and other implantable devices. The scientists also demonstrated the fabrication technique using several layers of different materials to form a two-terminal graphene device on a 200 µm diameter glass fiber. They chose graphene due to the unique electrode properties of the material. They used the method to integrate active electromechanical devices onto 3-D substrates, followed by patterning on complex 3-D structures. For example, they transferred an Au

pattern on a 170 µm glass capillary fiber tip microtool (engineered using two-photon

lithography). The work will pave the way to engineer complex electromechanical devices at the microscale using hybrid microfabrication techniques with broad applications during precise clinical biomarker detection and precision surgery.

In this way, Antoine Barbot and a team of interdisciplinary researchers presented a practical solution to wet transfer thin films and 2-D crystals with micrometer-level precision onto 3-D substrates. They developed a floating magnetic microrobot capable of storing a preferred magnetization direction to manipulate them under a permanent magnetic field. The research team fine-tuned the robotic microgripper by adjusting the magnet's position to grasp, align and release floating 2-D patterns.

The proposed setup is simple, reproducible and reliable. The new fabrication technique will open new applications in interventional surgery with electrochemical sensors, microactuators and complex 2-D electronic devices. The future focus for Barbot et al. will include engineering hierarchical devices based on multilayered <u>Van der Waals 2-D crystals</u> to integrate active components onto fiber tips and ultimately form actuating and sensing capability-driven <u>fiberbots</u> at the nanoscale or microscale. [36]

First genome of spotted lanternfly built from a single insect

Agricultural Research Service (ARS) scientists, in cooperation with Pacific Biosciences and Penn State University, have published the first genome of the invasive Spotted Lanternfly (SLF) in the journal *Gigascience* and they did it from a single caught-in-the-wild specimen.

Not only is it the first published **<u>Genome</u>** for this pest, but no closely <u>**related Species**</u> has had its genome sequenced, making the data even more important, according to entomologist Scott M. Geib with the ARS Daniel K Inouye U.S. Pacific Basin Agricultural Research Center.

SLF, a native of China, Bangladesh and Vietnam, was first found in Pennsylvania in 2014 and has now spread to Virginia, Maryland and New York. This invasive pest has a taste for almonds, apples, apricots, grapes, peaches, blueberries and hops as well as hardwoods such as oak, walnut, and poplar. Various estimates put the potential economic damage in the billions of dollars, if the SLF becomes widely established in the United States.

"Having the genome for this pest opens the door to a better understanding of its biology and behavior, and makes coming up with potential control methods much more likely to happen, such as developing a lure for a trap through understanding the insect's olfactory genes, or exploring avenues such as gene editing or RNAi," said Geib.

While having the SLF genome is critical for the management and control of this invasive pest, the approach taken to obtain the **<u>Genetic data</u>** is an achievement of remarkable note as well. For the first time, all of the DNA required to generate a whole genome sequence was taken from a single insect picked from a tree in the wild in Reading, Pennsylvania, across the street from the Reading Pagoda on Mt. Penn.

One hurdle for deciphering this species' genome is its relatively large genome size, at about 2.2 billion base pairs. Typically, with previous sequencing systems, many sequencing runs would have been needed to do the complete job, with each run using up the available DNA for the organism being sequenced.

So often to have sufficient DNA for a <u>COMPLETE GENOME SEQUENCE</u>, many organisms would need to be pooled, introducing more opportunities for errors to be generated. To avoid such potential for errors, the subjects—especially insects—often have to be raised in colonies and inbred.

"In cooperation with Pacific Biosciences and using their new sequencing platform—the PacBio Sequel II that produces 10 times the data from a single sequencing run, we were able to generate sufficient coverage from just a single specimen. This allows for a very fast turn-around of data and assemblies as well as lowers cost, in this case under \$2,000 in consumable supplies, not including the purchase price of the sequencing instrument of course," explained Geib.

For genome completeness, and since there aren't many related genomes to compare that of the SLF to, the team checked a set of "core genes" that should be present exactly one time in all insects and verified how many of these were found in this genome project. In this case, they found about 97 percent of these single copy core genes, with a very low rate of duplication.

"Sequencing such a large insect genome quickly and showing there is no need to pull the insect into a colony raises the feasibility that we can complete the Ag100Pest Project," Geib said. The ARS Ag100Pest initiative is focused on deciphering the genomes of 100 insect species that are most destructive to crops and livestock and that are projected to have profound bioeconomic impacts to agriculture and the environment. "Now, with this system, doing 100 or even 1,000 genomes is not unrealistic," he added.

The ability to get a complete genome from a small amount of DNA also makes it practical to consider sequencing the genomes of physically tiny insects without having to catch or raise a large number of any one species. That expands the list of insects that may be genetically sequenced. [35]

Mathematical modelling vital to tackling disease outbreaks

Predicting and controlling disease outbreaks would be easier and more reliable with the wider application of mathematical modelling, according to a new study.

The study was conducted by researchers at the University of Waterloo, University of Maryland and Yale's School of Public Health.

In addition to the main findings, the study also concluded that <u>modelling</u> involving the information from multiple medical and public <u>health</u> sources, such as microbiologists, immunologists and epidemiologist, would be most informative for public health planners in contemplating intervention strategies.

"Mathematical models of disease spread can be hugely beneficial in understanding and controlling infectious diseases," said Chris Bauch, a professor in Waterloo's Department of Applied Mathematics. "There are certain challenges that have to be overcome when attempting to use mathematical modelling, for example, if you want to impact policy, you have to involve the policymakers at every step in the process."

"Good data is also needed to carry out the objectives of modelling and to best control **infectious diseases**."

Bauch conducted the research with Meagan Fitzpatrick, a professor at the University of Maryland, and Jeffrey Townsend and Alison Galvani, both professors at Yale's School of Public Health.

The researchers also explained how mathematical models could help in understanding how ideas, opinions, and beliefs about vaccines spread through social networks allowing for the formulation of interventions that might convey the facts to the population and better support vaccination choices.

"It is very important for researchers who are constructing mathematical models to collaborate with <u>health authorities</u> who are informing and helping to manage the outbreak response," said Bauch of Waterloo's Faculty of Mathematics. "Firstly, it will be easier to get the required data; secondly, it will ensure the model is geared towards questions those on the frontline need answers to, and finally, it will help foster trust in the modelling process.

"Another area in which <u>mathematical modelling</u> can prove useful is in combating vaccine hesitancy. As the access to vaccines become less of a problem worldwide, vaccine hesitancy will perhaps become the most important barrier to ensuring high vaccine uptake."

The study, titled Modelling microbial infection to address global health challenges, authored by Fitzpatrick, Bauch, Townsend, and Galvani, was published recently in the journal *Nature Microbiology*. [34]

A new approach to tackle superbugs

Scientists have uncovered a novel antibiotic-free approach that could help prevent and treat one of the most widespread bacterial pathogens, using nanocapsules made of natural ingredients.

Helicobacter pylori (*H. pylori*) is a bacterial pathogen carried by 4.4 billion people worldwide, with the highest prevalence in Africa, Latin America and the Caribbean.

Although the majority of infections show no symptoms, if left untreated the pathogen can cause chronic inflammation of the stomach lining, ulcers and is associated with an increased risk of gastric cancer.

Bacteria posting threats to human health

In 2017, the World Health Organisation included H. pylori on its list of antibiotic-resistant

"priority <u>**pathogens**</u>"—a catalog of bacteria that pose the greatest threat to <u>human health</u> and that urgently need new treatments.

Current treatments involve multi-target therapy with a combination of antibiotics, but this has promoted the emergence of resistant strains.

Now, UK and German scientists have uncovered a novel antibiotic-free approach using only food- and pharmaceutical-grade ingredients, which are non-toxic and safe for consumption, to be used as a supplement to complement antibiotic current therapies.

The formulation is delivered through billions of bundled together nanocapsules, which are smaller than a human blood cell, and prevents the bacteria from attaching to and infecting the stomach cells.

Antimicrobial resistance

The team, which includes researchers from the universities of Leeds, Münster and Erlangen, hope the nanocapsules could be used as a preventative measure, as well as helping eradicate *H. pylori* and reduce antibiotic resistant strains.

Study co-author Professor Francisco Goycoolea from the School of Food Science and Nutrition at Leeds said: "Antimicrobial resistance is one of the biggest challenges facing the world and it is predicted to cause more deaths than cancer by the year 2050 unless urgent action is taken.

"*Helicobacter pylori* is a globally-spread pathogen. It is estimated that up to 70% of people host this pathogen worldwide. The bacteria hide under the gastric mucus layer where antibiotics do not penetrate effectively. This often leads to recurrent infections and gives rise to resistant strains.

"New integral approaches are needed to tackle **antimicrobial resistance** and research into alternatives to antibiotics is vital. This novel formulation, consisting of small capsules made of **<u>natural</u> <u>ingredients</u>**, could offer a new means to deter a globally-spread 'superbug' pathogen."

Novel antibiotic-free approach

The research, published in the journal ACS Applied Bio Materials, was carried out in vitro—using bacteria and stomach cells outside a human body.

The nanocapsules are loaded with curcumin—a natural compound found in turmeric which has well-documented anti-inflammatory and anti-tumor properties.

The capsules are coated with lysozyme, an enzyme that helps prevent bacterial infections, and a very low concentration of dextran sulfate, a water-soluble polysaccharide that binds receptors in the bacteria and in the mucosal layer that coats the stomach.

The nanopsules are bundled together in the required dose and the formulation prevents the bacteria from adhering to the stomach cells. The team has filed a patent based on this formulation.

Study co-author Professor Andreas Hensel from the Institute for Pharmaceutical Biology and Phytochemistry of University of Münster said: "Standard antibiotics used in today's clinical practice are quite broad acting compounds, disturbing cell wall architecture, protein formation of membrane integrity.

"A new generation of antibacterials might be based on more specific molecular targets of the bacteria, acting probably not as broad as the older compounds, but therefore more precisely against specific virulence factors of specific **bacteria**.

"The research published in ACS Applied Bio Materials might pinpoint a new way towards controlled drug targeting against *H. pylori* and its specific adhesion and virulence factors." [33]

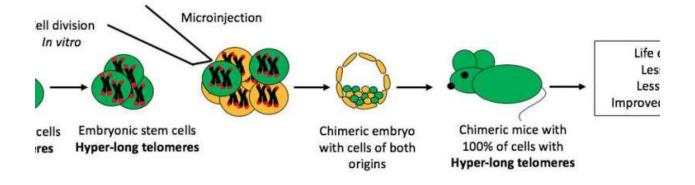
Researchers obtain the first mice born with hyper-long telomeres

A chance finding 10 years ago led to the creation by researchers of the Spanish National Cancer Research Centre (CNIO) of the first mice born with much longer telomeres than normal in their species. Telomeres shorten throughout life, so older organisms have shorter telomeres. Given this relationship between telomeres and aging, the scientists launched a study generating mice in which 100 percent of their cells had hyper-long telomeres. The findings are published in *Nature Communications* and show only positive consequences: The animals with hyper-long telomeres live longer and in better health, free from cancer and obesity. This marks the first time that longevity has been significantly increased without any genetic modification.

"This finding supports the idea that, when it comes to determining longevity, genes are not the only thing to consider," says Maria Blasco, head of the CNIO Telomeres and Telomerase Group and intellectual author of the paper. "There is margin for extending life without altering the genes."

Telomeres form the ends of chromosomes in the nucleus of each cell in the body. Their function is to protect the integrity of the genetic information in DNA. Whenever the cells divide the telomeres, they are

slightly shortened, so one of the main characteristics of aging is the accumulation of **ShOrter**


telomeres in cells. "Telomere shortening is considered to be one of the primary causes of aging, given that short telomeres cause aging of the organism and reduce longevity," the authors write in a paper published in *Nature Communications*.

The CNIO Telomeres and Telomerase Group has already shown in diverse studies that preventing the shortening of telomeres through the activation of the **telomere**-lengthening enzyme telomerase extends longevity without any secondary effects.

However, until now, all interventions on the length of telomeres have been based on altering the expression of genes through one technique or another. In fact, some years ago, the CNIO group developed a gene therapy that fosters the synthesis of telomerase, obtaining <u>mice</u> that live 24 percent longer without developing cancer of other illnesses associated with age.

13 percent longer, slimmer and free from cancer

The most significant result is that there has been no genetic alteration in the mice born with hyper-long telomeres. In 2009, researchers worked with so-called IPS cells—cells from an adult organism that have pluripotency, or the capacity to generate a full organism—and they observed that after a certain number of divisions in culture plates, these cells acquired telomeres twice as long as normal. Intrigued, they confirmed that the same occurred in normal pluripotent embryonic cells as they are kept in cultivation after being removed from the blastocyst.

