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We investigate cosmological features of the variable Chaplygin gas (VCG) describing a unified
dark matter-energy scenario in a universe governed by the five dimensional (5D) Kaluza-Klein
(KK) gravity. In such a proposal, the VCG evolves as from the dust-like phase to the phantom
or the quintessence phases. It is concluded that the background evolution for the KK type VCG
definition is equivalent to that for the dark energy interacting with the dark matter. Next, after
performing neo-classical tests, we calculated the proper, luminosity and angular diameter distances.
Additionally, we construct a connection between the VCG in the KK universe and a homogenous
minimally coupled scalar field by introducing its self-interacting potential and also we confirm the
stability of the KK type VCG model by making use of thermodynamics. Moreover, we use data
from Type Ia Supernova (SN Ia), observational H(z) dataset (OHD) and Planck-2015 results to
place constraints on the model parameters. Subsequently, according to the best-fit values of the
model parameters we analyze our results numerically.
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I. INTRODUCTION

Cosmological and astronomical data such as the type
Ia supernovae (SNe-Ia)[1, 2], cosmic microwave back-
ground (CMB)[3], large scale structure (LSS)[4], Wilkin-
son Microwave Anisotropy Probe (WMAP)[5–7], Sloan
Digital Sky Survey (SDSS)[8] and the Planck 2015[9] im-
ply that the current universe experiences a speedy ex-
pansion stage. The reason of such a phase transition
may be explained by introducing dark energy definitions.
The cosmological constant is one of the primordial pro-
posals of the dark energy, so there are other theoreti-
cal dark energy candidates such as phantom[10–13] and
quintessence[14–19] models. The cosmological constant
is the simplest definition of the dark energy but the model
faces some serious problematic issues[20, 21] such as the
fine tuning (unconventional small value) and cosmic co-
incidence problems (why the dark matter and the dark
energy are of the same order today although the universe
is in a speedy expansion phase?). Due to the dynami-
cal dark energy is a useful alternative idea to lighten or
even remove these problematic issues, the cosmological
constant model has been transformed into a dynamical
form in several methods. In order to implement the dy-
namized version of the cosmological constant dark en-
ergy definition, we can describe an interaction between
the dark matter and the dark energy[22–27]. There are
also some alternative significant dark energy models such
as the Chaplygin gas (CG)[28, 29] and the Polytropic
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gas (PG)[31] which emerged from the string theory of
gravity[32]. The noteworthy CG model has been de-
veloped also to the generalized[33–35], modified[36, 37],
variable[38–42] and the extended[43] forms. A charm-
ing characteristic of the (original, generalized, modified,
variable or extended) CG models is their capability of a
unified definition of the dark matter-energy dominated
era. The corresponding energy density interpolates be-
tween an early time decelerated expansion phase and a
late time accelerated expansion phase. Cosmological in-
dications relying on the dynamics of CG models have
been widely investigated in literature[28, 29, 33–46].

On the other hand, an alternative idea to discuss the
inflation and speedy expansion phases of our universe is
to study with modified theories of gravity such as f(R)-
gravity, f(T )-theory, f(G)-gravity and extra dimensional
ideas. The KK theory is one of the most important extra
dimensional theories which came forward as an attempt
to couple electromagnetism and gravity[47, 48]. Accord-
ing to the idea behind the KK gravity, the Universe may
have five dimensions (5Ds). Further investigations clas-
sified the 5D KK theory into two different forms such as
the compact and non-compact ones[49–51]. In the com-
pact KK theory, the extra fifth dimension is length-like.
However, the non-compact KK theory includes a mass
like fifth dimension and it is an outcome of the Camp-
bell theorem in which we cannot describe any matter
into 5D manifold by hand[21, 49–51]. Additionally, the
original KK theory turned out to a be base for other ex-
tra dimensional ideas in different perspectives like brane
models[52], string theory[53] and super gravity[54] (see
review of the KK and other extra dimensional unified
theories[55]). That’s why it would be very interesting to
construct the CG model in the KK universe.

