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Abstract

There are natural lead-ins to abstract algebra that occur in elementary

algebra. We explore function composition using linear functions and per-

mutations on letters in misspellings of words. Groups and the central idea of

abstract algebra, proving 5th degree and greater polynomials are unsolvable,

are put into focus for college students.

Introduction

You like math and are a math major. You’ve picked up a book on abstract

algebra and are feeling a little bit queasy by what you see. Relax. This is

a tutorial for you to make the transition from algebra 2, pre-calc, and the

like to abstract algebra less anxiety provoking. We’ll motivate groups in

particular and show how they fit into the grand scheme of abstract algebra.

Linear functions

Groups look at the properties that composition of functions have. You have

noticed that functions can have inverses, for example, and that sometimes

f ı g ¤ g ı f ; see [1], sections 2.6 and 2.7. Consider linear functions,

y D f .x/ D mx C b with m ¤ 0.

Definition 1. Let

LF Œx� D ff .x/jf .x/ D mx C b; with m ¤ 0g:
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LF Œx� is closed, meaning the composition of two elements is itself in

the set.

Theorem 1. LF Œx� is closed under function composition.

Proof. Suppose f1.x/ D m1x C b1 and f2.x/ D m2x C b2 and m1 and

m2 are not zero, i.e. f1; f2 2 LF Œx�. Then

f1.f2.x// D m1.m2x C b2/ C b1

D m1m2x C m1b2 C b1

D m3x C b3 2 LF Œx�:

Easy enough. We might mention that the slopes m are any non-zero re-

als. We could limit m to non-zero rationals or natural numbers and maintain

this closure property. This is a common theme of abstract algebra. Change

the coefficients involved and see what properties are maintained or lost. The

next theorem gives a another property of LF Œx�.

Theorem 2. If f .x/ 2 LF Œx� then it has an inverse function and f �1.x/ 2

LF Œx�.

Proof. We use the technique of interchanging x and y, solving for y, and

substituting f �1.x/ for the result. Suppose f .x/ D y D mx C b, then

switching

x D my C b

and solving for y gives

f �1.x/ D
1

m
x �

b

m
:

We confirm this result with

f .f �1.x// D m.
1

m
x �

b

m
/ C b D x

and

f �1.f .x// D
1

m
.mx C b/ �

b

m
D x:
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This is more abstract than what you’ve experienced in previous algebra

courses. Before you were given sets, like N and Q, the natural and rational

numbers and they did have such closure properties and, with the latter, in-

verses. But now our set LF Œx� consists of functions, a more abstract idea

than numbers. The equivalent of the multiplicative identity, the one, 1 of

N and Q is now x, the identity function in LF Œx�. The binary operations

on sets of numbers, the arithmetic operations of addition, subtraction, mul-

tiplication, division are now reduced to just the operation of composition.

Composition is associative, but it is not commutative (you saw examples of

this in your algebra class), and distribution (using two operations) makes

no sense with composition. So in a way groups are easy objects – just one

operation, composition.

Applied

You may have done a section of your algebra two book involving variation

problems; see [1], Section 3.7. The set of functions LF Œx� has a subset that

consists of direct variation functions, things of the form y D kx. This will

be a subgroup of LF Œx�, call it DV Œx�, as in direct variation linear functions;

it has by itself the properties of a group. Unlike LF Œx�, it is commutative (or

Abelian): k1.k2x/ D k2.k1x/ D k1k2x. It is a theorem of group theory that

one can check for a subgroup by confirming an element of the subgroup’s

inverse is in the subgroup. It is one line: if f .x/ D kx 2 DV Œx�,

f �1.x/ D
1

k
x 2 DV Œx� and f .f �1.x// D k

1

k
.x/ D x:

Knowing that inverses exists in DV Œx� one knows that the reverse prob-

lem of finding an x given a y value can be solved. Variation problems are

big in physics. The function F D ma says that acceleration varies directly

with F . The universal law of gravitation is a variation problem, albeit in-

volving joint and inverse variation; e D mc2 is a variation problem with a

square variation. The general challenge of finding or constructing classes of

functions that can model phenomena is a major theme of applied (and pure)

math.

All of this points to real analysis. Fourier analysis uses a lot of trigono-

metric functions to expand what can be modeled. As it turns out polynomi-

als, of which linear functions are an example, are potent, but limited. One

needs infinite series, a thing studied first in calculus, to broaden the mod-

eling range to include more complex phenomena of advanced physics and

astrophysics. Trigonometric functions are themselves expressed with infi-

nite series. Polynomials are approximations to infinite series. What is the
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set of functions (so models) that can be given as an infinite series using the

trigonometric functions sin and cos?

With LF Œx� one gets the easiest means of contemplating in the abstract

such questions.

Research

Look up the evolution to the symbol L
2.�/ in [3]. That is trace in the last

chapter of the cited book the sequence of sets giving functions that ends with

L
2.�/.

