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Abstract. Given two sets, one consisting of variables representing distinct
positive n numbers, the other set ‘a kind of power set’ of this n-element set.
I got interested in the fact that for the latter set, depending on the values of
two elements, it can occur that not every pair of elements is ‘comparable’,
that is to say, it is not always uniquely determined which of two elements is
smaller. By proving theorems in order to go ahead with our research, we show
a table which describes for how many ’comparable’ cases exist, for several n’s.
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0.Introduction

A little ago I read a paper [1], and got interested in two sets. One was
a set consisting of variables representing distinct positive n numbers. The
other set was ‘a kind of power set’ of this n-element set. My interest was
that for the former set every pair of elements is ‘comparable’ [2], that is to
say, it is always uniquely determined which of two elements is smaller, but
for the latter set, depending on the values of two elements, it can occur that
not every pair of elements is ‘comparable’, that is to say, it is not always
uniquely determined which of two elements is smaller. In this paper at first
we define a set of n variables representing distinct positive numbers and its
power set. Next we define another set, ’a kind of power set’, whose each
element is the summation of each element of the power set.

For this new set we divide every pair of elements into two sets, the one a
set consisting of comparable pairs, that is to say, uniquely determined which
of the two is smaller, the other a set consisting of not comparable pairs, not
uniquely determined which of the two is smaller depending on the values of
the two. We compute how many elements exist in each set, for n=2 and
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n=3. Even if n grows larger we can compute it, but the total number of
the elements of the two sets increases geometrically, so it is not practical to
enumerate one by one.

Then with the aid of definitions of functions and theorems, we show a
method to compute how many such elements exist in each set for larger n’s.

1. A set consisting of n variables representing distinct positive numbers,
and its power set

Suppose that variables a1,a2,...,an represent positive numbers satisfying
a1>a2>...>an>0. Now a set is defined consisting of these n variables as fol-
lows.

E(n) := {a1, a2, . . . , an} (1)

For this E(n), every pair of elements is comparable [2], that is to say, it
is always uniquely determined which of two elements is smaller. This set is a
strict totally ordered set, because any two elements of E(n) are not the same
with each other.

We get the following set, via (1)’s power set, by summing up each element
of which.

F(n) := {a1, a2, . . . , an, a1+a2, a1+a3, . . . , an−1+an,

a1+a2+a3, a1+a2+a4, . . . , an−2+an−1+an,

a1+a2+a3+a4, . . . ,+an−2+an−1+an, . . . , a1+a2+ . . .+an−1+an} (2)

2. Many sets that are derivative from F(n)

The set (2) has 2n−1 elements, for we exclude 0 out of this set intention-
ally, because 0 is evidently smaller than any other elements.

If the values of n variables are specifically given, this set is a totally or-
dered set, but now not given. So this set is not a totally ordered set, but a
strict partially ordered set, for not every pair of elements is comparable, that
is to say, it is not always uniquely determined which of any two elements is
smaller and there is no pair consisting of the same elements, if there are not
specific value assignments for n variables.

(e.g.)
For n=8, pairs of elements such as (a1,a2+a3), (a2,a3+a5) and (a2+a5,

a3+a6+a8) are not comparable.
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If a1=10,a2=7 and a3=4, then a1=10 and a2+a3=7+4=11, so a1=10<11
=a2+a3. But if a1=10, a2=5 and a3=4, then a1=10 and a2+a3=5+4=9,
so a1=10>9=a2+a3. In this way it is not uniquely determined which of two
elements is smaller.

In contrast, pairs of elements such as (a1,a3) and (a2+a4,a5+a7) are
comparable, it is uniquely determined which of two elements is smaller.

Now we define a set as follows.