Scheme representing the telomeric elongation process associated with the cell division of pluripotent cells and the generation of animals with hyper-long telomeres. Mouse embryonic stem cells are obtained and cultured for a controlled number of cell divisions to allow telomeric elongation in the absence of any genetic manipulation. Upon telomere elongation, pluripotent cells with hyper-long telomeres are introduced into a recipient embryo with normal cells, thus generating a chimera with cells of different origins (normal and hyper-long telomere embryonic stem cells). These chimeric embryos are re-implanted in a mouse for the generation of mice in which 100% of their cells are derived from embryonic cells with hyper-long telomeres. Credit: CNIO

On researching the phenomenon, Blasco's team found that during the pluripotency stage, there are certain biochemical marks (epigenetic marks) on the telomeric chromatin that facilitate their lengthening by the telomerase enzyme. For this reason, the telomeres of pluripotency cells in cultivation were extended to twice the normal length.

The question was whether the embryonic cells with hyper-long telomeres could produce live mice. Some years ago, the group demonstrated that they could in research also published in *Nature Communications*. However, these first animals were chimerical—in other words, only between 30 percent and 70 percent of their cells came from embryonic cells with hyper-long telomeres. Their good health may be attributed to the proper functioning of the rest of the cells with normal telomeres.

In the study that has now been published, the authors induced hyper-long telomeres in 100 percent of mice cells, so this entire peculiar feature is attributable to this phenomenon. Indeed, there are many peculiarities.

"Unprecedented results"

"These mice have less cancer and live longer," the authors write. "An important fact is that they are slimmer than normal because they accumulate less fat. They also show lower metabolic aging, with lower levels of

cholesterol and LDL (bad cholesterol), and an increased tolerance to insulin and glucose. Damage to their DNA as they age is less, and their mitochondria, another Achilles heel of aging, function better."

In conclusion, "these unprecedented results show that longer than normal telomeres in a given species are not harmful but quite the contrary: They have beneficial effects, such as increased longevity, delayed metabolic age and less cancer."

More specifically, the average longevity of mice with hyper-long telomeres is 13 percent higher than usual. The metabolic alterations observed are also relevant, as this is the first time that a clear relationship between the length of telomeres and metabolism has been found. The genetic route of insulin and glucose metabolism is identified as one of the most important in relation to aging.

However, what is most striking for researchers is that this finding paves the way for extending longevity without changing the genes of the organism. Biochemical changes in the telomeric chromatin that facilitates the lengthening of telomeres in the pluripotency phase is epigenetic, or in other words, it acts as a chemical annotation that modifies the work of genes, but does not alter their essence.

"Extending the time during which embryonic <u>Cells</u> remain in pluripotency to generate mice with longer telomeres, protected from cancer and obesity, and with increased longevity, has been enough to make mice have longer telomeres and live longer," the authors write. "We present a new model of mice in which aging has been delayed without any genetic manipulation." [32]

Bio-circuitry mimics synapses and neurons in a step toward sensory computing

Researchers at the Department of Energy's Oak Ridge National Laboratory, the University of Tennessee and Texas A&M University demonstrated bio-inspired devices that accelerate routes to neuromorphic, or brainlike, computing.

Results published in *Nature Communications* report the first example of a lipid-based "memcapacitor," a charge storage component with memory that processes information much like synapses do in the brain. Their discovery could support the emergence of computing networks modeled on biology for a sensory approach to machine learning.

"Our goal is to develop materials and computing elements that work like biological synapses and neurons—

with vast interconnectivity and flexibility—to enable <u>**autonomous systems**</u> that operate differently than current computing devices and offer new functionality and learning capabilities," said Joseph Najem, a recent postdoctoral researcher at ORNL's Center for Nanophase Materials Sciences, a DOE Office of Science User Facility, and current assistant professor of mechanical engineering at Penn State.

The novel approach uses soft materials to mimic biomembranes and simulate the way nerve cells communicate with one another.

The team designed an **<u>artificial cell membrane</u>**, formed at the interface of two lipid-coated water droplets in oil, to explore the material's dynamic, electrophysiological properties. At applied voltages,

charges build up on both sides of the membrane as stored energy, analogous to the way capacitors work in traditional electric circuits.

But unlike regular capacitors, the memcapacitor can "remember" a previously applied voltage and literally—shape how information is processed. The synthetic membranes change surface area and thickness depending on electrical activity. These shapeshifting membranes could be tuned as adaptive filters for specific biophysical and biochemical signals.

"The novel functionality opens avenues for nondigital signal processing and machine learning modeled on nature," said ORNL's Pat Collier, a CNMS staff research scientist.

A distinct feature of all digital computers is the separation of processing and memory. Information is transferred back and forth from the hard drive and the central processor, creating an inherent bottleneck in the architecture no matter how small or fast the hardware can be.

Neuromorphic computing, modeled on the <u>**Nervous system**</u>, employs architectures that are fundamentally different in that memory and signal processing are co-located in memory elements— memristors, memcapacitors and meminductors.

These "memelements" make up the synaptic hardware of systems that mimic natural information processing, learning and memory.

Systems designed with memelements offer advantages in scalability and **low power**

CONSUMPTION, but the real goal is to carve out an alternative path to artificial intelligence, said Collier.

Tapping into biology could enable new computing possibilities, especially in the area of "edge computing," such as wearable and embedded technologies that are not connected to a cloud but instead make on-thefly decisions based on sensory input and past experience.

Biological sensing has evolved over billions of years into a highly sensitive system with receptors in cell membranes that are able to pick out a single molecule of a specific odor or taste. "This is not something we can match digitally," Collier said.

Digital computation is built around digital information, the binary language of ones and zeros coursing through electronic circuits. It can emulate the human brain, but its solid-state components do not compute sensory data the way a brain does.

"The brain computes sensory information pushed through synapses in a <u>**Neural network**</u> that is reconfigurable and shaped by learning," said Collier. "Incorporating biology—using biomembranes that sense bioelectrochemical information—is key to developing the functionality of neuromorphic computing."

While numerous solid-state versions of memelements have been demonstrated, the team's biomimetic elements represent new opportunities for potential "spiking" neural networks that can compute natural data in natural ways.

Spiking neural networks are intended to simulate the way neurons spike with electrical potential and, if the signal is strong enough, pass it on to their neighbors through synapses, carving out learning pathways that are pruned over time for efficiency.

A bio-inspired version with analog data processing is a distant aim. Current early-stage research focuses on developing the components of bio-circuitry.

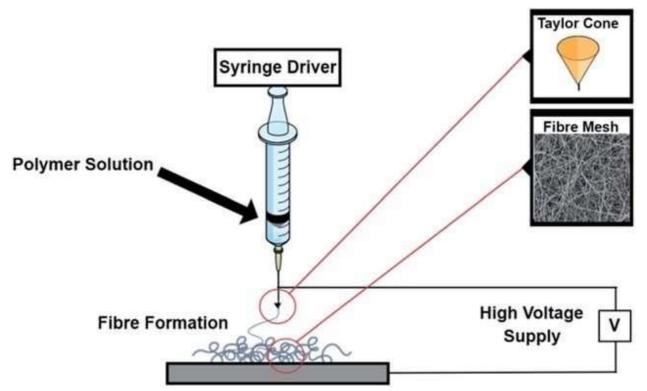
"We started with the basics, a memristor that can weigh information via conductance to determine if a spike is strong enough to be broadcast through a network of synapses connecting neurons," said Collier. "Our memcapacitor goes further in that it can actually store energy as an electric charge in the membrane, enabling the complex 'integrate and fire' activity of neurons needed to achieve dense networks capable of brain-like computation."

The team's next steps are to explore new biomaterials and study simple networks to achieve more complex brain-like functionalities with memelements.

The article, "Dynamical nonlinear memory capacitance in biomimetic membranes," is published in *Nature Communications*. [31]

Nanomesh drug delivery provides hope against global antibiotic resistance

The fight against global antibiotic resistance has taken a major step forward with scientists discovering a concept for fabricating nanomeshes as an effective drug delivery system for antibiotics.


Health experts are increasingly concerned about the rise in medication resistant bacteria. Now, Flinders University researchers and collaboraters in Japan have produced a nanomesh that is capable of delivering drug treatments.

In studying the effectiveness of the nanomesh, two <u>antibiotics</u>, Colistin and Vancomycin, were added together with <u>gold nanoparticles</u> to the <u>mesh</u>, before they were tested over a 14 day period by PHD student Melanie Fuller.

Flinders Institute for NanoScience and Technology Associate Professor Ingo Koeper says 20cm by 15cm pieces of mesh were produced which contain fibers 200 nm in diameter. These meshes are produced using a process called electrospinning with parameters being optimized to ensure the mesh material was consistent.

"In order to deliver the antibiotics to a specific area, the antibiotics were embedded into the mesh produced using a technique called electrospinning, which has gained considerable interest in the biomedical community as it offers promise in many applications including wound management, drug delivery and antibiotic coatings," says Assoc Prof. Koeper

"A <u>high VOltage</u> is then applied between the needle connected to the syringe, and the collector plate which causes the polymer solution to form a cone as it leaves the syringe, at which point the electrostatic forces release a jet of liquid."

Process which achieved adding two antibiotics, Colistin and Vancomycin, were with gold nanoparticles to the mesh, before they were tested over a 14 day period. Credit: Flinders University

"Small charged <u>**NanOparticles**</u> altered the release of the antibiotics from the nanomesh. The addition of gold nanoparticles likely neutralized charge, causing the antibiotic to migrate toward the center of the fiber, prolonging its release."

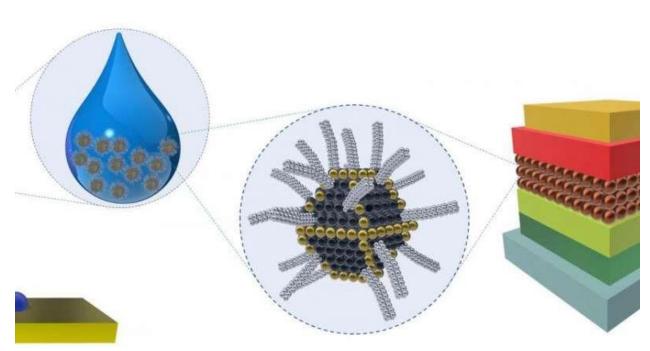
The results also suggest dosages could be reduced when compared to traditional drugs which can also diminish potential side effects and complications.

"Although the dosage is reduced compared to an oral dosage, the concentration of antibiotics delivered to the infection site can still be higher, ensuring the bacteria cannot survive which will reduce instances of resistance."

"This research, as a proof of concept, suggests an opportunity for fabricating nanomeshes which contain gold nanoparticles as a **drug** treatment for antibiotics."

Working with Dr. Harriet Whiley, a Flinders environmental health scientists, the researchers studied how the release of the drugs affected the growth of E. Coli. The in vitro study confirmed Colistin with negatively charged gold nanoparticles produced the most efficient nanomesh, significantly affecting bacterial growth.

"Further investigation is needed to determine if other small charged particles affect the release of drugs and how it affects the release over time. As it is a pharmaceutical application, the stability of the mesh under different storage conditions as well as the toxicological properties also need to be evaluated." [30]


Quantum dots technology to revolutionize healthcare and sensing technology

Researchers of the Optoelectronics and Measurement Techniques Unit (OPEM) at the University of Oulu have invented a new method of producing ultra-sensitive hyper-spectral photodetectors. At the heart of the discovery are colloidal quantum dots, developed together with the researchers at the University of Toronto, Canada. Quantum dots are tiny particles of 15-150 atoms of semiconducting material that have extraordinary optical and electrical properties due to quantum mechanics phenomena. By controlling the size of the dots, the researchers are able to finetune how they react to different light colors (light wavelengths), especially those invisible for the human eye, namely the infrared spectrum.

Their paper, Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors, was published recently in *ACS Nano*.

"Naturally, it is very rewarding that our hard work has been recognized by the international scientific community but at the same time, this report helps us to realize that there is a long journey ahead in incoming years. This publication is especially satisfying because it is the result of collaboration with world-class experts at the University of Toronto, Canada. This international collaboration where we combined the expertise of Toronto's researchers in synthesizing **QUANTUM dots** and our expertise in printed intelligence resulted in truly unique devices with astonishing performance," says docent Rafal Sliz, a leading researcher in this project.

Mastered in the OPEM unit, inkjet printing technology makes possible the creation of optoelectronic devices by designing functional inks that are printed on various surfaces, for instance, flexible substrates, clothing or human skin. Inkjet printing combined with colloidal quantum dots allowed the creation of photodetectors of impresive detectivity characteristics. The developed technology is a milestone in the creation of a new type of sub-micron-thick, flexible, and inexpensive IR sensing devices, the next generation of solar cells and other novel photonic systems.