The original CG[28, 29] description is given by an
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equation-of-state (EoS)

p = −Bρ−1. (1)

The VCG which is a phenomenologically extended model
of the original CG model is characterized by an EoS

p = −Ba−n

ρ
, (2)

where the time-dependent function a(t) implies the cos-
mic scale factor given in the spacetime metric. In this
study, we focus on the VCG model which can be reduced
to the original CG proposal under a limiting condition.
We organize this paper as following: in the next sec-

tion, we reconstruct the VCG model in the compact KK
theory and investigate some of its cosmological implica-
tions. In the third section, we discuss neo-classical tests.
In the fourth section, the relationship between a homo-
geneous minimally coupled scalar field and the KK type
VCG is reevaluated by establishing its self-interacting po-
tential. In the fifth section, we discuss the generalized
second law of thermodynamics (GSL) in order to con-
firm stability of the KK type VCG proposal. The sixth
section is devoted to the numerical analyzes in order to
fit the model by using the recent observational data. In
the seventh section of the study, we perform some addi-
tional numerical analyzes. Finally, in the eighth section,
we give our closing remarks. All numerical calculations
and analyzes had been performed by using Wolfram’s
MATHEMATICA sofware[30].

II. KK FORM OF THE VCG

The KK universe is represented by[56]

ds2 = dt2 − a2(t)[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

+(1− kr2)dx2
5], (3)

where k is known as the curvature parameter for the
flat (k = 0), closed (k = −1) and open (k = +1) uni-
verse types. It is known that the recent astronomical
observations sighted by SNe-Ia[2], WMAP[5], SDSS[8],
Planck-2015[9] and X-ray[57] strongly suggest a spatially
flat type universe.
We assume that the KK universe is dominated by per-

fect fluid which is described by

Tµν = (ρ+ p)uµuν − gµνp, (4)

with µ, ν = 0, 1, 2, 3, 5. Here, ρ and p are, respectively,
energy density and pressure of the VCG which is a com-
bination of the dark energy and dark matter and uµ is
the five-velocity vector satisfying uµuµ = 1.
Einstein’s field equations are written as

Rµν − 1

2
gµνR = 8πG [(ρ+ p)uµuν − gµνp] (5)

where Rµν , gµν , R and G show the Ricci tensor, met-
ric tensor, Ricci scalar and the gravitational constant,
respectively. Making use of equations (3) and (5) with
k = 0, it follows that

H2 =
4πG

3
ρ, (6)

2H2 + Ḣ = −8πG

3
p, (7)

where H = ȧ
a is the cosmic Hubble expansion parameter

and the over-dot implies derivative with respect to t. The
continuity equation, i.e. Tµν

;ν = 0, yields

dρ

d ln a
+ 4(1 + ω)ρ = 0, (8)

with the fact that the EoS parameter of the VCG is given
as ω = p

ρ .

In a general form, the CG is described by the following
expression

p =
∞∑
i=1

Aiρ
i − Ba−n

ρα
, (9)

where 0 < α ≤ 1 and i, Ai, B and n denote free constants,
so it can be seen that we have (i+ 3) free parameters in
the general model. In order to solve the equation (8)
analytically, we consider the first order case and assume
a significant set of free parameters, i.e. A1 = 0 and α = 1,
defining the VCG[38–42]:

p = −Ba−n

ρ
. (10)

Note that n = 0 case defines the original CG (OCG)
proposal interpolating between the de Sitter universe and
a dust dominated one. Inserting equation (10) into the
energy conservation relation (8), we calculate that the
energy density of the VCG evolves as

ρ = a−4

√
8

∫
Ba7−nda+ ξ, (11)

where ξ implies an integration constant. Thus, one finds

ρ =

[
8

8− n

B

an
+

ξ

a8

] 1
2

. (12)

From the equation (6), it is seen that the acceleration
case ä > 0 is equivalent to[

4− 8

8− n

]
a8−n >

ξ

B
, (13)

which requires n < 6. Hence, the present value of the
VCG energy density is written as

ρ0 =

[
ξ +

8B

8− n

] 1
2

(14)
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when a = a0 = 1. On the other hand, it is known[43] that
the energy density of the universe (ρ) is related with the
cosmological density (ρc) by ρ = 1.31ρc which means we
must take ρ0 = 1.31 when a0 = 1. Consequently, the
integration constant ξ can be written as

