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Abstract

This tutorial takes trigonometry to be the study of the transformation of a two-dimensional vector’s
Cartesian coordinates when it is rotated about the Cartesian origin of coordinates in its plane. Since the
Pythagorean theorem underlies the idea of Cartesian coordinates, the tutorial commences with a plane-
geometry recapitulation of that theorem. Three characteristics of the planar rotation transformations
of a two-dimensional vector’s Cartesian coordinates are pointed out: their linearity, their preservation
of the vector’s length and their additivity in successive rotation angles. The rotated vector’s Cartesian
coordinates themselves aren’t thus successively additive; they reflect mapping of the rotation angles into
the more intricate corresponding changes of the vector’s location in two dimensions. The machinery which
maps successive rotation angles into the corresponding two-dimensional locations is the “angle-addition
formula”; it performs that task via application of the sine and cosine functions to the rotation angles. The
last part of the tutorial studies properties of the sine and cosine functions, one of the most fascinating is
that they are the imaginary and real parts of the exponential function of imaginary argument.

Review of the Pythagorean theorem in plane geometry

Some plane geometry texts gloss over the Pythagorean theorem without mentioning its centrality to Cartesian
coordinates, or emphasizing that it follows from the equality of the ratios of the corresponding side lengths
of three particular similar right triangles. Because the Pythagorean theorem isn’t given the prominence it
merits in some plane geometry texts, we reprise its demonstration here.

Given a right triangle whose two legs have lengths denoted l1 and l2, and whose hypotenuse has length
denoted h, we construct the the line segment from its right-angle vertex to its hypotenuse which is perpen-
dicular to the latter. We note that this line segment, whose length we denote p, divides the right triangle
into two right triangles, each of which is similar to the original right triangle because their angles are the
same. The intersection point of this line segment with the hypotenuse divides the hypotenuse into two line
segments: we denote as s the length of the hypotenuse line segment which intersects the leg of length l1; the
remaining hypotenuse line segment, whose length of course is (h− s), intersects the leg of length l2. Because
the three right triangles are similar to each other, the following equalities of the ratios of their corresponding
side lengths hold,

s/l1 = p/l2 = l1/h and p/l1 = (h− s)/l2 = l2/h, (1a)

where the last equality turns out to be redundant; we ignore it. Solving the remaining equalities for p yields,

p = s l2/l1 = l1l2/h = (h− s)l1/l2, (1b)

which can in turn be solved for s and (h− s) in terms of l1, l2 and h, with the results,

s = (l1)2/h and (h− s) = (l2)2/h. (1c)

Adding the two equalities of Eq. (1c) to eliminate s yields,

h =
(
(l1)2 + (l2)2

)/
h ⇒ h2 = (l1)2 + (l2)2. (1d)

The final equality of Eq. (1d) is the Pythagorean theorem.

The linear changes of coordinates produced by planar rotation of a vector

A fundamental concept underlying trigonometry is that the new coordinates of a unit-length vector which
has been rotated in the x − y plane are a linear transformation of its previous x − y coordinates, with the
coefficients of that linear transformation being, aside from certain particular signs, the sine and cosine of the
rotation angle θ; those planar rotations naturally leave the the vector’s unit length unchanged, which turns
out to be a consequence of the identity cos2 θ + sin2 θ = 1 in conjunction with the Pythagorean theorem.
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An x−y planar vector described as (x, y) has, according to the Pythagorean theorem, the length (x2+y2)
1
2

from the origin point (0, 0) to its (x, y) point. Now consider the unit-length vector (1, 0) that points in the
x-direction. Its counterclockwise rotation by angle θ is given by,

R(θ)(1, 0) = (cos θ, sin θ), (2a)

whose length from the origin point (0, 0) is by the Pythagorean theorem (cos2 θ + sin2 θ)
1
2 , which, because

of the identity cos2 θ + sin2 θ = 1, is equal to unity. Thus R(θ) indeed leaves the unit length of the vector
(1, 0) unchanged.

The fact that R(θ) is a linear transformation allows us to conclude that,

R(θ)(x, y) = R(θ)[x(1, 0) + y(0, 1)] = xR(θ)(1, 0) + yR(θ)(0, 1) = x(cos θ, sin θ) + yR(θ)(0, 1). (2b)

We see from Eq. (2b) that to obtain R(θ)(x, y) we must be able to obtain R(θ)(0, 1). A partial step toward
obtaining R(θ)(0, 1) is to note from Eq. (2a) that R(π/2)(1, 0) = (cos(π/2), sin(π/2)) = (0, 1), so,

R(θ)(0, 1) = R(θ)R(π/2)(1, 0). (2c)

With regard to Eq. (2c), another important property of x− y planar rotations, in addition to their linearity,
is their angle-additivity , namely that,