Credit: University of Oulu

"Oulus' engineers and scientists' strong expertise in optoelectronics resulted in many successful Oulu-based companies like Oura, Specim, Focalspec, Spectral Engines, and many more. New optoelectronic technologies, materials, and methods developed by our researchers will help Oulu and Finland to stay at the cutting edge of innovation," says professor Tapio Fabritius, a leader of the OPEM.

The figure briefly introduces the concept of the study conducted by the researchers of the University of Oulu and the University of Toronto. The solution consisting of <u>Colloidal quantum dots</u> is inkjetprinted, creating active photosensitive layer of the photodetector. [29]

Quantum dots that light up TVs could be used for brain research

While many people love colorful photos of landscapes, flowers or rainbows, some biomedical researchers treasure vivid images on a much smaller scale—as tiny as one-thousandth the width of a human hair.

To study the micro world and help advance <u>medical knowledge</u> and treatments, these scientists use fluorescent nano-sized particles.

Quantum dots are one type of nanoparticle, more commonly known for their use in TV screens. They're super tiny crystals that can transport electrons. When UV light hits these semiconducting particles, they can emit light of various colors.

That fluorescence allows scientists to use them to study hidden or otherwise cryptic parts of <u>Cells</u>, organs and other structures.

I'm part of a group of nanotechnology and neuroscience researchers at the University of Washington investigating how quantum dots behave in the brain.

Common brain diseases are estimated to cost the U.S. <u>nearly US\$800 billion</u> annually. These diseases—including Alzheimer's disease and neurodevelopmental disorders—are hard to diagnose or treat.

Nanoscale tools, such as quantum dots, that can capture the nuance in complicated cell activities hold promise as brain-imaging tools or drug delivery carriers for the brain. But because there are many reasons to be concerned about their use in medicine, mainly related to health and safety, it's important to figure out more about how they work in biological systems.

Quantum dots as next-generation dyes

Researchers first <u>discovered quantum dots in the 1980s</u>. These tiny particles are different from other crystals in that they can produce different colors depending on their size. They are so small that they are sometimes called zero-dimensional or artificial atoms.

The most commonly known use of quantum dots nowadays may be TV screens. Samsung launched their QLED TVs in 2015, and a few other companies followed not long after. But scientists have been eyeing quantum dots for almost a decade. Because of their unique optical properties—they can produce thousands of bright, sharp fluorescent colors—scientists started using them as optical sensors or imaging probes, particularly in medical research.

Scientists have long used various dyes to tag cells, organs and other tissues to view the inner workings of the body, whether that be for diagnosis or for fundamental research.

The most common dyes have some significant problems. For one, their color often cannot survive very long in cells or tissues. They may fade in a matter of seconds or minutes. For some types of research, such as tracking cell behaviors or delivering drugs in the body, these organic dyes simply do not last long enough.

Quantum dots would solve those problems. They are very bright and fade very slowly. Their color <u>can still stand out after a month</u>. Moreover, they are too small to physically affect the movement of cells or molecules.

Tubes of quantum dots emit bright, colorful light. Credit: rebusy/Shutterstock.com

Those properties make quantum dots popular in medical research. Nowadays quantum dots are mainly used for high resolution 3-D imaging of cells or molecules, or real-time tracking probes inside or outside of animal bodies that can last for an extended period.

But their use is still restricted to animal research, because scientists are <u>Concerned about their</u> <u>use in human beings</u>. Quantum dots commonly contain cadmium, a heavy metal that is highly poisonous and carcinogenic. They may <u>leak the toxic metal</u> or form an unstable aggregate, causing cell death and <u>inflammation</u>. Some organs may tolerate a small amount of this, but the brain cannot withstand such injury.

How quantum dots behave in the brain

My colleagues and I believe an important first step toward wider use of quantum dots in medicine is understanding how they behave in biological environments. That could help scientists design quantum dots suitable for medical research and diagnostics: When they're injected into the body, they need to stay small particles, be not very toxic and able to target specific types of cells.

We looked at the <u>Stability, toxicity and cellular interactions of quantum dots</u> in the developing brains of rats. We wrapped the tiny quantum dots in different chemical "coats." Scientists believe these coats, with their various chemical properties, control the way quantum dots interact with the biological environment that surrounds them. Then we evaluated how quantum dots performed in three commonly used brain-related models: cell cultures, rat brain slices and individual live rats. We found that different chemical coats give quantum dots different behaviors. Quantum dots with a polymer coat of polyethylene glycol (PEG) were the most promising. They are more stable and less toxic in the rat brain, and at a certain dose don't kill cells. It turns out that PEG-coated quantum dots activate a biological pathway that ramps up the production of a molecule that detoxifies metal. It's a protective mechanism embedded in the cells that happens to ward off injury by quantum dots.

Quantum dots are also "eaten" by <u>Microglia</u>, the brain's inner immune cells. These cells regulate inflammation in the brain and are involved in multiple brain disorders. Quantum dots are then transported to the microglia's lysosomes, the cell's garbage cans, for degradation.

But we also discovered that the behaviors of quantum dots vary slightly between cell cultures, brain slices and living animals. The simplified models may demonstrate how a part of the brain responds, but they are not a substitute for the entire organ.

For example, cell cultures contain brain cells but lack the connected cellular networks that tissues have. Brain slices have more structure than cell cultures, but they also lack the full organ's blood-brain barrier its "Great Wall" that prevents foreign objects from entering.

What's the future for quantum dots?

Our results offer a warning: Nanomedicine research in the brain makes no sense without carefully considering the organ's complexity.

That said, we think our findings can help researchers design quantum dots that are more suitable for use in living brains. For example, our research shows that PEG-coated quantum dots remain stable and relatively nontoxic in living brain tissue while having great imaging performance. We imagine they could be used to

track real-time movements of viruses or cells in the brain.

In the future, along with MRI or CT scans, quantum dots may become vital imaging tools. They might also be used as traceable carriers that deliver drugs to specific cells. Ultimately, though, for quantum dots to realize their biomedical potential beyond research, scientists must address health and safety concerns.

Although there's a long way to go, my colleagues and I hope the future for **<u>QUANTUM dots</u>** may be as bright and colorful as the artificial atoms themselves. [28]

Quantum dots show promise for Parkinson's treatment

Nanotechnology may provide an effective treatment for Parkinson's disease, a team of researchers suggests.

The scientists, led by Donghoon Kim from Johns Hopkins University School of Medicine in the US, report that the deployment of graphene quantum dots (GQDs) into brain tissue severely disrupts the aggregation of a protein called alpha-synuclein, thought to be a primary driver of the loss of neurons and synapses that characterise the disease.

GQDs are made from graphene, which comprises carbon atoms arranged in a hexagonal lattice. They can contain one or many layers, and range in size between 10 and 70 nanometres.

The material is a <u>hot focus</u> for research, because it is non-toxic in biological systems, stable in environmental systems, and exhibits predictable luminescence, making it attractive in areas as distant as medicine and electronics.

<u>In a letter</u> published in the journal *Nature Nanotechnology*, Kim and his colleagues report the results of introducing GQDs into the midbrains of test animals with Parkinson's.

This is the region in which alpha-synuclein congregates, clumping into structures called fibrils. The fibrils form into lesions <u>known as Lewy bodies</u>, which are characteristic of Parkinson's and a similar condition known as dementia with Lewy bodies (DLB).

The researchers report that the introduction of GQDs in test subjects inhibited the fibrilisation of the protein, and reduced synaptic loss and neuronal cell death. Moreover, they reduced Lewy body formation.

Because they are so small they could pass through the brain-blood barrier – a major obstacle for many medical molecules – and thus prevent the destruction by already formed alpha-synuclein fibrils of dopamine-producing neurons, potentially mediating one of the most distressing symptoms of the disease.

Although the work reported is preliminary, the results suggest that GQDs might not only slow the progression of Parkinson's, but may actually halt it.

Kim and colleagues measured the number and length of fibril segments in the midbrains of test subjects and found that they grew shorter and more numerous. The process began just six hours after the dots were introduced and peaked at 24. This, they suggest, indicates that larger fibrils were being broken up.

By the third day the number of fibril fragments started to decrease, and were undetectable by day seven.

There is still much work left to be done, but the scientists end their letter on a cautious but distinctly optimistic note.

"It is expected that GQD-based drugs with appropriate modifications might provide a clue to support the development of new therapeutic agents for abnormal protein aggregation-related neurological disorders including Parkinson's disease," they write. [27]

Assessing quantum dot photoemissions

Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms.

Quantum dots (QDs) are small, semiconducting nanocrystals or particles typically between two to ten nanometers in size. Discovered almost 40 years ago, their strong photoluminescent properties are a function of their size and shape making them useful for optical applications ranging from bioimaging to <u>light</u> <u>emitting diodes</u>. Advances in high-quality QD research in the last ten years has produced highly luminescent but somewhat unstable QDs that also, unfortunately, use toxic or rare elements. Efforts to create stable QDs without these toxic or expensive elements has been a driving force in recent research.

To address these issues, researchers have been investigating how to change the size, morphology, and PL of tin dioxide (SnO₂) to produce cheap, stable, and nontoxic colloidal semiconductor nanocrystals for various applications. Interestingly, the optical properties of SnO₂ have been found to be effected by defects in both the bulk material and the QDs themselves.

Researchers from Professor Kida's Chemical Engineering Laboratory at Kumamoto University synthesized SnO_2 QDs using a liquid phase method to produce QDs of various morphologies. The sizes of the QDs were controlled by changing the temperature during synthesis. All of the QDs produced a blue PL when exposed to UV light (370 nm) and QDs 2 nm in size produced the best intensity. To examine the PL properties and mechanisms related to defects in the synthesized QDs, the researchers used materials (POMs) that quench florescence through excited state reactions.

POMs quenched emissions of the SnO_2 QDs at peak intensities (401, 438, and 464 nm) but, to the surprise of the researchers, a previously unseen peak at 410 nm was revealed.

"We believe that the <u>emission</u> at 410 nm is caused by a bulk defect, which cannot be covered by POMs, that causes what is known as radiative recombination—the spontaneous emission of a photon with a wavelength related to the released energy," said project leader Professor Tetsuya Kida. "This work has shown that our technique is effective in analyzing PL emission mechanisms for QDs. We believe it will be highly beneficial for future QD research." [26]

Quantum dot ring lasers emit colored light

Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. The different colors are emitted from different parts of the quantum dot—red from the core, green from the shell, and orange from a combination of both—and can be easily switched by controlling the competition between light emission from the core and the shell.

The researchers, Boris le Feber, Ferry Prins, Eva De Leo, Freddy T. Rabouw, and David J. Norris, at ETH Zurich, Switzerland, have published a paper on the new lasers in a recent issue of *Nano Letters*.

The work demonstrates the interesting effects that are possible with lasers based on quantum dots, which are nanosized crystal spheres made of semiconducting materials. In these lasers, the quantum dots are often coated with shells of a different material. When illuminated, the shells not only emit light of their own, but they also channel photoexcited carriers (excitons) to the cores of the quantum dots, which enhances the <u>laser</u>'s core light <u>emission</u>.

In order to make quantum dot lasers that can switch between emitting light from only the cores or only the shells, the researchers designed a special laser <u>cavity</u>, which is the central part of the laser responsible for confining and reflecting light until it becomes highly coherent. Although quantum dot lasers have been widely researched, the effect of the laser cavity on quantum dot laser performance has been largely unexplored until now.

In the new study, the scientists fabricated high-quality laser cavities made of arrays of highly structured quantum dot rings. The resulting lasers exhibit very high cavity quality factors—almost an order of magnitude higher than those of typical quantum dot lasers, which usually have random cavities.

"We were able to demonstrate a simple fabrication approach that led to high-quality ring cavities that allowed us to explore this 'color switching' behavior in a <u>quantum dot laser</u>," Norris, Professor of Materials Engineering at ETH Zurich, told *Phys.org*. "In poor-quality cavities it is unlikely that we would have been able to observe this effect."

The researchers demonstrated that, at low powers, the new lasers emit red light from their cores, whereas at higher powers, they emit green light from the shells. At intermediate powers, the <u>light</u> comes from both the core and shell, and so appears orange. As the researchers explain, it's possible to completely stifle core emission because the core emission takes place on a picosecond timescale, while shell emission occurs on a subpicosecond timescale and so can greatly outpace core emission, as long as the laser power is sufficiently high.

In the future, the unique properties of the <u>quantum</u> dot ring lasers may lead to applications in laser displays, chemical sensing, and other areas. But before these applications can be realized, the researchers plan to further improve the laser's performance.

"We demonstrate the 'color switching' effect in this work, but the color change occurs at very high powers," Norris said. "Further research is required to see if the same effect can occur at more reasonable powers. This would be useful for applications. Fortunately, <u>quantum dots</u> continue to improve (in terms of their performance for lasers), and we can immediately apply these improvements to our devices." [25]

Sensing with a twist: A new kind of optical nanosensor uses torque for signal processing

The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. As electronic devices get smaller, their ability to provide precise, chip-based sensing of dynamic physical properties such as motion become challenging to develop.