S(n) : a set consisting of pairs of elements of F(n) (3)

From now on, we research for how many elements of S(n), how many
pairs of elements of F(n), are comparable, it is uniquely determined which of
any two elements is smaller, and how many many elements of S(n) are not
comparable without specific value assignments for n variables, so we define
two more sets;

C(n) : a set of the two pairs of S(n)

uniquely determined which is smaller. (4)

D(n) : a set of the two pairs of S(n)

not uniquely determined which is smaller. (5)

The number of elements of these sets for any n are what we are aiming at.

Lemma 1
S(n) = C(n)∪D(n), C(n)∩D(n) = ∅
|S(n)|=|C(n)|+|D(n)|= (2n−1) (2n−1−1)

Proof.
As mentioned above, for any element of S(n) there is only two possible

cases, for one it is uniquely determined which is smaller, for the other not,
and these cases are mutually exclusive.
|F(n)| = 2n−1, so |S(n)| = 2n−1C2= (2n−1) (2n−1−1).

Now look at two elements of F(n), that are also regarded as an element of
S(n). Any element of S(n) has two expressions. For s1,s2∈F(n), the element
of S(n) consisting of these two elements of F(n) can be expressed in two ways,
the one (s1,s2) and the other (s2,s1). We choose one of the two expressions
randomly and call it (s1,s2). By (2) (3), (s1,s2) can be uniquely expressed as
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the below equations.

s1 =
n∑

i=1

s1iai, s2 =
n∑

i=1

s2iai

where s1i= 0 or 1 , and s2i= 0 or 1. (6)

Now we start the comparison of s1i and s2i.
Compare s11 and s21. If (s11,s21)=(1,0) or (0,1) then we end up the com-

parison, else compare s12 and s22. If (s12,s22)=(1,0) or (0,1) then we end up
the comparison, else compare s13 and s23........

In this way we continue the comparison repeatedly until we get
(s1i,s2i)=(1,0) or (0,1) for the first time, which necessarily occurs because s1i
is not equal to s2i.

Now if (s1i,s2i)=(1,0) then we denote s1 by A and denote s2 by B, else if
(s1i,s2i)=(0,1) then we denote s1 by B and denote s2 by A.

(e.g.)
When n=5, if the pair is (a2, a3), then A=a2 and B=a3. And for the case

of (a3, a3+a5), we define A=a3+a5 and B=a3.

From now on we express an element of S(n) in the order of A, B.
For simplicity I classify elements of S(n) into equivalent classes by the

subtraction of B from A. Two elements of S(n), the values of A−B of which
are equal to each other, belong to the same equivalent class. So (a2, a3) and
(a2+a5, a3+a5) belong to the same equivalent class.

(e.g.)
For (a2, a3), A−B=a2−a3; and for (a2+a5, a3+a5), A−B=(a2+a5)−(a3+a5)

=a2−a3; the same as each other.

Now we designate a representative of each equivalent class, the way is
as follows. For the equivalent class containing (a2, a3) and (a2+a5, a3+a5),
(a2, a3) is its representative. We designate the most simple element of S(n).

Note that for such an equivalent class that contains (a2+a5,a2), (a5,0) is
to be exceptionally selected as the representative for convenience, although
0 does not belong to F(n).

Furthermore we can reduce any representative to an n-vector as the fol-
lowing.

Given a representative (s1,s2) the expression of which is the same as (6)
and we prepare an n-dimensional zero vector (0,0,...,0).
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If (s1i,s2i)=(1,0), then move A to the i-th component of the n-dimensional
vector, and if (s1i,s2i)=(0,1), then move B to the i-th component of the n-
dimensional vector; we perform these two operations repeatedly for i=1 to n.
(e.g.)

Where n=4, for (a2, a3) we obtain a new 4-vector (0,A,B,0).

We denote by P(n), the set of these reduced representatives, note that in
any element of P(n), A appears in advance of B.
(e.g.)

For n=3, P(3)={(A,A,B),(A,A,0),(A,B,A),(A,B,B),(A,B,0),(A,0,A),
(A,0,B),(A,0,0),(0,A,A),(0,A,B),(0,A,0),(0,0,A)}.