R(θ1)R(θ2) = R(θ2)R(θ1) = R(θ1 + θ2). (2d)

Therefore from Eqs. (2c), (2d) and (2a),

R(θ)(0, 1) = R(θ + π/2)(1, 0) = (cos(θ + π/2), sin(θ + π/2)) = (− sin(θ), cos(θ)), (2e)

where to obtain the last equality we have applied—albeit only to a very limited extent—our knowledge of
trigonometric identities. Inserting the Eq. (2e) result into Eq. (2b) yields,

R(θ)(x, y) = x(cos θ, sin θ) + y(− sin(θ), cos(θ)) = (x cos θ − y sin θ, x sin θ + y cos θ). (2f)

Eq. (2f) shows that the length of the planar-rotated vector R(θ)(x, y) is,

|R(θ)(x, y)| =
(
(x cos θ − y sin θ)2 + (x sin θ + y cos θ)2

) 1
2 =

(
x2 + y2

) 1
2 = |(x, y)|, (2g)

so planar rotation doesn’t change a vector’s length; in particular it leaves a vector of unit length still having
unit length after the rotation.

If we specialize the (x, y) in Eq. (2f) to the unit-length vector (cos θ1, sin θ1) = R(θ1)(1, 0), where the
equality follows from Eq. (2a), we can then reexpress Eq. (2f) as,

R(θ2)R(θ1)(1, 0) = (cos θ1 cos θ2 − sin θ1 sin θ2, cos θ1 sin θ2 + sin θ1 cos θ2), (2h)

and since from Eqs. (2d) and (2a),

R(θ2)R(θ1)(1, 0) = R(θ1 + θ2)(1, 0) = (cos(θ1 + θ2), sin(θ1 + θ2)), (2i)

combining Eq. (2i) with Eq. (2h) produces the full trigonometric angle-addition result ,

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 and sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2. (2j)

The above derivation of this general result assumed in Eq. (2e) only its very limited special case,

cos(θ + π/2) = − sin(θ) and sin(θ + π/2) = cos(θ). (2k)

The special case of the Eq. (2j) trigonometric angle-addition formula where θ1 = +θ and θ2 = −θ yields,

cos(0) = cos2 θ + sin2 θ and sin(0) = sin θ cos θ − cos θ sin θ = 0. (2l)

Eq. (2l) tells us that sin(0) = 0, and in light of the basic trigonometric postulate that cos2 θ + sin2 θ = 1,
it also tells us that cos(0) = 1. Basic trigonometry is encompassed by cos2 θ + sin2 θ = 1 and the Eq. (2j)
angle-addition formula.
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The derivatives with respect to θ of cos θ and sin θ also follow from cos2 θ + sin2 θ = 1 and Eq. (2j) once
it is verified that limδθ→0(sin δθ/δθ) = 1. In the limit that |δθ| → 0, |δθ| is the arc length of a very short
arc of the smooth unit-circle curve that starts from δθ = 0; that very short arc’s arc length is by its nature
well-approximated by the length of the straight-line-segment chord which joins the two ends of that arc.
Therefore we now obtain the length of the chord of an arc of the unit circle, and verify that the ratio of
| sin δθ| to that chord length approaches unity in the limit that the corresponding arc length |δθ| → 0.

The length of the chord of an arc of the trigonometric unit circle

Consider an arc of the trigonometric unit circle that starts from θ = 0 and has arc length |θ|. We denote
the length of the straight-line-segment chord which joins the two ends of that arc as chl θ. Of course that
chord length chl θ is less than the arc length |θ| of the arc, but it is greater than | sin θ|: the length chl θ of
the straight-line-segment chord which joins the two ends of the unit-circle arc of arc length |θ| is,

chl θ =
(
(sin θ)2 + (1− cos θ)2

) 1
2 ≥ | sin θ| and chl θ = (2(1− cos θ))

1
2 . (3a)

By the nature of the arc length of a smooth curve, that arc length is well approximated by the corresponding
chord length when the arc length is sufficiently short, namely,

limδθ→0(chl δθ/|δθ|) = 1. (3b)

Inverting the Eq. (3a) result for the chord length chl θ corresponding to the arc length |θ| yields,

cos θ = 1− 1
2chl2 θ ⇒ | sin θ| =

(
1− cos2 θ

) 1
2 =

(
chl2 θ − 1

4chl4 θ
) 1

2 = chl θ
(
1− 1

4chl2 θ
) 1

2 . (3c)

Eq. (3b) in conjunction with the Eq. (3c) result | sin θ| = chl θ
(
1− 1

4chl2 θ
) 1

2 implies that,

limδθ→0(| sin δθ|/|δθ|) = 1, (3d)

and since (| sin θ|/|θ|) = (sin θ/θ) when 0 < |θ| < π, Eq. (3d) implies that,

limδθ→0(sin δθ/δθ) = 1. (3e)