An international group of researchers have put a literal twist on this challenge, demonstrating a new nanoscale optomechanical resonator that can detect torsional motion at near state-of-the-art sensitivity. Their resonator, into which they couple light, also demonstrates torsional frequency mixing, a novel ability to impact optical energies using mechanical motions. They report their work this week in the journal Applied Physics Letters.

"With developments of nanotechnology, the ability to measure and control torsional motion at the nanoscale can provide a powerful tool to explore nature," said Jianguo Huang from Xi'an Jiaotong University in China, one of the work's authors. He is also affiliated with the Nanyang Technological University and with the Institute of Microelectronics, A*STAR in Singapore. "We present a novel 'beam-in-cavity' design in which a torsional mechanical resonator is embedded into a racetrack optical cavity, to demonstrate nanoscale torsional motion sensing."

Light has already been used in somewhat similar ways to detect the mechanical flexing or

"breathing" of nanomaterials, typically requiring complex and sensitive coupling to the light source. This new approach is novel not only in its detection of nanoscale torques, but also in its integrated light-coupling design.

Using a silicon-based nanofabrication method, Huang and his team designed the device to allow light to couple directly via an etched grating to a waveguide configuration, called a racetrack cavity, in which the nanoresonator sits.

"As light is coupled into the racetrack cavity through a grating coupler, mechanical torsional motion in the cavity alters the propagation of light and changes [the] power of output light," said Huang. "By detecting the small variation of output light, the torsional motions can be measured."

Beyond just detecting torques on their micron-length lever arms, the resonators can also affect the resulting optical properties of the incident signal. The torsional frequency of the mechanical system mixes with the modulated optical signals.

"The most surprising part is that when we modulate the input light, we can observe the frequency mixing," Huang said. "It is exciting for frequency mixing since it has only been demonstrated by flexural or breathing modes before. This is the first demonstration of torsional frequency mixing, which may have implications for on-chip RF signal modulation, such as super-heterodyne receivers using optical mechanical resonators."

This is just the start for potential uses of torque-based nanosensors. Theoretically, there are a number of frequency tricks these devices could play for signal processing and sensing applications.

"We will continue to explore unique characters of this torsional optomechanical sensor and try to demonstrate novel phenomena, such as inference of dispersive and dissipative optomechanical coupling hidden behind the sensing," Huang said. "For engineering, magnetic or electrically-sensitive materials can be coated on the surface of torsional beams to sense small variations of physical fields, such as magnetic or electric fields to serve as multifunctional sensors." [24]

First imaging of free nanoparticles in laboratory experiment using a high-intensity laser source

In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. Previously, the structural analysis of these extremely small objects via singleshot diffraction was only possible at large-scale research facilities using so-called XUV and xray free electron lasers. Their pathbreaking results facilitate the highly-efficient characterisation of the chemical, optical and structural properties of individual nanoparticles and have just been published in Nature Communications. The lead author of the publication is junior researcher Dr Daniela Rupp who carried out the project at TU Berlin and is now starting a junior research group at MBI.

In their experiment, the researchers expanded helium gas through a nozzle that is cooled to extremely low temperature. The helium gas turns into a superfluid state and forms a beam of

freely flying miniscule nanodroplets. "We sent ultra-short XUV pulses onto these tiny droplets and captured snapshots of these objects by recording the scattered laser light on a large-area detector to reconstruct the droplet shape," explains Dr Daniela Rupp.

"Key to the successful experiment were the high-intensity XUV pulses generated in MBI's laser lab that produce detailed scattering patterns with just one single shot," explains Dr Arnaud Rouzée from MBI. "By using the so-called wide-angle mode that provides access to the three-dimensional morphology, we could identify hitherto unobserved shapes of the superfluid droplets," adds Professor Thomas Fennel from MBI and the University of Rostock. The research team's results enable a new class of metrology for analysing the structure and optical properties of small particles. Thanks to state-of-the-art laser light sources, making images of the tiniest pieces of matter is no longer exclusive to the large-scale research facilities. [23]

Single molecular layer and thin silicon beam enable nanolaser operation at room temperature

For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. The new device, developed by a team of researchers from Arizona State University and Tsinghua University, Beijing, China, could potentially be used to send information between different points on a single computer chip. The lasers also may be useful for other sensing applications in a compact, integrated format.

"This is the first demonstration of room-temperature operation of a nanolaser made of the singlelayer material," said Cun-Zheng Ning, an ASU electrical engineering professor who led the research team. Details of the new laser are published in the July online edition of Nature Nanotechnology.

In addition to Ning, key authors of the article, "Room-temperature Continuous-wave Lasing from Monolayer Molybdenum Ditelluride Integrated with a Silicon Nanobeam Cavity," include Yongzhuo Li, Jianxing Zhang, Dandan Huang from Tsinghua University.

Ning said pivotal to the new development is use of materials that can be laid down in single layers and efficiently amplify light (lasing action). Single layer nanolasers have been developed before, but they all had to be cooled to low temperatures using a cryogen like liquid nitrogen or liquid helium. Being able to operate at room temperatures (~77 F) opens up many possibilities for uses of these new lasers," Ning said.

The joint ASU-Tsinghua research team used a monolayer of molybdenum ditelluride integrated with a silicon nanobeam cavity for their device. By combining molybdenum ditelluride with silicon, which is the bedrock in semiconductor manufacturing and one of the best waveguide materials, the researchers were able to achieve lasing action without cooling, Ning said.

A laser needs two key pieces – a gain medium that produces and amplifies photons, and a cavity that confines or traps photons. While such materials choices are easy for large lasers, they become more difficult at nanometer scales for nanolasers. Nanolasers are smaller than 100th of the thickness of the human hair and are expected to play important roles in future computer chips and a variety of light detection and sensing devices.

The choice of two-dimensional materials and the silicon waveguide enabled the researchers to achieve room temperature operation. Excitons in molybdenum telluride emit in a wavelength that is transparent to silicon, making silicon possible as a waveguide or cavity material. Precise fabrication of the nanobeam cavity with an array of holes etched and the integration of two-dimensional monolayer materials was also key to the project. Excitons in such monolayer materials are 100 times stronger than those in conventional semiconductors, allowing efficient light emission at room temperature.

Because silicon is already used in electronics, especially in computer chips, its use in this application is significant in future applications.

"A laser technology that can also be made on Silicon has been a dream for researchers for decades," said Ning. "This technology will eventually allow people to put both electronics and photonics on the same silicon platform, greatly simplifying manufacture."

Silicon does not emit light efficiently and therefore must be combined with other light emitting materials. Currently, other semiconductors are used, such as Indium phosphide or Indium Garlium Arsenide which are hundreds of times thicker, to bond with silicon for such applications.

The new monolayer materials combined with Silicon eliminate challenges encountered when combining with thicker, dissimilar materials. And, because this non-silicon material is only a single layer thick, it is flexible and less likely to crack under stress, according to Ning.

Looking forward, the team is working on powering their laser with electrical voltage to make the system more compact and easy to use, especially for its intended use on computer chips. [22]

Computer chip technology repurposed for making reflective nanostructures

A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark.

Those materials owe their shininess to retroreflection, a property that allows them to bounce light directly back to its source from a wide variety of angles. In contrast, a basic flat mirror will not bounce light back to its source if that light is coming from any angle other than straight on.

Retroreflectors' ability to return light to where it came from makes them useful for highlighting objects that need to be seen in dark conditions. For example, if light from a car's headlights shines on the safety vest of a construction worker down the road, the vest's retroreflective strips will bounce that light straight back to the car and into the driver's eyes, making the vest appear to glow.

Retroreflectors have also been used in surveyors' equipment, communications with satellites, and even in experiments to measure the distance of the moon from Earth.

Typically, retroreflectors consist of tiny glass spheres embedded in the surface of reflective paint or in small mirrors shaped like the inner corner of a cube.

The new technology—which was developed by a team led by Caltech's Andrei Faraon, assistant professor of applied physics and materials science in the Division of Engineering and Applied Science—uses surfaces covered by a metamaterial consisting of millions of silicon pillars, each only a few hundred nanometers tall. By adjusting the size of the pillars and the spacing between them, Faraon can manipulate how the surface reflects, refracts, or transmits light. He has already shown that these materials can be tweaked to create flat lenses for focusing light or to create prism-like surfaces that spread the light out into its spectrum. Now, he's discovered that he can build a retroreflector by stacking two layers of the metamaterials atop one another.

In this kind of retroreflector, light first passes through a transparent metamaterial layer (metasurface) and is focused by its tiny pillars onto a single spot on a reflective metamaterial layer. The reflective layer then bounces the light back to the transparent layer, which transmits the light back to its source.

"By placing multiple metasurfaces on top of each other, it is possible to control the flow of light in such a way that was not possible before," Faraon says. "The functionality of a retroreflector cannot be achieved by using a single metasurface."

Since Faraon's metamaterials are created using computer-chip manufacturing technologies, it would be possible to easily integrate them into chips used in optoelectronic devices—electronics that use and control light, he says.

"This could have applications in communicating with remote sensors, drones, satellites, etc.," he adds.

Faraon's research appears in a paper in the June 19, 2017, edition of Nature Photonics; the paper is titled "Planar metasurface retroreflector." Other coauthors are Amir Arbabi, assistant professor of computer and electrical engineering at the University of Massachusetts Amherst; and Caltech electrical engineering graduate students Ehsan Arbabi, Yu Horie, and Seyedeh Mahsa Kamali. [21]

Physicists create nanoscale mirror with only 2000 atoms

Mirrors are the simplest means to manipulate light propagation. Usually, a mirror is a macroscopic object composed of a very large number of atoms. In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. This paper is accompanied by a "Focus" item in APS-Physics.

By engineering the position of cold atoms trapped around a nanoscale fiber, the researchers fulfill the necessary conditions for Bragg reflection, a well-known physical effect first proposed by William Lawrence Bragg and his father William Henry Bragg in crystalline solids. They earned the Nobel Prize for this work in 1915.

In the current experiment, each trapped atom contributes with a small reflectance, and the engineered position allows the constructive interference of multiple reflections.

"Only 2000 atoms trapped in the vicinity of the fiber were necessary, while previous demonstrations in free space required tens of millions of atoms to get the same reflectance," says

Neil Corzo, a Marie-Curie postdoctoral fellow and the lead author of this work. He adds, "This is due to the strong atom-photon coupling and the atom position control that we can now achieve in our system."

The key ingredient is a nanoscale fiber, whose diameter has been reduced to 400 nm. In this case, a large fraction of the light travels outside the fiber in an evanescent field where it is heavily focused over the 1-cm nanofiber length. Using this strong transversal confinement, it is possible to trap cold cesium atoms near the fiber in well-defined chains. The trapping is made with the implementation of an all-fibered dipole trap. With the use of well-chosen pairs of beams, the researchers generate two chains of trapping potentials around the fiber, in which only one atom occupies each site. By selecting the correct colors of the trap beams, they engineered the distance between atoms in the chains to be close to half the resonant wavelength of the cesium atoms, fulfilling the necessary conditions for Bragg reflection.

This setting represents an important step in the emerging field of waveguide quantum electrodynamics, with applications in quantum networks, quantum nonlinear optics, and quantum simulation. The technique would allow for novel quantum network capabilities and many-body effects emerging from long-range interactions between multiple spins, a daunting prospect in free space.

This demonstration follows other works that Laurat's group has done in recent years, including the realization of an all-fibered optical memory. [20]

For first time, researchers see individual atoms keep away from each other or bunch up as pairs

If you bottle up a gas and try to image its atoms using today's most powerful microscopes, you will see little more than a shadowy blur. Atoms zip around at lightning speeds and are difficult to pin down at ambient temperatures.

If, however, these atoms are plunged to ultracold temperatures, they slow to a crawl, and scientists can start to study how they can form exotic states of matter, such as superfluids, superconductors, and quantum magnets.

Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice.

By looking at correlations between the atoms' positions in hundreds of such images, the team observed individual atoms interacting in some rather peculiar ways, based on their position in the lattice. Some atoms exhibited "antisocial" behavior and kept away from each other, while some bunched together with alternating magnetic orientations. Others appeared to piggyback on each other, creating pairs of atoms next to empty spaces, or holes.

The team believes that these spatial correlations may shed light on the origins of superconducting behavior. Superconductors are remarkable materials in which electrons pair up and travel without

friction, meaning that no energy is lost in the journey. If superconductors can be designed to exist at room temperature, they could initiate an entirely new, incredibly efficient era for anything that relies on electrical power.

Martin Zwierlein, professor of physics and principal investigator at MIT's NSF Center for Ultracold Atoms and at its Research Laboratory of Electronics, says his team's results and experimental setup can help scientists identify ideal conditions for inducing superconductivity.