Then out of P(n), we pick up sets in which there exist k(1≤k≤n) non-zero
components as a new set, which we donote by P(n,k).
(e.g.)

P(3,1)={(A,0,0),(0,A,0),(0,0,A)},
P(3,2)={(A,A,0),(A,B,0),(A,0,A),(A,0,B),(0,A,A),(0,A,B)}.
P(3,3)={(A,A,B),(A,B,A),(A,B,B)}.

Next define two functions as below.

PC(n) : a set of the elements of P(n)

that are representatives of the elements of C(n). (7)

PD(n) : a set of the elements of P(n)

that are representatives of the elements of D(n). (8)

Lemma 2
P(n)=

⋃n
k=1 P(n, k),

⋂n
k=1 P(n, k)=∅

P(n) = PC(n)∪PD(n), PC(n)∩PD(n) = ∅
|P(n)|=

∑n
k=1|P(n, k)|

|P(n)|=|PC(n)|+|PD(n)|

Proof.
Any element of P(n) has i(1≤i≤n) non-zero components.
And any representative of the elements of S(n) belongs to C(n) or D(n).
So this Lemma 2 follows, according to (6) and (7).
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Furthermore define two functions as below.

PC(n, k) : a set of the elements of PC(n)

which have k non−zero components. (9)

PD(n, k) : a set of the elements of PD(n)

which have k non−zero components. (10)

Lemma 3
PC(n)=

⋃n
k=1 PC(n, k),

⋂n
k=1 PC(n, k)=∅,

PD(n)=
⋃n

k=1 PD(n, k),
⋂n

k=1 PD(n, k)=∅,
|PC(n)|=

∑n
k=1|PC(n, k)|,

|PD(n)|=
∑n

k=1|PD(n, k)|

Proof.
Any element of PC(n) or PD(n) has i(1≤i≤n) non-zero components.
So this Lemma 3 follows, according to (9) and (10).

Lemma 4
P(n, 1)=PC(n, 1), PD(n, 1)=∅

Proof.
P(n, 1)={(A,0,. . .,0),(0,A,0,. . .,0),. . .,(0,. . .,0,A)}.
Any two-pair of S(n)’s elements that has a element of P(n, 1) as its rep-

resentative belongs to C(n). So P(n, 1)=PC(n, 1), and so PD(n, 1)=∅

3. Examples for simple n’s

Here we show our computations for n=2 and n=3.

3.1 n=2’s case;
E(2)={a1, a2}
F(2)={a1, a2, a1+a2}
S(2)={(a1, a2), (a1+a2, a1), (a1+a2, a2)}
C(2)={(a1, a2), (a1+a2, a1), (a1+a2, a2)}
D(2)=∅
P(2)={(A,B),(A,0),(0,A)}
PC(2)={(A,B),(A,0),(0,A)},PD(2)=∅
P(2,1)={(A,0),(0,A)},PC(2, 1)={(A,0),(0,A)},PD(2, 1)=∅
P(2,2)={(A,A)},PC(2, 2)={(A,A)},PD(2, 2)=∅
|C(2)|=3
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|D(2)|=0

3.2 n=3’s case;
E(3)={a1, a2, a3}
F(3)={a1, a2, a3, a1+a2, a1+a3, a2+a3, a1+a2+a3}
S(3)={(a1, a2), (a1, a3), (a1, a1+a2), (a1, a1+a3), (a1, a2+a3),
(a1, a1+a2+a3), (a2, a3), (a2, a1+a2), (a2, a1+a3), (a2, a2+a3),
(a2, a1+a2+a3), (a3, a1+a2), (a3, a1+a3), (a3, a2+a3), (a3, a1+a2+a3),
(a1+a2, a1+a3), (a1+a2, a2+a3), (a1+a2, a1+a2+a3), (a1+a3, a2+a3),
(a1+a3, a1+a2+a3), (a2+a3, a1+a2+a3)}