ξ = 1.72− 8B

8− n
. (15)

Next, defining

A =
ξ

ξ + 8B
8−n

(16)

transforms the energy density into the following form

ρ = ρ0
√
Aa−8 + (1−A)a−n. (17)

Compared to the OCG description, in the VCG model,
the Universe tends to be filled with phantom dark energy
(n < 0)[10] or quintessence one (n > 0)[58, 59] with the
following EoS parameter

ω = −1 +
n

8
. (18)

On the right hand side of the equation (17), the second
term is initially negligible and from this point of view one
can rewrite the relation (17) approximately as ρ ∼ a−4,
which corresponds to a dust-like matter dominated KK
universe.
Writing relations in terms of the cosmic red shift pa-

rameter z helps us to use astrophysical data in order to
identify free parameters in a theoretical model. The scale
factor and red shift parameter are related to each other
by

z =
1

a
− 1, (19)

and we chose a0 = 1 for convenience. Hence, we can
write,

ρ = ρ0
√
A(1 + z)8 + (1−A)(1 + z)n (20)

Additionally, after defining E(z) ≡ H−1
0 H(z) where H0

represents the current value of the cosmic Hubble param-
eter, we find

H(z) = H0ρ
1
4
0

[
A(1 + z)8 + (1−A)(1 + z)n

] 1
4 . (21)

So that there are two free parameters in the KK type
VCG model, B and n. According to the Planck 2015
results, the current value of the Hubble parameter is
H0 = 67.8+0.9

−0.9km/s/Mpc.
Moreover, one can conclude that the background evo-

lution for the VCG proposal is equivalent to that for
an interaction between the dark energy and the dark
matter[61, 62] with the EoS parameter ω = −1 + n

8 .
Considering the scaling case for the dark energy-matter

density, i.e. ρ = ρm + ρe with ρe ∝ ρma8−n, for the KK
universe one can get

ρm + ρe = ρcr
√
(1− Ω0

m)(1 + z)n +Ω0
m(1 + z)8, (22)

where ρcr is a constant and it denotes the critical den-
sity while Ω0

m describes the matter density parameter.
Comparing the equation (22) with (20), it can be seen
that the parameter A is interpreted as an effective mat-
ter density. Now, we focus on ωm = 0 and ω = −1 + n

8
relations. Thus, if the coupled case is defined by

ρ̇m + 4Hρm = Γ, (23)

ρ̇e +
n

2
ρe = −Γ, (24)

then the interaction is characterized by[63, 64]

Γ = 4H
(n
8
− 1

) ρm
1 + ρm

ρe

, (25)

which describes the interaction between the dark con-
tents. Negative Γ values describe energy transition from
the dark matter era to the dark energy one, and pos-
itive values define the vice versa case. Such interac-
tion case has recently been observed in the Abell Clus-
ter A586 [65, 66] and plays a significant role as a self-
conserved dark component[67–69], however the impor-
tance of this event has not been identified clearly[70].

III. NEO-CLASSICAL TESTS

As a first step, we start with the proper distance d(z).
It is important to construct a causality relation between
source and observer at any time. After assuming a source
which is at position r̃ at time t̃ sending signal to an ob-
server at distance r at time t, the corresponding proper
distance between the observer and the source is defined
by[71]

d(z) =

∫ 1

a

da

aȧ
(26)

with a0 = 1. For the KK type VCG model, the above
relation yields

d(z) =
4(1 + z)f

(4− n)H0ρ
1
4
0

1 + A(1+z)8−n

1−A

A(1 + z)8
+ (1−A)(1 + z)n

 1
4

(27)
where

f = 2F1

[
1

4
,

n− 4

4(n− 8)
, 1 +

n− 4

4(n− 8)
;
A(1 + z)8−n

A− 1

]
.

(28)
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Here, 2F1 is the Kummer Confluent Hypergeometric
function of the second kind which is written as

2F1[a, b, c;x] = 1 +
ab

x
+

a(a+ 1)b(b+ 1)

c(c+ 1)

x2

2!
+ ...