"Learning from this atomic model, we can understand what's really going on in these superconductors, and what one should do to make higher-temperature superconductors, approaching hopefully room temperature," Zwierlein says.

Zwierlein and his colleagues' results appear in the Sept. 16 issue of the journal Science. Co-authors include experimentalists from the MIT-Harvard Center for Ultracold Atoms, MIT's Research Laboratory of Electronics, and two theory groups from San Jose State University, Ohio State University, the University of Rio de Janeiro, and Penn State University.

"Atoms as stand-ins for electrons"

Today, it is impossible to model the behavior of high-temperature superconductors, even using the most powerful computers in the world, as the interactions between electrons are very strong. Zwierlein and his team sought instead to design a "quantum simulator," using atoms in a gas as stand-ins for electrons in a superconducting solid.

The group based its rationale on several historical lines of reasoning: First, in 1925 Austrian physicist Wolfgang Pauli formulated what is now called the Pauli exclusion principle, which states that no two electrons may occupy the same quantum state—such as spin, or position—at the same time. Pauli also postulated that electrons maintain a certain sphere of personal space, known as the "Pauli hole."

His theory turned out to explain the periodic table of elements: Different configurations of electrons give rise to specific elements, making carbon atoms, for instance, distinct from hydrogen atoms.

The Italian physicist Enrico Fermi soon realized that this same principle could be applied not just to electrons, but also to atoms in a gas: The extent to which atoms like to keep to themselves can define the properties, such as compressibility, of a gas.

"He also realized these gases at low temperatures would behave in peculiar ways," Zwierlein says.

British physicist John Hubbard then incorporated Pauli's principle in a theory that is now known as the Fermi-Hubbard model, which is the simplest model of interacting atoms, hopping across a lattice. Today, the model is thought to explain the basis for superconductivity. And while theorists have been able to use the model to calculate the behavior of superconducting electrons, they have only been able to do so in situations where the electrons interact weakly with each other.

"That's a big reason why we don't understand high-temperature superconductors, where the electrons are very strongly interacting," Zwierlein says. "There's no classical computer in the world that can calculate what will happen at very low temperatures to interacting [electrons]. Their

spatial correlations have also never been observed in situ, because no one has a microscope to look at every single electron."

Carving out personal space

Zwierlein's team sought to design an experiment to realize the Fermi-Hubbard model with atoms, in hopes of seeing behavior of ultracold atoms analogous to that of electrons in high-temperature superconductors.

The group had previously designed an experimental protocol to first cool a gas of atoms to near absolute zero, then trap them in a two-dimensional plane of a laser-generated lattice. At such ultracold temperatures, the atoms slowed down enough for researchers to capture them in images for the first time, as they interacted across the lattice.

At the edges of the lattice, where the gas was more dilute, the researchers observed atoms forming Pauli holes, maintaining a certain amount of personal space within the lattice.

"They carve out a little space for themselves where it's very unlikely to find a second guy inside that space," Zwierlein says.

Where the gas was more compressed, the team observed something unexpected: Atoms were more amenable to having close neighbors, and were in fact very tightly bunched. These atoms exhibited alternating magnetic orientations.

"These are beautiful, antiferromagnetic correlations, with a checkerboard pattern—up, down, up, down," Zwierlein describes.

At the same time, these atoms were found to often hop on top of one another, creating a pair of atoms next to an empty lattice square. This, Zwierlein says, is reminiscent of a mechanism proposed for high-temperature superconductivity, in which electron pairs resonating between adjacent lattice sites can zip through the material without friction if there is just the right amount of empty space to let them through.

Ultimately, he says the team's experiments in gases can help scientists identify ideal conditions for superconductivity to arise in solids.

Zwierlein explains: "For us, these effects occur at nanokelvin because we are working with dilute atomic gases. If you have a dense piece of matter, these same effects may well happen at room temperature."

Currently, the team has been able to achieve ultracold temperatures in gases that are equivalent to hundreds of kelvins in solids. To induce superconductivity, Zwierlein says the group will have to cool their gases by another factor of five or so.

"We haven't played all of our tricks yet, so we think we can get colder," he says. [19]

Researchers have created quantum states of light whose noise level has been "squeezed" to a record low

Squeezed quantum states of light can have better noise properties than those imposed by classical limits set by shot noise. Such states might help researchers boost the sensitivity of gravitationalwave (GW) detectors or design more practical quantum information schemes. A team of researchers at the Institute for Gravitational Physics at the Leibniz University of Hanover, Germany, has now demonstrated a method for squeezing noise to record low levels. The new approach—compatible with the laser interferometers used in GW detectors—may lead to technologies for upgrading LIGO and similar observatories.

Squeezed light is typically generated in nonlinear crystals, in which one pump photon produces two daughter photons. Because the two photons are generated in the same quantum process, they exhibit correlations that can be exploited to reduce noise in measuring setups. Quantum squeezing can, in principle, reduce noise to arbitrarily low levels. But in practice, photon losses and detector noise limit the maximum achievable squeezing. The previous record was demonstrated by the Hanover team, who used a scheme featuring amplitude fluctuations that were about a factor of 19 lower than those expected from classical noise (12.7 dB of squeezing).

In their new work, the researchers bested themselves by increasing this factor to 32 (15 dB of squeezing), using a light-squeezing scheme with low optical losses and minimal fluctuations in the phase of the readout scheme. The squeezed states are obtained at 1064 nm, the laser wavelength feeding the interferometers of all current GW observatories.

This research is published in Physical Review Letters. [18]

Liquid Light with a Whirl

An elliptical light beam in a nonlinear optical medium pumped by "twisted light" can rotate like an electron around a magnetic field.

Magnetism and rotation have a lot in common. The effect of a magnetic field on a moving charge, the Lorentz force, is formally equivalent to the fictitious force felt by a moving mass in a rotating reference frame, the Coriolis force. For this reason, atomic quantum gases under rotation can be used as quantum simulators of exotic magnetic phenomena for electrons, such as the fractional quantum Hall effect. But there is no direct equivalent of magnetism for photons, which are massless and chargeless. Now, Niclas Westerberg and co-workers at Heriot-Watt University, UK, have shown how to make synthetic magnetic fields for light. They developed a theory that predicts how a light beam in a nonlinear optical medium pumped by "twisted light" will rotate as it propagates, just as an electron will whirl around in a magnetic field. More than that, the light will expand as it goes, demonstrating fluid-like behavior. We can expect synthetic magnetism for light to bring big insights into magnetism in other systems, as well as some beautiful images.

The idea that light can behave like a fluid and, even more interestingly, a superfluid (a fluid with zero viscosity), goes back at least to the 1990s. The analogy comes about because Maxwell's equations for nearly collimated light in a nonlinear medium look like the Schrödinger equation for a superfluid of matter, modified to include particle interactions. Fluids of light, or photon fluids,

propagating in bulk nonlinear media show a range of fluid and superfluid behavior, such as free expansion and shock waves. In microcavities, fluids of light can be strongly coupled to matter, such as semiconductor electron-hole pairs, to make hybrid entities known as polariton condensates. These condensates can exhibit quantized vortices, which are characteristic of superfluidity. Despite these impressive advances, it has proven difficult to induce the strong bulk rotation required for phenomena such as the quantum Hall effect to show up in photon fluids, hence the need for synthetic magnetism.

The concept of synthetic magnetism is borrowed from ultracold atoms. With atoms, it is experimentally unfeasible to reach a regime of rapid rotation corresponding to a large magnetic field, not least because the traps that confine the atoms are unable to provide the centripetal force to stop them from flying out. Instead, it is possible to take advantage of the fact that atoms have multiple internal states. These can be used to generate geometric phases, as opposed to dynamic phases (which can be imposed by any forces, whatever the structure of the internal states may be). A geometric phase, otherwise known as a Berry phase, arises when a system's internal states (for example, its spin) smoothly follow the variations of an external field, so that its phase depends on which path it takes between two external states (for example, two positions of the system), even if the paths have the same energy. In atomic systems, the variations of the external field in position are achieved with phase or amplitude structures of the electromagnetic field of laser light. These variations can be engineered to produce the rotational equivalent of the vector potential for a magnetic field on a charged particle, inducing strong bulk rotation that shows up as many vortices in a superfluid Bose-Einstein condensate.

To produce a geometric phase in a fluid of light, Westerberg and colleagues considered light with two coupled internal states—a spinor photon fluid. They studied two types of nonlinear media, with second- and third-order optical nonlinearities, respectively. The second-order nonlinearity comes in the form of mixing of three fields in a birefringent crystal, in which one field, the pump light field, splits into two further fields with orthogonal polarizations, these being the two required internal states of the spinor fluid. Slow spatial variations of the strong pump field generate a synthetic vector potential that is equivalent to a magnetic field for electric charges or rotation for atoms.

The third-order optical nonlinearity occurs in a medium with a refractive index that depends on the intensity of light. The spinor photon fluid in this case consists of weak fluctuations around a strong light field that carries orbital angular momentum (colloquially known as twisted light). The two internal states of the fluid are distinguished by their differing orbital angular momentum. The resulting vector potential produces synthetic magnetism, much as with the second-order nonlinearity.

Coincidentally, for the medium with a second-order nonlinearity, Westerberg and co-workers also propose using twisted light.

The authors present numerical simulations for both types of nonlinearity. For the second-order nonlinear medium, they show that an elliptical light beam in a synthetic magnetic field rotates about its propagation axis and expands as it propagates (Fig 1). The expansion shows that the light is behaving as a fluid in rotation. For the third-order nonlinear medium there is a trapped vortex that causes the beam to rotate, which is akin to cyclotron motion of a charge in a magnetic field.

Short of spinning the medium extremely rapidly [9], it is not obvious how one could otherwise make a beam continuously rotate as it propagates.

Westerberg and colleagues' work makes important connections between several disparate topics: nonlinear optics, atomic physics, geometric phases, and light with orbital angular momentum. Spinor photon fluids in themselves are a new development. The complete state of a photon fluid— its amplitude, phase, and polarization—can be mapped out; this is not possible for atoms or electrons. Some of the authors of the present study have recently experimentally driven photon fluids past obstacles in ways that are hard to achieve for atoms, and obtained evidence for superfluidity through the phase of the photon fluid [10]—evidence that cannot be obtained for electronic magnetism. Furthermore, they have also made photon fluids that have nonlocal interactions, via thermal effects. Generalizing synthetic magnetism to nonlocal fluids of light will enlighten us about magnetism and rotation in solid-state and atomic superfluids. Experimental implementation will surely follow hot on the heels of this proposal. [17]

Physicists discover a new form of light

Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light.

One of the measurable characteristics of a beam of light is known as angular momentum. Until now, it was thought that in all forms of light the angular momentum would be a multiple of Planck's constant (the physical constant that sets the scale of quantum effects).

Now, recent PhD graduate Kyle Ballantine and Professor Paul Eastham, both from Trinity College Dublin's School of Physics, along with Professor John Donegan from CRANN, have demonstrated a new form of light where the angular momentum of each photon (a particle of visible light) takes only half of this value. This difference, though small, is profound. These results were recently published in the online journal Science Advances.

Commenting on their work, Assistant Professor Paul Eastham said: "We're interested in finding out how we can change the way light behaves, and how that could be useful. What I think is so exciting about this result is that even this fundamental property of light, that physicists have always thought was fixed, can be changed."

Professor John Donegan said: "My research focuses on nanophotonics, which is the study of the behaviour of light on the nanometer scale. A beam of light is characterised by its colour or wavelength and a less familiar quantity known as angular momentum. Angular momentum measures how much something is rotating. For a beam of light, although travelling in a straight line it can also be rotating around its own axis. So when light from the mirror hits your eye in the morning, every photon twists your eye a little, one way or another."

"Our discovery will have real impacts for the study of light waves in areas such as secure optical communications."

Professor Stefano Sanvito, Director of CRANN, said: "The topic of light has always been one of interest to physicists, while also being documented as one of the areas of physics that is best understood. This discovery is a breakthrough for the world of physics and science alike. I am delighted to once again see CRANN and Physics in Trinity producing fundamental scientific research that challenges our understanding of light."

To make this discovery, the team involved used an effect discovered in the same institution almost 200 years before. In the 1830s, mathematician William Rowan Hamilton and physicist Humphrey Lloyd found that, upon passing through certain crystals, a ray of light became a hollow cylinder. The team used this phenomenon to generate beams of light with a screw-like structure.

Analyzing these beams within the theory of quantum mechanics they predicted that the angular momentum of the photon would be half-integer, and devised an experiment to test their prediction. Using a specially constructed device they were able to measure the flow of angular momentum in a beam of light. They were also able, for the first time, to measure the variations in this flow caused by quantum effects. The experiments revealed a tiny shift, one-half of Planck's constant, in the angular momentum of each photon.

