Periodic sequences of a certain kind of progressions

Y.Mieno

Abstract. A progression and the periodic sequences of the progressions of this kind.

Keywords. periodic sequence, progression, Fermat's little theorem

0. Introduction.

We define a progression, and study the periodic sequences of the progressions of this kind.

1. Definition of a progression.

Now we define a progression as follows.

Let **k** be a positive integer and **n** be also a positive integer more than 1, then

$$a_{n,k} = 1$$
 (when n = 1)
= $(a_{n-1,k}+n)^{k-1} \pmod{k}$ (when n > 1)

2. Periodicity of progressions.

One by one we survey the shortest periods of the progressions of this kind, for some cases of k.

When k=2, then $\{a_{n,2}\} = \{1, 1, 0, 0, 1, 1, 0, 0, 1, 1, \ldots\}$.

This progression seems periodic and we easily assume its shortest period is 4.

When k=3, then $\{a_{n,3}\} = \{1, 0, 0, 1, 0, 0, 1, 0, 0, 1, \ldots\}$.

This progression seems periodic and we easily assume its shortest period is 3.

When k=4, then $\{a_{n,4}\} = \{1, 3, 0, 0, 1, 3, 0, 0, 1, 3, 0, \ldots\}$.

This progression seems periodic and we easily assume its shortest period is 4.

When k=5, then $\{a_{n,5}\} = \{1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, \dots\}$.

This progression seems periodic and we easily assume its shortest period is 5.

Periodicity of progressions is easily found for now.

Theorem 1

Let l be a positive integer. If $a_{n,k}=a_{n+l,k}$ and k|l (i.e. l is divisible by k.) for the above-mentioned progression $\{a_{n,k}\}$, then $\{a_{n,k}\}$ has a period equal to l.

Proof.

We will prove deductively, that if $a_{n+m,k} = a_{n+m+l,k}$ then $a_{n+m+1,k} = a_{n+m+l+1,k}$. When m=0 evidently $a_{n,k} = a_{n+l,k}$. Furthermore if $a_{n+m,k} = a_{n+m+l,k}$ then $a_{n+m+1,k} \equiv (a_{n+m,k}+n+m+1)^{k-1}$ (mod k) $\equiv (a_{n+m+l,k}+n+m+l+1)^{k-1}$ (mod k) $= a_{n+m+l+1,k}$. This completes Theorem 1.

Theorem 2

Suppose k a prime number larger than 2. If $n\equiv 0$ or $n\equiv k-1 \pmod{k}$ then $a_{n,k}=0$, otherwise $a_{n,k}=1$.

Proof.

When k=3 then $a_{1,3}=1$, $a_{2,3}=(a_{1,3}+2)^2 \pmod{3}=0$, $a_{3,3}=(a_{2,3}+3)^2 \pmod{3}=9 \pmod{3}=0$, $a_{4,3}=(a_{3,3}+4)^2 \pmod{3}=1 \pmod{3}=1$.

Therefore $a_{1,3}=1=a_{4,3}$, so 3 is a period of this progression. This completes Theorem 2 for k=3.

When k is larger than 3 then, by applying Fermat's little theorem, $a_{1,k}=1$, $a_{2,k}=(a_{1,k}+2)^{k-1} \pmod{k} = 3^{k-1} \pmod{k} = 1$, $a_{3,k}=(a_{2,k}+3)^{k-1} \pmod{k} = 4^{k-1}$

progression.

This completes Theorem 2 for k is larger than 3.