=

∞∑
i=1

aibi
ci

xi

i!
(29)

with c ̸= 0,−1,−2, ... and |x| < 1. It is seen that the
conditions c ̸= 0, c ̸= −1 and c ̸= −2 give n ̸= 7.2,
n ̸= 7.5 and n ̸= 7.84, respectively, which satisfy n < 6.

In theoretical physics, the luminosity distance dL helps
to discuss the distribution of light to an observer who
is at a distance from the source. In other words, the
luminosity distance is given to describe the amount of
light sent to a distant observer. It is defined as

dL =

√
L

4πl
, (30)

where L and l represent the total energy emitted by a
source per unit time and apparent luminosity of an ob-
ject, respectively[71]. Consequently, it can be arrived[71]
at dL = (1 + z)d(z). Making use of the result (27), one
can calculate the corresponding luminosity distance

dL =
4(1 + z)2f

(4− n)H0ρ
1
4
0

1 + A(1+z)8−n

1−A

A(1 + z)8
+ (1−A)(1 + z)n

 1
4

.

(31)
It is easy to conclude that d(z) and dL depend upon the
cosmic redshift parameter and are also increasing func-
tions of z.

Now, let’s focus on the angular diameter distance dA
which describes a measure showing how large an object
appears to be. For a light source at proper distance, it is
written as[71]

dA =
d(z)

(1 + z)
=

dL
(1 + z)2

. (32)

Therefore, it leads to

dA =
4H−1

0 f

(4− n)ρ
1
4
0

1 + A(1+z)8−n

1−A

A(1 + z)8
+ (1−A)(1 + z)n

 1
4

.

(33)
One can also conclude that the angular diameter distance
dA is the decreasing function of the red shift parame-
ter. We see that the luminosity and angular diameter
distances have different dependence on z. While the an-
gular diameter is a decreasing function of z, the lumi-
nosity distance is directly proportional to the cosmic red
shift parameter. Hence, it means that an object appears
smaller as its distance increases. This is consistent with
the recent observational data[1–9, 57].

IV. VCG AS A SCALAR FIELD

We can define the VCG proposal by introducing a
scalar field ϕ having a self-interacting potential V (ϕ).
The corresponding Lagrangian is written as

£ =
ϕ̇2

2
− V (ϕ). (34)

Making use of the following transformation relations,
both the energy density and pressure of the VCG can
be rewritten in terms of the scalar field function ϕ:

ρϕ =
ϕ̇2

2
+ V (ϕ) = ρ, (35)

pϕ =
ϕ̇2

2
− V (ϕ) = −Ba−n

ρ
. (36)

Hence, the kinetic energy and corresponding potential of
the scalar field ϕ are defined as

ϕ̇2 = ρϕ + pϕ = (1 + ωϕ)ρϕ, (37)

V (ϕ) =
1

2
(ρϕ − pϕ) =

1

2
(1− ωϕ)ρϕ, (38)

where ωϕ =
pϕ

ρϕ
. Since ϕ̇ = −(1 + z)Hϕ′, we get

ϕ′ = −
√

n

8

ρ
1
4
0

H0
(1 + z)−1. (39)

The equation (39) can be integrated easily and it gives

ϕ− ϕ0 = −
√

n

8

ρ
1
4
0

H0
ln(1 + z). (40)

After assuming ϕ0 = 0, we find

z = −1 + e−σ2ϕ, (41)

where

σ2 =

√
n

8

ρ
1
4
0

H0
. (42)

Next, the corresponding self-interacting potential is
found as

V (ϕ) =
(
1− n

16

)
ρ0

√
Ae−8σ2ϕ + (1−A)e−nσ2ϕ. (43)

V. COSMOLOGY VIA THERMODYNAMICS

It is significant to discuss thermodynamical features of
the model which may lead to the investigation of the gen-
eralized second law of thermodynamics (GSL). For this
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purpose, we assume the flat KK universe as a thermody-
namical system which is bounded to the apparent horizon
surface. Note that, in the flat geometry, the dynamical
apparent horizon coincides with the Hubble horizon[72–
74]:

Rh = lim
k→0

[
H2 +

k

a2

] 1
2

=
1

H
. (44)

In addition to this, the temperature and the horizon en-
tropy are defined by the following relations, respectively,

T =
1

2πRh
=

H

2π
, (45)

and

Sh =
A

4G
=

π2

2G

1

H3
, (46)

where A = 2π2R3
h is the surface area of 4-sphere.