Theoretical physicists since the 1980s have speculated how quantum mechanics works for particles that are free to move in only two of the three dimensions of space. They discovered that this would enable strange new possibilities, including particles whose quantum numbers were fractions of those expected. This work shows, for the first time, that these speculations can be realised with light. [16]

Novel metasurface revolutionizes ubiquitous scientific tool

Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected.

What do astrophysics, telecommunications and pharmacology have in common? Each of these fields relies on polarimeters—instruments that detect the direction of the oscillation of electromagnetic waves, otherwise known as the polarization of light.

Even though the human eye isn't particularly sensitive to polarization, it is a fundamental property of light. When light is reflected or scattered off an object, its polarization changes and measuring that change reveals a lot of information. Astrophysicists, for example, use polarization measurements to analyze the surface of distant, or to map the giant magnetic fields spanning our galaxy. Drug manufacturers use the polarization of scattered light to determine the chirality and concentration of drug molecules. In telecommunications, polarization is used to carry information through the vast network of fiber optic cables. From medical diagnostics to high-tech manufacturing to the food industry, measuring polarization reveals critical data.

Scientists rely on polarimeters to make these measurements. While ubiquitous, many polarimeters currently in use are slow, bulky and expensive.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences and Innovation Center Iceland have built a polarimeter on a microchip, revolutionizing the design of this widely used scientific tool.

"We have taken an instrument that is can reach the size of a lab bench and shrunk it down to the size of a chip," said Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, who led the research. "Having a microchip polarimeter will make polarization measurements available for the first time to a much broader range of applications, including in energy-efficient, portable devices."

"Taking advantage of integrated circuit technology and nanophotonics, the new device promises high-performance polarization measurements at a fraction of the cost and size," said J. P. Balthasar Mueller, a graduate student in the Capasso lab and first author of the paper.

The device is described in the journal Optica. Harvard's Office of Technology Development has filed a patent application and is actively exploring commercial opportunities for the technology.

Capasso's team was able to drastically reduce the complexity and size of polarimeters by building a two-dimensional metasurface—a nanoscale structure that interacts with light. The metasurface is covered with a thin array of metallic antennas, smaller than a wavelength of light, embedded in a polymer film. As light propagates down an optical fiber and illuminates the array, a small amount scatters in four directions. Four detectors measure the intensity of the scattered light and combine to give the state of polarization in real time.

"One advantage of this technique is that the polarization measurement leaves the signal mostly intact," said Mueller. "This is crucial for many uses of polarimeters, especially in optical telecommunications, where measurements must be made without disturbing the data stream."

In telecommunications, optical signals propagating through fibers will change their polarization in random ways. New integrated photonic chips in fiber optic cables are extremely sensitive to polarization, and if light reaches a chip with the wrong polarization, it can cause a loss of signal.

"The design of the antenna array make it robust and insensitive to the inaccuracies in the fabrication process, which is ideal for large scale manufacturing," said Kristjan Leosson, senior researcher and division manager at the Innovation Center and coauthor of the paper.

Leosson's team in Iceland is currently working on incorporating the metasurface design from the Capasso group into a prototype polarimeter instrument.

Chip-based polarimeters could for the first time provide comprehensive and real-time polarization monitoring, which could boost network performance and security and help providers keep up with the exploding demand for bandwidth.

"This device performs as well as any state-of-the-art polarimeter on the market but is considerably smaller," said Capasso. "A portable, compact polarimeter could become an important tool for not only the telecommunications industry but also in drug manufacturing, medical imaging, chemistry, astronomy, you name it. The applications are endless." [15]

New nanodevice shifts light's color at single-photon level

Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips.

The tiny device, which promises to help improve the security and increase the distance over which next-generation quantum communication systems operate, can be tailored for a wide variety of uses, enables easy integration with other information-processing elements and can be mass produced.

The new nanoscale optical frequency converter efficiently converts photons from one frequency to the other while consuming only a small amount of power and adding a very low level of noise, namely background light not associated with the incoming signal.

Frequency converters are essential for addressing two problems. The frequencies at which quantum systems optimally generate and store information are typically much higher than the frequencies required to transmit that information over kilometer-scale distances in optical fibers. Converting the photons between these frequencies requires a shift of hundreds of terahertz (one terahertz is a trillion wave cycles per second).

A much smaller, but still critical, frequency mismatch arises when two quantum systems that are intended to be identical have small variations in shape and composition. These variations cause the systems to generate photons that differ slightly in frequency instead of being exact replicas, which the quantum communication network may require.

The new photon frequency converter, an example of nanophotonic engineering, addresses both issues, Qing Li, Marcelo Davanço and Kartik Srinivasan write in Nature Photonics. The key component of the chip-integrated device is a tiny ring-shaped resonator, about 80 micrometers in diameter (slightly less than the width of a human hair) and a few tenths of a micrometer in thickness. The shape and dimensions of the ring, which is made of silicon nitride, are chosen to enhance the inherent properties of the material in converting light from one frequency to another. The ring resonator is driven by two pump lasers, each operating at a separate frequency. In a scheme known as four-wave-mixing Bragg scattering, a photon entering the ring is shifted in frequency by an amount equal to the difference in frequencies of the two pump lasers.

Like cycling around a racetrack, incoming light circulates around the resonator hundreds of times before exiting, greatly enhancing the device's ability to shift the photon's frequency at low power and with low background noise. Rather than using a few watts of power, as typical in previous experiments, the system consumes only about a hundredth of that amount. Importantly, the added amount of noise is low enough for future experiments using single-photon sources.

While other technologies have been applied to frequency conversion, "nanophotonics has the benefit of potentially enabling the devices to be much smaller, easier to customize, lower power, and compatible with batch fabrication technology," said Srinivasan. "Our work is a first

demonstration of a nanophotonic technology suitable for this demanding task of quantum frequency conversion." [14]

Quantum dots enhance light-to-current conversion in layered semiconductors

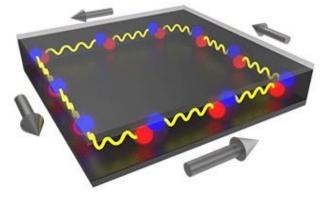
Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features.

In two just-published papers, scientists from the U.S. Department of Energy's Brookhaven National Laboratory, Stony Brook University, and the University of Nebraska describe one such approach that combines the excellent light-harvesting properties of quantum dots with the tunable electrical conductivity of a layered tin disulfide semiconductor. The hybrid material exhibited enhanced lightharvesting properties through the absorption of light by the quantum dots and their energy transfer to tin disulfide, both in laboratory tests and when incorporated into electronic devices. The research paves the way for using these materials in optoelectronic applications such as energy-harvesting photovoltaics, light sensors, and light emitting diodes (LEDs).

According to Mircea Cotlet, the physical chemist who led this work at Brookhaven Lab's Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility, "Two-dimensional metal dichalcogenides like tin disulfide have some promising properties for solar energy conversion and photodetector applications, including a high surface-to-volume aspect ratio. But no semiconducting material has it all. These materials are very thin and they are poor light absorbers. So we were trying to mix them with other nanomaterials like light-absorbing quantum dots to improve their performance through energy transfer."

One paper, just published in the journal ACS Nano, describes a fundamental study of the hybrid quantum dot/tin disulfide material by itself. The work analyzes how light excites the quantum dots (made of a cadmium selenide core surrounded by a zinc sulfide shell), which then transfer the absorbed energy to layers of nearby tin disulfide.

"We have come up with an interesting approach to discriminate energy transfer from charge transfer, two common types of interactions promoted by light in such hybrids," said Prahlad Routh, a graduate student from Stony Brook University working with Cotlet and co-first author of the ACS Nano paper. "We do this using single nanocrystal spectroscopy to look at how individual quantum dots blink when interacting with sheet-like tin disulfide. This straightforward method can assess whether components in such semiconducting hybrids interact either by energy or by charge transfer."


The researchers found that the rate for non-radiative energy transfer from individual quantum dots to tin disulfide increases with an increasing number of tin disulfide layers. But performance in laboratory tests isn't enough to prove the merits of potential new materials. So the scientists incorporated the hybrid material into an electronic device, a photo-field-effect-transistor, a type of photon detector commonly used for light sensing applications.

As described in a paper published online March 24 in Applied Physics Letters, the hybrid material dramatically enhanced the performance of the photo-field-effect transistors-resulting in a photocurrent response (conversion of light to electric current) that was 500 percent better than transistors made with the tin disulfide material alone.

"This kind of energy transfer is a key process that enables photosynthesis in nature," said ChangYong Nam, a materials scientist at Center for Functional Nanomaterials and cocorresponding author of the APL paper. "Researchers have been trying to emulate this principle in light-harvesting electrical devices, but it has been difficult particularly for new material systems such as the tin disulfide we studied. Our device demonstrates the performance benefits realized by using both energy transfer processes and new low-dimensional materials."

Cotlet concludes, "The idea of 'doping' two-dimensional layered materials with quantum dots to enhance their light absorbing properties shows promise for designing better solar cells and photodetectors." [13]

Quasiparticles dubbed topological polaritons make their debut in the theoretical world

Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or "topolariton": a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction.

The proposed topolaritons arise from the strong coupling of a photon and an exciton, a bound state of an electron and a hole. Their topology can be thought of as knots in their gapped energyband structure. At the edge of the systems in which topolaritons emerge, these knots unwind and allow the topolaritons to propagate in a single direction without back-reflection. In other words, the topolaritons cannot make U-turns. Back-reflection is a known source of detrimental feedback and loss in photonic devices. The topolaritons' immunity to it may thus be exploited to build devices with increased performance.

The researchers describe a scheme to generate topolaritons that may be feasible to implement in common systems—such as semiconductor structures or atomically thin layers of compounds known as transition-metal dichalcogenides—embedded in photonic waveguides or microcavities.

Previous approaches to make similar one-way photonic channels have mostly hinged on effects that are only applicable at microwave frequencies. Refael and co-workers' proposal offers an avenue to make such "one-way photonic roads" in the optical regime, which despite progress has remained a challenging pursuit. [12]

'Matter waves' move through one another but never share space

Physicist Randy Hulet and colleagues observed a strange disappearing act during collisions between forms of Bose Einstein condensates called solitons. In some cases, the colliding clumps of matter appear to keep their distance even as they pass through each other. How can two clumps of matter pass through each other without sharing space? Physicists have documented a strange disappearing act by colliding Bose Einstein condensates that appear to keep their distance even as they pass through one another.

BECs are clumps of a few hundred thousand lithium atoms that are cooled to within one-millionth of a degree above absolute zero, a temperature so cold that the atoms march in lockstep and act as a single "matter wave." Solitons are waves that do not diminish, flatten out or change shape as they move through space. To form solitons, Hulet's team coaxed the BECs into a configuration where the attractive forces between lithium atoms perfectly balance the quantum pressure that tends to spread them out.

The researchers expected to observe the property that a pair of colliding solitons would pass though one another without slowing down or changing shape. However, they found that in certain collisions, the solitons approached one another, maintained a minimum gap between themselves, and then appeared to bounce away from the collision.

Hulet's team specializes in experiments on BECs and other ultracold matter. They use lasers to both trap and cool clouds of lithium gas to temperatures that are so cold that the matter's behavior is dictated by fundamental forces of nature that aren't observable at higher temperatures.

To create solitons, Hulet and postdoctoral research associate Jason Nguyen, the study's lead author, balanced the forces of attraction and repulsion in the BECs.

Cameras captured images of the tiny BECs throughout the process. In the images, two solitons oscillate back and forth like pendulums swinging in opposite directions. Hulet's team, which also included graduate student De Luo and former postdoctoral researcher Paul Dyke, documented thousands of head-on collisions between soliton pairs and noticed a strange gap in some, but not all, of the experiments.

Many of the events that Hulet's team measures occur in one-thousandth of a second or less. To confirm that the "disappearing act" wasn't causing a miniscule interaction between the soliton pairs -- an interaction that might cause them to slowly dissipate over time -- Hulet's team tracked one of the experiments for almost a full second.

The data showed the solitons oscillating back and fourth, winking in and out of view each time they crossed, without any measurable effect.

"This is great example of a case where experiments on ultracold matter can yield a fundamental new insight," Hulet said. "The phase-dependent effects had been seen in optical experiments, but there has been a misunderstanding about the interpretation of those observations." [11]

Photonic molecules

Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature.

The discovery, Lukin said, runs contrary to decades of accepted wisdom about the nature of light. Photons have long been described as massless particles which don't interact with each other – shine two laser beams at each other, he said, and they simply pass through one another.

"Photonic molecules," however, behave less like traditional lasers and more like something you might find in science fiction – the light saber.