C(3)={(a1, a2), (a1, a3), (a1, a1+a2), (a1, a1+a3),
(a1, a1+a2+a3), (a2, a3), (a2, a1+a2), (a2, a1+a3), (a2, a2+a3),
(a2, a1+a2+a3), (a3, a1+a2), (a3, a1+a3), (a3, a2+a3), (a3, a1+a2+a3),
(a1+a2, a1+a3), (a1+a2, a2+a3), (a1+a2, a1+a2+a3), (a1+a3, a2+a3),
(a1+a3, a1+a2+a3), (a2+a3, a1+a2+a3)}

D(3)=(a1, a2+a3)
P(3)={(A,A,B),(A,A,0),(A,B,A),(A,B,B),(A,B,0),(A,0,A),(A,0,B),
(A,0,0),(0,A,A),(0,A,B),(0,A,0),(0,0,A)}

PC(3)={(A,A,B),(A,A,0),(A,B,A),(A,B,0),(A,0,A),(A,0,B),
(A,0,0),(0,A,A),(0,A,B),(0,A,0),(0,0,A)},PD(3)={(A,B,B)}

P(3,1)={(A,0,0),(0,A,0),(0,0,A)},PC(3, 1)={(A,0,0),(0,A,0),(0,0,A)},PD(3, 1)=∅
P(3,2)={(A,A,0),(A,B,0),(A,0,A),(A,0,B),(0,A,A),(0,A,B)},
PC(3, 2)={(A,A,0),(A,B,0),(A,0,A),(A,0,B),(0,A,A),(0,A,B)},PD(3, 2)=∅
P(3,3)={(A,A,B),(A,B,A),(A,B,B)},PC(3, 3)={(A,A,B),(A,B,A)},
PD(3, 3)={(A,B,B)}
|C(3)|=20
|D(3)|=1

4. First step to generalization.

In the above-mentioned computations two equations hold as follows.

|C(2)| = (22−1−1) |PC(2, 1)|+ |PC(2, 2)|
|C(3)| = (23−1−1) |PC(3, 1)|

−((1/2)2−1) |P(3, 2)|+(23−2) |PC(3, 2)|+PC(3, 3) (11)

These (11) are easy to check out, for 3=(2−1)×2+1,
20=(4−1)×3−(1/2)×6+2×6+2.

Generally for any n, we show the following theorem.
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Theorem 1

If n > 2 then

|C(n)| = (2n−1−1) |PC(n, 1)|

+
n−1∑
k=2

(−(1/2)k−1 |P(n, k)|+ 2n−k |PC(n, k)|)

+ |PC(n, n)| (12)

Proof.
Any element of C(n) has a representative that is an element of particular

PC(n, i)(1 ≤ i ≤ n) (ref (7), (8)).
When k=1,

by Lemma 4, P(n, 1)=PC(n, 1), PD(n, 1)=∅. And for any element of
PC(n, 1), there being n−1 zero components, so there is 2n−1−1 elements
of C(n), commonly having this element of PC(n, 1) as their representative.
The reason why not ‘2n−1’ but ‘2n−1−1’ is that ‘B’ is not included in a set
of PC(n, 1) as a component. For example when n=4, (0,A,0,0) is an element
of PC(4, 1), there are ‘24−1’=8 pairs whose representative is (0,A,0,0), (a2,0)
is one of them but not included in C(4). Thus for any n we obtain that the
number of the C(n)’s elements the representative of which belongs to C(n,1)
is

(2n−1−1) |PC(n, 1)| (13)

When 2 ≤k≤n−1,
As above, PC(n, k) is a complementary set of PD(n, k) in P(n, k). Now

we pick up the elements of PC(n, k) whose non-zero components are all A’s.
As for any element of P(n, k), its leftmost non-zero component is A, which
is the only required condition, so there are totally 2k−1 elements that have
n−k non-zero components at the same location.