Next, the internal entropy is defined by the Gibbs’
expression[75]

TdSI = pdV + dEI , (47)

where SI , EI = ρV and V = 1
2π

2R4
h are internal en-

tropy, internal energy and the extra-dimensional volume
of the system, respectively. Taking the time derivative
of equation (47) and using equation (8), it can be found
that

T ṠI = (ρ+ p)(V̇ − 4HV ), (48)

and substituting relations (6) and (7) into this equation
yields

T ṠI =
3π

4G

Ḣ

H5
(Ḣ −H2). (49)

Additionally, considering equations (45) and (46), the
evolution of horizon entropy in the flat KK universe is
found as

T Ṡh = − 3π

4G

Ḣ

H3
. (50)

Now, one can discuss the GSL due to different contri-
butions of the CG and horizon. Adding equations (48)
and (49), we can get the GSL in the KK universe domi-
nated by CG as

T Ṡtot =
3π

4G

Ḣ

H5
(Ḣ − 2H2), (51)

where

Stot = SI + Sh. (52)

In order to examine the validity of the GSL, i.e.
T Ṡtot(t) ≥ 0, we should discuss the equation (51) graph-
ically. Due to d

dt = −(1 + z)H d
dz , the GSL transforms

into another form, i.e. TS′
tot(z) ≤ 0. Thus, we find

TS′
tot = − 3π

4G

H ′

H4
[(1 + z)H ′ + 2H] . (53)

Therefore, substituting the relation (21) into the above
result gives

TS′
tot = −3πH−2

0 ρ
− 1

2
0

64G
g
− 3

2
1

[
(1 + z)

g2
g1

+ 8

]
(54)

where

g1 = A(1 + z)8 + (1−A)(1 + z)n, (55)

g2 = 8A(1 + z)7 + n(1−A)(1 + z)n−1. (56)

We discuss this result graphically in the next section to
check the validity of the GSL.

VI. FITTING THE MODEL PARAMETERS

We can fit the model according to the recent obser-
vational measurements. In this section, we use SN Ia
dataset, OHD and Planck 2015 results in order to fix the
auxiliary parameters B and n.

A. SN Ia data with Planck-2015 results

Now, we focus on the observational SN Ia dataset in-
cluding information about the luminosity distance dL.
For the SN Ia measurements, χ2 function is written as[76]

χ2
SN =

580∑
i

[µobs(zi)− µtheo(zi)]
2

σ2
i

, (57)

where µobs and µtheo represent the observational and the-
oretical forms of the distance modulus, respectively. Ad-
ditionally, σi is the uncertainty in the distance modulus.
The theoretical distance modulus is written as

µtheo = 5 log10 dL(zi) + µ0, (58)

with

µ0 = 42.38− 5 log10 h. (59)

where h is the then-favored dimensionless Hubble param-
eter. In order to minimize the χ2

SN function with respect
to µ0 for 580 recent data points of SN Ia[77], we write[78]

χ̃2
SN = P − Q2

R
, (60)

where

P =
580∑
i

[µobs(zi)− µtheo(zi;µ0 = 0)]2

σ2
i

, (61)

Q =
580∑
i

[µobs(zi)− µtheo(zi;µ0 = 0)]

σ2
i

, (62)



6

R =
580∑
i

1

σ2
i

. (63)

The best-fit values of B and n in addition to χ2
min (the

minimum value of χ2
SN ) are presented in TABLE I.

TABLE I: χ2
min and the best-fit values of the model param-

eters obtained by using the SN Ia dataset and Planck-2015
results in the 1σ confidence region.

Parameter χ2
min B n

Min. values 140.461 1.9 -1.15

B. OHD with Planck-2015 results

Now, considering some observable H(z) data[79–90]
given in TABLE II where DGA and RBAO means the
Differential Galactic Age and the Radial Baryonic Acous-
tic Oscillation, respectively, we further investigate the
validity of the constraints on the free parameters.