"Most of the properties of light we know about originate from the fact that photons are massless, and that they do not interact with each other," Lukin said. "What we have done is create a special type of medium in which photons interact with each other so strongly that they begin to act as though they have mass, and they bind together to form molecules. This type of photonic bound state has been discussed theoretically for quite a while, but until now it hadn't been observed. [9]

The Electromagnetic Interaction

This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. [2]

Asymmetry in the interference occurrences of oscillators

The asymmetrical configurations are stable objects of the real physical world, because they cannot annihilate. One of the most obvious asymmetry is the proton – electron mass rate $M_p = 1840 M_e$ while they have equal charge. We explain this fact by the strong interaction of the proton, but how remember it his strong interaction ability for example in the H – atom where are only electromagnetic interactions among proton and electron.

This gives us the idea to origin the mass of proton from the electromagnetic interactions by the way interference occurrences of oscillators. The uncertainty relation of Heisenberg makes sure that the particles are oscillating.

The resultant intensity due to n equally spaced oscillators, all of equal amplitude but different from one another in phase, either because they are driven differently in phase or because we are looking at them an angle such that there is a difference in time delay:

(1) $I = I_0 \sin^2 n \phi/2 / \sin^2 \phi/2$

If ϕ is infinitesimal so that $\sin \phi = \phi$ than

(2)
$$\iota = n^2 \iota_0$$

This gives us the idea of

(3)
$$M_p = n^2 M_e$$

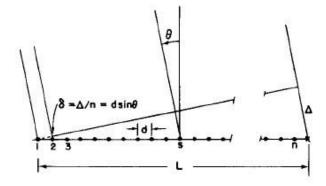


Fig. 30–3. A linear array of *n* equal oscillators, driven with phases $\alpha_s = s\alpha$.

Figure 1.) A linear array of n equal oscillators

There is an important feature about formula (1) which is that if the angle ϕ is increased by the multiple of 2π it makes no difference to the formula.

So

(4) d sin θ = m λ and we get m-order beam if λ less than d. [6]

If d less than λ we get only zero-order one centered at θ = 0. Of course, there is also a beam in the opposite direction. The right chooses of d and λ we can ensure the conservation of charge.

For example

(5) 2 (m+1) = n

Where $2(m+1) = N_p$ number of protons and $n = N_e$ number of electrons.

In this way we can see the H₂ molecules so that 2n electrons of n radiate to 4(m+1) protons, because $d_e > \lambda_e$ for electrons, while the two protons of one H₂ molecule radiate to two electrons of them, because of $d_e < \lambda_e$ for this two protons.

To support this idea we can turn to the Planck distribution law, that is equal with the Bose – Einstein statistics.

Spontaneously broken symmetry in the Planck distribution law

The Planck distribution law is temperature dependent and it should be true locally and globally. I think that Einstein's energy-matter equivalence means some kind of existence of electromagnetic oscillations enabled by the temperature, creating the different matter formulas, atoms molecules, crystals, dark matter and energy.

Max Planck found for the black body radiation

As a function of wavelength (λ), Planck's law is written as:

$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda \varepsilon_{\rm B}T}} - 1}.$$

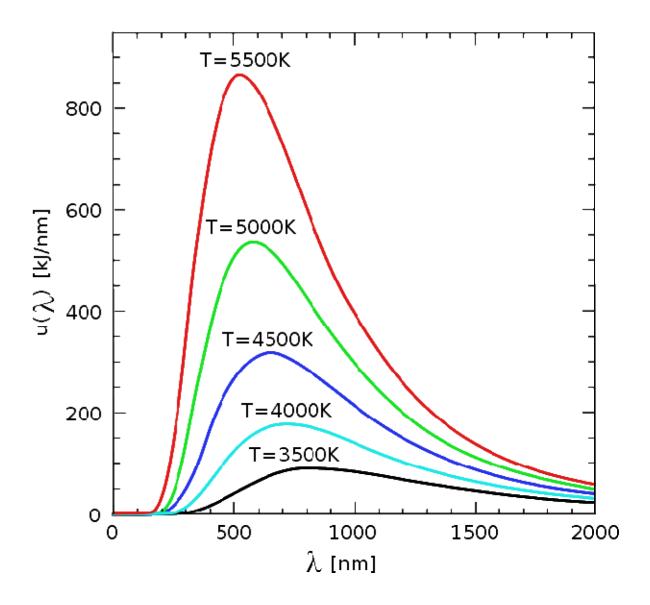


Figure 2. The distribution law for different T temperatures

We see there are two different λ_1 and λ_2 for each T and intensity, so we can find between them a d so that $\lambda_1 < d < \lambda_2$.

We have many possibilities for such asymmetrical reflections, so we have many stable oscillator configurations for any T temperature with equal exchange of intensity by radiation. All of these configurations can exist together. At the λ_{max} is the annihilation point where the configurations are symmetrical. The λ_{max} is changing by the Wien's displacement law in many textbooks.

$$\lambda_{\max} = \frac{b}{T}$$

where λ_{max} is the peak wavelength, *T* is the absolute temperature of the black body, and *b* is a constant of proportionality called *Wien's displacement constant*, equal to 2.8977685(51)×10⁻³ m·K (2002 CODATA recommended value).

By the changing of T the asymmetrical configurations are changing too.

The structure of the proton

We must move to the higher T temperature if we want look into the nucleus or nucleon arrive to d<10⁻¹³ cm. If an electron with λ_e < d move across the proton then by (5) 2 (m+1) = n with m = 0 we get n = 2 so we need two particles with negative and two particles with positive charges. If the proton can fraction to three parts, two with positive and one with negative charges, then the reflection of oscillators are right. Because this very strange reflection where one part of the proton with the electron together on the same side of the reflection, the all parts of the proton must be quasi lepton so d > λ_{a} . One way dividing the proton to three parts is, dividing his oscillation by the three direction of the space. We can order 1/3 e charge to each coordinates and 2/3 e charge to one plane oscillation, because the charge is scalar. In this way the proton has two +2/3 e plane oscillation and one linear oscillation with -1/3 e charge. The colors of quarks are coming from the three directions of coordinates and the proton is colorless. The flavors of guarks are the possible oscillations differently by energy and if they are plane or linear oscillations. We know there is no possible reflecting two oscillations to each other which are completely orthogonal, so the quarks never can be free, however there is an asymptotic freedom while their energy are increasing to turn them to the orthogonally. If they will be completely orthogonal then they lose this reflection and take new partners from the vacuum. Keeping the symmetry of the vacuum the new oscillations are keeping all the conservation laws, like charge, number of baryons and leptons. The all features of gluons are coming from this model. The mathematics of reflecting oscillators show Fermi statistics.

Important to mention that in the Deuteron there are 3 quarks of +2/3 and -1/3 charge, that is three u and d quarks making the complete symmetry and because this its high stability.

The Pauli Exclusion Principle says that the diffraction points are exclusive!

The Strong Interaction

Confinement and Asymptotic Freedom

For any theory to provide a successful description of strong interactions it should simultaneously exhibit the phenomena of confinement at large distances and asymptotic freedom at short distances. Lattice calculations support the hypothesis that for non-abelian gauge theories the two domains are analytically connected, and confinement and asymptotic freedom coexist. Similarly, one way to show that QCD is the correct theory of strong interactions is that the coupling extracted at various scales (using experimental data or lattice simulations) is unique in the sense that its variation with scale is given by the renormalization group. [4] Lattice QCD gives the same results as the diffraction theory of the electromagnetic oscillators, which is the explanation of the strong force and the quark confinement. [1]

The weak interaction

The weak interaction transforms an electric charge in the diffraction pattern from one side to the other side, causing an electric dipole momentum change, which violates the CP and time reversal symmetry.

Another important issue of the quark model is when one quark changes its flavor such that a linear oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1. This kind of change in the oscillation mode requires not only parity change, but also charge and time changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino.

The right handed anti-neutrino and the left handed neutrino exist only because changing back the quark flavor could happen only in reverse, because they are different geometrical constructions, the u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It needs also a time reversal, because anti particle (anti neutrino) is involved.

The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction changes the entropy since more or less particles will give more or less freedom of movement. The entropy change is a result of temperature change and breaks the equality of oscillator diffraction intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and

makes possible a different time dilation as of the special relativity.

The limit of the velocity of particles as the speed of light appropriate only for electrical charged particles, since the accelerated charges are self maintaining locally the accelerating electric force. The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that is the time coordinate not works as in the electromagnetic interactions, consequently the speed of neutrinos is not limited by the speed of light.

The weak interaction T-asymmetry is in conjunction with the T-asymmetry of the second law of thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes the weak interaction, for example the Hydrogen fusion.

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional oscillation by changing d to u quark and creating anti neutrino going back in time relative to the proton and electron created from the neutron, it seems that the anti neutrino fastest then the velocity of the photons created also in this weak interaction?

A quark flavor changing shows that it is a reflection changes movement and the CP- and Tsymmetry breaking. This flavor changing oscillation could prove that it could be also on higher level such as atoms, molecules, probably big biological significant molecules and responsible on the aging of the life.

Important to mention that the weak interaction is always contains particles and antiparticles, where the neutrinos (antineutrinos) present the opposite side. It means by Feynman's

interpretation that these particles present the backward time and probably because this they seem to move faster than the speed of light in the reference frame of the other side.

Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by the velocity of the electromagnetic wave, so the neutrino's velocity cannot exceed the velocity of light.

The General Weak Interaction

The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of

Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows the increasing entropy and decreasing information by the Weak Interaction, changing the temperature dependent diffraction patterns. A good example of this is the neutron decay, creating more particles with less known information about them.

The neutrino oscillation of the Weak Interaction shows that it is a general electric dipole change and it is possible to any other temperature dependent entropy and information changing diffraction pattern of atoms, molecules and even complicated biological living structures.

We can generalize the weak interaction on all of the decaying matter constructions, even on the biological too. This gives the limited lifetime for the biological constructions also by the arrow of time. There should be a new research space of the Quantum Information Science the 'general neutrino oscillation' for the greater then subatomic matter structures as an electric dipole change.

There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also.

The Fluctuation Theorem says that there is a probability that entropy will flow in a direction opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is growing that is the matter formulas are emerging from the chaos. So the Weak Interaction has two directions, samples for one direction is the Neutron decay, and Hydrogen fusion is the opposite direction. [5]

Fermions and Bosons

The fermions are the diffraction patterns of the bosons such a way that they are both sides of the same thing.

The Higgs boson or Higgs particle is a proposed elementary particle in the Standard Model of particle physics. The Higgs boson's existence would have profound importance in particle physics because it would prove the existence of the hypothetical Higgs field - the simplest of several proposed explanations for the origin of the symmetry-breaking mechanism by which elementary particles gain mass. [3]

The fermions' spin

The moving charges are accelerating, since only this way can self maintain the electric field causing their acceleration. The electric charge is not point like! This constant acceleration possible if there is a rotating movement changing the direction of the velocity. This way it can accelerate forever without increasing the absolute value of the velocity in the dimension of the time and not reaching the velocity of the light.

The Heisenberg uncertainty relation says that the minimum uncertainty is the value of the spin: 1/2 h = d x d p or 1/2 h = d t d E, that is the value of the basic energy status.

What are the consequences of this in the weak interaction and how possible that the neutrinos' velocity greater than the speed of light?

The neutrino is the one and only particle doesn't participate in the electromagnetic interactions so we cannot expect that the velocity of the electromagnetic wave will give it any kind of limit.

The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction changes the entropy since more or less particles will give more or less freedom of movement. The entropy change is a result of temperature change and breaks the equality of oscillator diffraction intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and

makes possible a different time dilation as of the special relativity.

The source of the Maxwell equations

The electrons are accelerating also in a static electric current because of the electric force, caused by the potential difference. The magnetic field is the result of this acceleration, as you can see in [2].

The mysterious property of the matter that the electric potential difference is self maintained by the accelerating electrons in the electric current gives a clear explanation to the basic sentence of the relativity that is the velocity of the light is the maximum velocity of the matter. If the charge could move faster than the electromagnetic field than this self maintaining electromagnetic property of the electric current would be failed.

Also an interesting question, how the changing magnetic field creates a negative electric field? The answer also the accelerating electrons will give. When the magnetic field is increasing in time by increasing the electric current, then the acceleration of the electrons will increase, decreasing the charge density and creating a negative electric force. Decreasing the magnetic field by decreasing the electric current will decrease the acceleration of the electrons in the electric current and increases the charge density, creating an electric force also working against the change. In this way we have explanation to all interactions between the electric and magnetic forces described in the Maxwell equations.

The second mystery of the matter is the mass. We have seen that the acceleration change of the electrons in the flowing current causing a negative electrostatic force. This is the cause of the relativistic effect - built-in in the Maxwell equations - that is the mass of the electron growing

with its acceleration and its velocity never can reach the velocity of light, because of this growing negative electrostatic force. The velocity of light is depending only on 2 parameters: the magnetic permeability and the electric permittivity.