So the number of the elements of PC(n, k), whose non-zero components
are all A’s, is

(1/2)k−1 |P(n, k)| (14)

So the number of the elements of PC(n, k), whose non-zero components
are mixture of A’s and B’s, is

|PC(n, k)| − (1/2)k−1 |P(n, k)| (15)
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Similarly as when k=1, there are 2n−k−1 elements of C(n) whose repre-
sentative is a element related to (14), and 2n−k elements of C(n) related to
(15). The total number of these elements is

(2n−k−1)(1/2)k−1 |P(n, k)|
+(2n−k)(|PC(n, k)| − (1/2)k−1 |P(n, k)|)
= −(1/2)k−1 |P(n, k)|+ 2n−k |PC(n, k)| (16)

When k=n,
There is only one element of C(n) for any element of PC(n, n). The

number of the C(n)’s elements for k=n is

|PC(n, n)| (17)

(13), (16) and (17) complete the proof of Theorem 1.

However there remains a significant problem. If n grow larger it will
become very harder to compute the numbers of elements.

We will try to create a new method in order to compute |C(n)|more easily.

5. Second step to generalization.

Now reductively we map P(n,k) into P∗(k), a set of k-vectors, by picking
up non-zero components of the elements of P(n,k).
(e.g.)

(A,0,0,B,0)∈ P(5,2) is mapped into (A,B)∈ P∗(2).

Evidently |P∗(k)|=2k.
Note that if and only if an element of P(n,k) belongs to PD(n, k), then

P∗(k) has at least one sequence of B’s that is longer than its previous sequence
of A’s, for example (A,A,B,B,B).

This is because if and only if for an element of S(n) it is not uniquely
determined which of the two consisting numbers is smaller, then an element
of P(n,k), the representative of this element of S(n), has at least one sequence
of B’s that is longer than its previous sequence of A’s.

Now an element of P(n,k) is the representative of an element of S(n). If it
is uniquely determined which of the two consisting numbers of this element
of S(n) is smaller, we also call this situation ‘comparable’, and if not uniquely
determined, we also call this situation ‘not comparable’, thereafter.
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We divide P∗(k) into three sets, C∗(k),M∗(k) and D∗(k) as follows.

C∗(k) : a set of elements of P∗(k)

whose original element of P(n, k) is comparable,

even if B is newly added on its right side. (18)

M∗(k) : a set of elements of P∗(k)

whose original element of P(n, k) is comparable,

but if B is newly added on its right side,

it will become not comparable. (19)

D∗(k) : a set of elements of P∗(k)

whose original element of P(n, k)

is already not comparable. (20)

Theorem 2
|D∗(k)|= 2|D∗(k− 1)|+|M∗(k− 1)|

Proof.
Any element of P∗(k) is made from a element of P∗(k−1) by adding A or

B on its right side.
When (x1, . . . , xk−1) ∈ D∗(k−1),

(x1, . . . , xk−1,A) ∈ D∗(k) and (x1, . . . , xk−1,B) ∈ D∗(k).
When (x1, . . . , xk−1) ∈ M∗(k−1),

(x1, . . . , xk−1,A) ∈ C∗(k) and (x1, . . . , xk−1,B) ∈ D∗(k).
When (x1, . . . , xk−1) ∈ C∗(k−1),

(x1, . . . , xk−1,A) ∈ C∗(k) and
((x1, . . . , xk−1,B) ∈ C∗(k) or (x1, . . . , xk−1,B) ∈ M∗(k)).

Now define one more function.

FB(k) : a set consisting of elements of C∗(k) ,

whose the k−th component is B ,

and all elements of M∗(k). (21)

(e.q.)
For k=6, (A,B,A,A,B,B) and (A,A,A,A,A,B) are sets of FB(6), because

(A,B,A,A,B,B) ∈ M∗(6), and (A,A,A,A,A,B) ∈ C∗(6) ending with B.
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We show a theorem related to (21).