General polynomial functions

Note that quadratics, like f .x/ D ax2 C bx C c will not be closed under

composition and will not have inverses. LF Œx� is a group under composition

because it is closed, with an identity, is associative, and its elements have

inverses: CIA I. Repeating: groups are a generalization of the integers under

addition and the rationals under multiplication. A class of functions are now

included within this algebraic structure.

Solving polynomials

We can solve x C 3 D 5 in the integers and we can solve 3x � 5 D 7 in the

rational numbers; these involve linear functions, polynomials of degree one.

Which polynomials can we solve? We can solve the quadratics with inte-

ger coefficients with complex numbers. This is the purport of the quadratic

formula. Having contemplated the set LF Œx�, how can we frame the gen-

eral question of solving a polynomial. We need to specify the coefficients

allowed, what set they are from, as well as where we will look for roots.

In the case of the linear function 3x � 5 D 0 the coefficients are from the

integers and the roots are from the rationals. For the quadratic the coeffi-

cients can be from the integers, but the roots, for some quadratics, can only

be found in the complex numbers. We have to expand the coefficient set way

up to get a quadratic’s roots. This is a general theme; coefficients are in one

space and roots tend to be in a superset of that space.

What about the details of getting to a root for any polynomial? As we

see with the linear and quadratic cases we insist that a finite number of steps

involving algebraic manipulations are the means. There are three sets in-

volved in this pattern: polys D 0 through means yields roots. The means
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are a finite number of steps. How can we specify all the possible steps we

allow? This is a major theme of abstract algebra.

The fast answer is to first note that a field, you’ve seen fields Q; R; C,

has arithmetic operations we allow. Next a permutation of a finite set of

these operations, if it gives all roots, is what is sought. Witness the algebraic

steps necessary to solve ax C b D 0 and ax2 C bx C c D 0 use field

operations. The number of steps and the complexity of the operations goes

up with the increasing degree, so we might expect that the problem gets

harder and harder. Actually, there is a formula for the cubic, quartic cases,

but not the general quintic (degree 5) case. One can get a real feel for how

hard the problem gets by reverse engineering the situation from the solution

back. Consider a factored polynomial and its relationship to its coefficients:

p.x/ D .x � r1/.x � r2/ : : : .x � rn/ D (1)

xn �
X

Œ1�xn�1 C
X

Œ2�xn�2 � � � � ˙ r1r2 � � �rn;

where Œj � means products of roots taken j at a time. Try this with n D 2 and

3 to convince yourself of the general pattern. So to go from the coefficients

back to the roots involves more and more work; the number of coefficients

goes up and the number of sums and products goes up too. One might

imagine that at some point it will be impossible to decode coefficients and

get all the roots. All roots are found when we have the factored form (1).

We’ve considered LF Œx� and its subgroup DV Œx�. These are both in-

finite groups. Part of the puzzle of proving that G5Œx�, greater than 5th

degree polynomials with integer coefficients can’t in general be solved re-

quires learning about finite groups – permutations. You most likely studied

permutations sometime in high school within a chapter on probability [1],

Section 11.6, so there is a natural door into making permutations functions.

Permutations as functions

Are there finite groups which consist of functions? The functions would

need to be one-to-one to insure that they have inverses. This is a limitation

for real valued functions defined on R. But remember those little diagrams

giving examples of functions between two sets; see [1], pages 200-1. These

can be one-to-one and onto easily and we can compose with them. They will

have inverses and as with all functions, with the right domains and ranges,

be associative; there is hope.
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Spelling corrections

Consider the misspelled version of ‘the’, say ’eht.’ The function 321.eht/

corrects it: it moves the letter in the third position of its argument to the

first, the letter in the second position stays in the second position, and the

letter in the first position goes to the third position. Thus 321.eht/ D the.

What’s the inverse of 321. Well what gives 123, the identity function. Well

321.321/ D 123. Permutations can be thought of as functions on strings of

a given length; you rearrange or permute the letters making up the string; in

the case of correcting a spelling typo the permutation gives gives the correct

spelling. Table 1 gives the permutation of three objects – the objects t, h,

and e. We generate all the typos for ‘the.’

123(the) the

132(the) teh

213(the) hte

231(the) hte

312(the) eth

321(the) eht

Table 1: The 3!=6 permutations of three objects considered as functions.

123(123) 123 same

132(123) 132 flip last two f1

213(123) 213 flip first two f3

231(123) 231 conveyor belt 1 r1

312(123) 312 conveyor belt 2 r2

321(123) 321 flip outer f2

Table 2: The flip function subscript gives which to hold constant. ’r’ stands for

rotate forward and wrap around to back.

In Table 2 we replace ‘the’ with ‘123’ and give a phrase that guides the

function. In combination we can speak the corrections. So when confronted

with ‘teh’ we wish to flip the last two for ‘the’; ‘eth’ needs a conveyor belt 1

for ‘the‘. We could tell an editor for the last to transpose the first two letters

and then transpose the resulting last two for ‘teh’ first and then ‘the.’ Are all
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permutations expressible as sequences of transposition? Yes. That’s in the

group theory chapter of Herstein’s classic Topics in Algebra [2].

It is easy to see that a permutation of a permutation is a permutation.