There is a possibility of the polarization effect created by electromagnetic forces creates the negative and positive charges. In case of equal mass as in the electron-positron pair it is simply, but on higher energies can be asymmetric as the electron-proton pair of neutron decay by week interaction and can be understood by the Feynman graphs.

Anyway the mass can be electromagnetic energy exceptionally and since the inertial and gravitational mass are equals, the gravitational force is electromagnetic force and since only the magnetic force is attractive between the same charges, is very important for understanding the gravitational force.

The Uncertainty Relations of Heisenberg gives the answer, since only this way can be sure that the particles are oscillating in some way by the electromagnetic field with constant energies in the atom indefinitely. Also not by chance that the uncertainty measure is equal to the fermions spin, which is one of the most important feature of the particles. There are no singularities, because the moving electron in the atom accelerating in the electric field of the proton, causing a charge distribution on delta x position difference and with a delta p momentum difference such a way that they product is about the half Planck reduced constant. For the proton this delta x much less in the nucleon, than in the orbit of the electron in the atom, the delta p is much higher because of the greatest proton mass.

The Special Relativity

The mysterious property of the matter that the electric potential difference is self maintained by the accelerating electrons in the electric current gives a clear explanation to the basic sentence of the relativity that is the velocity of the light is the maximum velocity of the matter. If the charge could move faster than the electromagnetic field than this self maintaining electromagnetic property of the electric current would be failed. [8]

The Heisenberg Uncertainty Principle

Moving faster needs stronger acceleration reducing the dx and raising the dp. It means also mass increasing since the negative effect of the magnetic induction, also a relativistic effect!

The Uncertainty Principle also explains the proton – electron mass rate since the dx is much less requiring bigger dp in the case of the proton, which is partly the result of a bigger mass m_p because of the higher electromagnetic induction of the bigger frequency (impulse).

The Gravitational force

The changing magnetic field of the changing current causes electromagnetic mass change by the negative electric field caused by the changing acceleration of the electric charge.

The gravitational attractive force is basically a magnetic force.

The same electric charges can attract one another by the magnetic force if they are moving parallel in the same direction. Since the electrically neutral matter is composed of negative and positive charges they need 2 photons to mediate this attractive force, one per charges. The Bing Bang caused parallel moving of the matter gives this magnetic force, experienced as gravitational force.

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.

You can think about photons as virtual electron – positron pairs, obtaining the necessary virtual mass for gravity.

The mass as seen before a result of the diffraction, for example the proton – electron mass rate M_p = 1840 M_e . In order to move one of these diffraction maximum (electron or proton) we need to intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction maximum, means its intensity or mass. [1]

The Big Bang caused acceleration created radial currents of the matter, and since the matter is composed of negative and positive charges, these currents are creating magnetic field and attracting forces between the parallel moving electric currents. This is the gravitational force experienced by the matter, and also the mass is result of the electromagnetic forces between the charged particles. The positive and negative charged currents attracts each other or by the magnetic forces or by the much stronger electrostatic forces!?

The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy. There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

The Graviton

In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation in the framework of quantum field theory. If it exists, the graviton is expected to be massless (because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank tensor (compared to electromagnetism's spin-1 photon, the source of which is the four-current, a first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress-energy tensor in the same way that the gravitational field does. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only experimental verification needed for the graviton may simply be the discovery of a massless spin-2 particle. [3]

What is the Spin?

So we know already that the new particle has spin zero or spin two and we could tell which one if we could detect the polarizations of the photons produced. Unfortunately this is difficult and neither ATLAS nor CMS are able to measure polarizations. The only direct and sure way to confirm that the particle is indeed a scalar is to plot the angular distribution of the photons in the rest frame of the centre of mass. A spin zero particles like the Higgs carries no directional information away from the original collision so the distribution will be even in all directions. This test will be possible when a much larger number of events have been observed. In the mean time we can settle for less certain

indirect indicators.

The Casimir effect

The Casimir effect is related to the Zero-point energy, which is fundamentally related to the Heisenberg uncertainty relation. The Heisenberg uncertainty relation says that the minimum uncertainty is the value of the spin: 1/2 h = dx dp or 1/2 h = dt dE, that is the value of the basic energy status.

The moving charges are accelerating, since only this way can self maintain the electric field causing their acceleration. The electric charge is not point like! This constant acceleration possible if there is a rotating movement changing the direction of the velocity. This way it can accelerate forever without increasing the absolute value of the velocity in the dimension of the time and not reaching the velocity of the light. In the atomic scale the Heisenberg uncertainty relation gives the same result, since the moving electron in the atom accelerating in the electric field of the proton, causing a charge distribution on delta x position difference and with a delta p momentum difference such a way that they product is about the half Planck reduced constant. For the proton this delta x much less in the nucleon, than in the orbit of the electron is not a point like particle, but has a real charge distribution.

Electric charge and electromagnetic waves are two sides of the same thing; the electric charge is the diffraction center of the electromagnetic waves, quantified by the Planck constant h.

The Fine structure constant

The Planck constant was first described as the proportionality_constant between the energy (E) of a photon and the frequency (ν) of its associated electromagnetic wave. This relation between the energy and frequency is called the **Planck relation** or the **Planck–Einstein equation**:

$$E = h\nu$$
.

Since the frequency \mathcal{V} , wavelength λ , and speed of light c are related by $\lambda v = c$, the Planck relation can also be expressed as

$$E = \frac{hc}{\lambda}.$$

Since this is the source of Planck constant, the e electric charge countable from the Fine structure constant. This also related to the Heisenberg uncertainty relation, saying that the mass of the proton should be bigger than the electron mass because of the difference between their wavelengths.

The expression of the fine-structure constant becomes the abbreviated

$$\alpha = \frac{e^2}{\hbar c}$$

This is a dimensionless constant expression, 1/137 commonly appearing in physics literature.

This means that the electric charge is a result of the electromagnetic waves diffractions, consequently the proton – electron mass rate is the result of the equal intensity of the corresponding electromagnetic frequencies in the Planck distribution law, described in my diffraction theory.

Path integral formulation of Quantum Mechanics

The path integral formulation of quantum mechanics is a description of quantum theory which generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique trajectory for a system with a sum, or functional integral, over an infinity of possible trajectories to compute a quantum amplitude. [7]

It shows that the particles are diffraction patterns of the electromagnetic waves.

Conclusions

The proposed topolaritons arise from the strong coupling of a photon and an exciton, a bound state of an electron and a hole. Their topology can be thought of as knots in their gapped energy-band

structure. At the edge of the systems in which topolaritons emerge, these knots unwind and allow the topolaritons to propagate in a single direction without back-reflection. In other words, the topolaritons cannot make U-turns. Back-reflection is a known source of detrimental feedback and

loss in photonic devices. The topolaritons' immunity to it may thus be exploited to build devices with increased performance. [12]

Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. This remarkable property is mathematically a consequence of the underlying integrability of the onedimensional (1D) equations, such as the nonlinear Schrödinger equation, that describe solitons in a variety of wave contexts, including matter waves1, 2. Here we explore the nature of soliton collisions using Bose–Einstein condensates of atoms with attractive interactions confined to a quasi-1D waveguide. Using real-time imaging, we show that a collision between solitons. By controlling the strength of the nonlinearity we shed light on these fundamental features of soliton collisional dynamics, and explore the implications of collisions in the proximity of the crossover between one and three dimensions where the loss of integrability may precipitate catastrophic collapse. [10]

"It's a photonic interaction that's mediated by the atomic interaction," Lukin said. "That makes these two photons behave like a molecule, and when they exit the medium they're much more likely to do so together than as single photons." To build a quantum computer, he explained, researchers need to build a system that can preserve quantum information, and process it using quantum logic operations. The challenge, however, is that quantum logic requires interactions between individual quanta so that quantum systems can be switched to perform information processing. [9]

The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity. The electric currents causing self maintaining electric potential is the source of the special and general relativistic effects. The Higgs Field is the result of the electromagnetic induction. The Graviton is two photons together.

References

[1] <u>http://www.academia.edu/3834454/3_Dimensional_String_Theory</u>

[2] http://www.academia.edu/3833335/The_Magnetic_field_of_the_Electric_current

[3] http://www.academia.edu/4158863/Higgs_Field_and_Quantum_Gravity

- [4] http://www.academia.edu/4196521/The Electro-Strong Interaction
- [5] http://www.academia.edu/4221717/General Weak Interaction
- [6] The Feynman Lectures on Physics p. 274 (30.6)
 Author: Richard Phillips Feynman
 Publisher: Addison Wesley Longman (January 1970)
 ISBN-10: 0201021153 | ISBN-13: 978-

0201021158 [7] Path Integral Formulation of Quantum

Mechanics

http://en.wikipedia.org/wiki/Path_integral_formulation

- [8] https://www.academia.edu/4215078/Accelerated Relativity
- [9] http://phys.org/news/2013-09-scientists-never-before-seen.html
- [10] http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3135.html
- [11] http://www.sciencedaily.com/releases/2014/11/141102160109.htm
- [12] http://physics.aps.org/synopsis-for/10.1103/PhysRevX.5.031001
- [13] Quantum dots enhance light-to-current conversion in layered semiconductors

http://phys.org/news/2016-04-quantum-dots-light-to-current-conversion-

layered.html

[14] New nanodevice shifts light's color at single-photon level

http://phys.org/news/2016-04-nanodevice-shifts-single-photon.html [15] Novel

metasurface revolutionizes ubiquitous scientific tool http://phys.org/news/2016-

01-metasurface-revolutionizes-ubiquitous-scientific-tool.html

[16] Physicists discover a new form of light <u>http://phys.org/news/2016-05-</u>

physicists.html

[17] Liquid Light with a Whirl <u>http://physics.aps.org/articles/v9/88</u>

[18] Researchers have created quantum states of light whose noise level has been "squeezed" to a record low.

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.117.110801

[19] For first time, researchers see individual atoms keep away from each other or

bunch up as pairs http://phys.org/news/2016-09-individual-atoms-bunch-pairs.html

[20] Physicists create nanoscale mirror with only 2000 atoms

http://phys.org/news/2016-09-physicists-nanoscale-mirror-atoms.html [21] Computer

chip technology repurposed for making reflective nanostructures

https://phys.org/news/2017-07-chip-technology-repurposed-nanostructures.html

[22] Single molecular layer and thin silicon beam enable nanolaser operation at room

temperature https://phys.org/news/2017-07-molecular-layer-thin-silicon-enable.html

[23] First imaging of free nanoparticles in laboratory experiment using a high-intensity laser

source https://phys.org/news/2017-09-imaging-free-nanoparticles-laboratory-high-intensity.html

[24] Sensing with a twist: A new kind of optical nanosensor uses torque for signal processing

https://phys.org/news/2017-09-kind-optical-nanosensor-torque.html

[25] Quantum dot ring lasers emit colored light

https://phys.org/news/2018-01-quantum-dot-lasers-emit.html

[26] Assessing quantum dot photoemissions

https://phys.org/news/2018-03-quantum-dot-photoemissions.html

[27] Quantum dots show promise for Parkinson's treatment

https://cosmosmagazine.com/technology/quantum-dots-show-promise-for-parkinson-s-treatment

[28] Quantum dots that light up TVs could be used for brain research

https://phys.org/news/2019-10-quantum-dots-tvs-brain.html

[29] Quantum dots technology to revolutionize healthcare and sensing technology

https://phys.org/news/2019-10-quantum-dots-technology-revolutionize-healthcare.html

[30] Nanomesh drug delivery provides hope against global antibiotic resistance

https://phys.org/news/2019-10-nanomesh-drug-delivery-global-antibiotic.html

[31] Bio-circuitry mimics synapses and neurons in a step toward sensory computing

https://phys.org/news/2019-10-bio-circuitry-mimics-synapses-neurons-sensory.html

[32] Researchers obtain the first mice born with hyper-long telomeres

https://phys.org/news/2019-10-mice-born-hyper-long-telomeres.html

[33] A new approach to tackle superbugs

https://phys.org/news/2019-10-approach-tackle-superbugs.html

[34] Mathematical modelling vital to tackling disease outbreaks

https://phys.org/news/2019-10-mathematical-vital-tackling-disease-outbreaks.html

[35] First genome of spotted lanternfly built from a single insect

https://phys.org/news/2019-10-genome-lanternfly-built-insect.html

[36] Floating magnetic microrobots for fiber functionalization

https://phys.org/news/2019-10-magnetic-microrobots-fiber-functionalization.html

[37] Targeted treatment guides radiation directly to pancreatic tumours

https://physicsworld.com/a/targeted-treatment-guides-radiation-directly-to-pancreatic-tumours/

[38] Cell stiffness may indicate whether tumors will invade

https://phys.org/news/2019-10-cell-stiffness-tumors-invade.html