TABLE II: The recent observable H(z) dataset.

z H(z) σ Method, Reference

0.0708 69.00 ∓19.68 DGA, [80]

0.1200 68.60 ∓26.20 DGA, [80]

0.1700 83.00 ∓8.000 DGA, [81]

0.1990 75.00 ∓5.000 DGA, [82]

0.2400 79.69 ∓2.650 RBAO, [83]

0.2800 88.80 ∓36.60 DGA, [80]

0.3500 84.40 ∓7.000 RBAO, [84]

0.3802 83.00 ∓13.50 DGA, [82]

0.4000 95.00 ∓17.00 DGA, [81]

0.4247 87.10 ∓11.20 DGA, [85]

0.4300 86.45 ∓3.680 RBAO, [83]

0.4497 92.80 ∓12.90 DGA, [85]

0.4783 80.90 ∓9.000 DGA, [85]

0.4800 97.00 ∓62.00 DGA, [86, 87]

0.5700 92.40 ∓4.500 RBAO, [88]

0.5930 104.0 ∓13.00 DGA, [82]

0.6800 92.00 ∓8.000 DGA, [82]

0.7300 97.30 ∓7.000 RBAO, [89]

0.7810 105.0 ∓12.00 DGA, [82]

0.8750 125.0 ∓17.50 DGA, [82]

0.9000 117.0 ∓23.00 DGA, [81]

1.3000 168.0 ∓17.00 DGA, [90]

1.4300 177.0 ∓18.00 DGA, [90]

FIG. 1 shows the evolution of the Hubble parameter
as a function of the cosmic red shift parameter in the 1σ
confidence region. Note that the dots given in FIG. 1
indicate the recent observable values. The best-fit values
of B and n are given in TABLE III.
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FIG. 1: The variation of Hubble parameter H against z.

TABLE III: The best-fit values of the auxiliary parameters B
and n obtained by considering OHD and Planck-2105 results
in the 1σ confidence region.

Parameter B n

Min. values 1.85 -1.1

VII. ADDITIONAL DISCUSSIONS

In the previous sections, we obtain some constraints
and best-fit values for the free parameter of the model.
Also, we have defined that

ξ = 1.72− 8B

8− n
, A =

ξ

ξ + 8B
8−n

. (64)

Additionally, the recent observational data[9, 43] imply
that ρ0 = 1.31, H0 = 67.8± 0.9 km s−1 Mpc−1.

In FIG. 2, we have depicted the evolution of dL and
dA given in equations (31) and (33), respectively, as a
function of the cosmic red shift parameter z. We show
that the results we obtained are in consistence with the
data presented in Refs[1–9, 57].

Next, we plot the relation TS′
tot ∼ z in FIG. 3. From

this figure, one can see that the GSL is valid in the VCG
dominated KK universe at all times.

VIII. CLOSING REMARKS

It is known that[91] the actions describing VCG and
GCG are connected with the BornInfeld type lagrangian
density[42] and its generalized definition[29], respectively.
The CG proposals emerges from the dynamics of a ex-
tended d-brane in a (d + 1, 1) dimensional universe[42].
In this work, we mainly considered the VCG model in
the compact KK framework which gives interesting and
original conclusions.

We have written the corresponding energy density as a
function of the cosmic red shift parameter and obtained
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FIG. 2: Numerical analysis of the luminosity distance dL and
angular diameter distance dA.
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FIG. 3: The GSL TS′
tot ≤ 0 in terms of the red shift param-

eter z. Here, we assume 8πG = 1 for the sake of simplicity.

an analytical relation for the Hubble parameter. Next,
we showed that there was no critical point in this type
CG model. We also confirmed stability of the KK type
VCG description using thermodynamics quantities. We
can express our conclusions in the following way:

• In contrast to the OCG, we have seen that KK type
VCG description gives more consistent results with
experimental data,

• The parameter A is interpreted as an effective mat-
ter density,

• The background evolution of the KK type VCG de-
scription matches with an interaction between the
dark energy and the dark matter (note that, in lit-
erature, the CG candidate is known as a unified
form of the dark energy and the dark matter),

• The VCG proposal is equivalent to a model includ-
ing a scalar field and self-interacting potential.
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