These functions are closed under composition. A flip of a flip is back to

123 and three rotations, 123 to 231 to 312 to 123, yields 123 as well. Each

permutation function, henceforth just permutation, has an inverse. One can

see this group quickly by labeling a triangle’s vertices with 1, 2, and 3 –

label vertices from southwest 1 and going counter-clockwise with 2 and 3.

Flip vertex labels and rotate them and you get the three flips and rotations

given in Table 2. Note the flips are their own inverses and form a subgroup

of order 2. The rotations also this way, closed and with inverses, so that’s

another subgroup of order 3. The order of 3 subgroups is 2 and one is 3. Is

it true that subgroups are divisors of the grand group? Yes. This is a named

theorem in Herstein, Lagrange’s theorem. Given a prime divides the order

of a group (the number in its set), is there necessarily a subgroup of that

order? Yes. Subgroups of all possible divisor orders? No. Finite groups are

as fascinating as prime numbers, maybe more so! They model many things.

Permutation functions on a set of objects is a group: they are closed, have

an identity, are associative (CIA) and also each has an inverse (I). We’ve

seen five instances of groups: LF Œx�, DV Œx�, typo corrections, and call

them rigid triangle transformations and permutation groups; the last three

all seem identical – they are all permutations. Cayley’s theorem says that

all finite groups are subgroups of permutation groups. You can see why;

permutations give all possible functions, so naturally any set of functions

that stays closed will have to be in these big sets of functions.

Permutations and symmetric functions

The relationship between the factored form of a polynomial and its coeffi-

cients as given by (1) is telling. If we define a function using the roots of a

polynomial, say

f .r1; r2; : : : ; rn/ D p.x/ see (1)

then we suspect that all permutations of the arguments gives the same co-

efficient form of p.x/. This is true the connection between the roots and

the coefficients are given by what are known as the elementary symmetric

functions. Symmetric functions are those that add up the same thing when

the arguments to the functions are permuted. One can see this immediately

in the easiest case:

f .r1; r2/ D x2 � .r1 C r2/x C r1r2 D f .r2; r1/ D x2 � .r2 C r1/x C r2r1;

7



just using additive and multiplicative commutativity. As permutation func-

tions are groups, it is conceivable that we can prove which polynomials are

solvable by understanding permutation groups. As roots are combined to

form coefficients and every polynomial has roots is there a way to find a

group associated with the roots that have the property that matches solvabil-

ity; we’d like to get a group associated with a polynomial that is solvable

what ever that might mean when the polynomial is solvable.

Language

Hopefully at this point you are becoming more and more intrigued by groups.

But wait there’s more. You should sense that we can have permutation

groups of more with more than just three elements – but any finite num-

ber. We can make regular polygons and rotate and flip them to generate

groups. The natural numbers, the integers, the reals, and the complex num-

bers all have groups with addition for one, sometimes multiplication. Con-

sider roots of unity as given by roots of zn � 1 D 0. The roots will be

points in the complex plane and if you multiple them, using complex mul-

tiplication, they rotate and go to another point; this is a cyclic group, like

the subgroup of rotations of regular polygons – the triangle we mentioned

above. There are lots of types of groups generated by disparate phenomena.

How on earth can we get all possible groups of a certain order? That’s an

intriguing puzzle.

There is a theorem of group theory that gives an answer for the subclass

of groups, the Abelian groups. A quick way to understand the idea is to

consider a product of cyclic groups. Say A, B , and C are three cyclic groups

of order a, b, and c. We can view this situation with time and status frames

within the context of a sentence, a thing of language. ‘The cat is big’ has

three parts a subject, a verb, and an adjective; each particular word can,

dependent on the situation be located in time. Time itself is cyclic, so each

idea is within a circle giving its status in various senses. All finite Abelian

groups are isomorphic to products of cyclic groups [2].

Abstract algebra

If you are about to take a course in abstract algebra you should take linear al-

gebra first. The grand theme of abstract algebra is well anticipated by linear

algebra. Linear algebra itself is well anticipated by solving linear equations

taught in high school algebra. Blitzer has a chapters on solving systems of
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linear (and non-linear) equations and matrices [1], Chapters 8 and 9. Linear

algebra broadens these elementary algebra themes by considering inverses

of a matrix as well as how matrices give transformations. Transformations

themselves allow for proving that two spaces are isomorphic. This theme

of proving two spaces, think groups of one type and another, isomorphic is

really about showing they are the same. So Cayley’s theorem says all finite

groups are isomorphic (the same) as a subgroup of some permutation group.

Linear algebra is more concrete than group theory. Study it first.

Abstract algebra has as its grand goal proving that general fifth and

greater degree polynomials over the rationals (having rational coefficients)

are not solvable by root taking. The fundamental theorem algebra (men-

tioned not proven in Blitzer) says all roots occur in C. Root taking means

all the arithmetic operations you are used to (addition, subtraction, multi-

plication, and division), plus power and root taking. There is no quadratic

formula for polynomials over degree four. The proof of this requires groups,

rings, fields, and vector spaces. It is a hard slog.
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