Interesting properties of the sine and cosine functions

With Eq. (3e) in hand, we apply it together with cos2 θ + sin2 θ = 1 and Eq. (2j) to obtain the derivatives
of cos θ and sin θ. We write Eq. (2j) in a form conducive to taking the limits that define those derivatives,

cos(θ + δθ) = cos θ cos δθ − sin θ sin δθ and sin(θ + δθ) = sin θ cos δθ + cos θ sin δθ. (4a)

Proceeding further in this vein, we note that d cos θ/dθ = limδθ→0((cos(θ+δθ)−cos(θ))/δθ) and d sin θ/dθ =
limδθ→0((sin(θ + δθ)− sin(θ))/δθ). In light of those facts, we work out from Eq. (4a) that,

d cos θ/dθ = lim
δθ→0

((cos(θ + δθ)− cos(θ))/δθ) = lim
δθ→0

[cos θ((cos δθ − 1)/δθ)− sin θ(sin δθ/δθ)] and

d sin θ/dθ = lim
δθ→0

((sin(θ + δθ)− sin(θ))/δθ) = lim
δθ→0

[sin θ((cos δθ − 1)/δθ) + cos θ(sin δθ/δθ)].
(4b)

The two key limits on the right sides of Eq. (4b) are (1) limδθ→0(sin δθ/δθ) = 1 from Eq. (3e), and (2)
limδθ→0((cos δθ − 1)/δθ). Since (cos δθ − 1) = (cos2 δθ − 1)/(cos δθ + 1) = − sin2 δθ/(cos δθ + 1), we obtain,

lim
δθ→0

((cos δθ − 1)/δθ) = lim
δθ→0

[−(sin δθ)(sin δθ/δθ)/(cos δθ + 1)] = 0. (4c)

The Eq. (4c) and (3e) limit results permit the right sides of Eq. (4b) to be evaluated ; they yield,

d cos θ/dθ = − sin θ and d sin θ/dθ = cos θ. (4d)

A certain linear combination of cos θ and sin θ very usefully turns out to be an exponential . We write,

cos θ + β sin θ = exp(γθ), (5a)

making the two sides of Eq. (5a) agree at θ = 0. Differentiating those two sides with respect to θ yields,
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β cos θ − sin θ = γ exp(γθ) = γ(cos θ + β sin θ), (5b)

which implies that β = γ and γ2 = −1, so β = γ = ±i. Thus,

cos θ ± i sin θ = exp(±iθ). (5c)

The two signs of ±i in fact are redundant ; their effect is already accounted for when θ → −θ.
This exponential version of trigonometry very readily yields the angle-addition formulas: on one hand,

exp(iθ1) exp(iθ2) = exp(i(θ1 + θ2)) = cos(θ1 + θ2) + i sin(θ1 + θ2), (5d)

but on the other hand ,

exp(iθ1) exp(iθ2) = (cos(θ1) + i sin(θ1))(cos(θ2) + i sin(θ2)) =

(cos(θ1) cos(θ2)− sin(θ1) sin(θ2)) + i(sin(θ1) cos(θ2) + cos(θ1) sin(θ2)),
(5e)

and of course it is Eqs. (5d) and (5e) together which produce the angle-addition formulas, namely,

cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2) and sin(θ1 + θ2) = sin(θ1) cos(θ2) + cos(θ1) sin(θ2). (5f)

As well as the angle-addition formulas, exponential trigonometry categorically yields cos2 θ+sin2 θ = 1 since,

1 = exp(0) = exp
(
(iθ)+(−iθ)

)
= exp(iθ) exp(−iθ) = (cos θ + i sin θ)(cos θ − i sin θ) = cos2 θ + sin2 θ. (5g)

We proceed to the Taylor expansions of the trigonometric functions; that of exp(iθ) itself is elementary ,

exp(iθ) =
∑∞
k=0(i)k(θ)k/k! =

∑∞
m=0(i)2m(θ)2m/(2m)! +

∑∞
n=1(i)2n−1(θ)2n−1/(2n− 1)! =∑∞

m=0(−1)m(θ)2m/(2m)! + i
∑∞
n=1(−1)n−1(θ)2n−1/(2n− 1)! .

(6a)

Since exp(iθ) = cos θ + i sin θ, the Taylor expansions of cos θ and sin θ can now be read off from Eq. (6a),

cos θ =
∑∞
m=0(−1)m(θ)2m/(2m)! and sin θ =

∑∞
n=1(−1)n−1(θ)2n−1/(2n− 1)! . (6b)
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