Theorem 3
|C∗(k)|= |M∗(k−1)|+|C∗(k−1)|+|FB(k−1)|

Proof.
Here we apply the process of Theorem 2’s proof.
When (x1, . . . , xk−1) ∈ D∗(k−1),

(x1, . . . , xk−1,A) ∈ D∗(k) and (x1, . . . , xk−1,B) ∈ D∗(k).
When (x1, . . . , xk−1) ∈ M∗(k−1),

(x1, . . . , xk−1,A) ∈ C∗(k) and (x1, . . . , xk−1,B) ∈ D∗(k).
When (x1, . . . , xk−1) ∈ C∗(k−1),

(x1, . . . , xk−1,A) ∈ C∗(k) and
((x1, . . . , xk−1,B) ∈ C∗(k) or (x1, . . . , xk−1,B) ∈ M∗(k)).

It is evident that no element of D∗(k−1) is to be mapped into a element
of C∗(k) and that any element of M∗(k−1) is to be mapped into a element
of C∗(k) if and only if added by A on the right side.

It is not easy for C∗(k−1). Added by A on the right side, any element
of C∗(k−1) is to be mapped into a element of C∗(k). But added by B, as
above, there is two cases, a case mapped into a element of C∗(k) and a case
of M∗(k), the former case is what we are interested in right now.

We will research any element of C∗(k−1), by adding B on the right side
of which, an element of C∗(k) is to be made.

Now we divide its (k-1)-vector expression into some sequences of consecu-
tive A’s and consecutive B’s in order. For example, (A,A,B,A,B,A,A,A,B) is
divided into (A,A,B),(A,B), similarly (A,B,A,A,B,B,A,A,A) is divided into
(A,B),(A,A,B,B),(A,A,A).

For the elements of C∗(k−1), in the rightmost sequence the number of
A’s is more than that of B’s by 2 or over, and in all the other sequences
the number of A’s is more than or equal to that of B’s. This is because
its element of P∗(k) after adding B on the right side still belongs to C∗(k).
Hence by replacing rightmost A of the rightmost sequence with B, if and
only if an element of C∗(k−1) is such, this element changes to an element of
M∗(k−1), or an element of C∗(k−1) whose vector expression ends with B.

This is the very FB(k−1), according to (21).
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Now we define a function G as follows.

G(j1, j2, . . . , jm) : the number of cases

that means how variously

an m−tuple (j1, j2, . . . , jm) (22)

(such that j1 ≤ j2 ≤ . . . ≤ jm)

can be permuted.

(e.g.)
G is expressed as a multinomial coefficient as follows.

G(1,2,3)=
(

3
1,1,1

)
=3!/(1!1!1!)=6,

G(1,2,2)=
(

3
1,2

)
=3!/(1!2!)=3,

G(1,2,3,5,8,10)=
(

6
1,1,1,1,1,1

)
=6!/(1!1!1!1!1!1!)=720,

G(2,2,3,3,3,5)=
(

6
2,3,1

)
=6!/(2!3!1!)=60.

We must be careful of the multiplicity of each component of (j1, j2, . . . , jm)
in order to compute precisely.

Theorem 4

|FB(k)| =
∑

2≤j1≤j2,≤...≤jm,j1+...+jm=k

(G(j1, j2, . . . , jm)[j1/2][j2/2] . . . [jm/2]) (23)

Proof.
By the definition (21) we know that an element of |FB(k)| consists of

some sequences of consecutive A’s and consecutive B’s in order, and in each
sequence the number of A’s is more than or equal to that of B’s and always
ends with B, we have only to compute how many such elements exist.

If the length of a sequence is l, then there are totally [l/2] cases for this
sequence. For example, if l=9, the cases are (8-1),(7-2),(6-3) and (5-4), in
what the number of A’s and B’s are described in order, there are totally
4=[9/2] cases , similarly if l=12, the cases are (11-1),(10-2),(9-3),(8-4),(7-5)
and (6-6), there are totally 6=[12/2] cases.

Now we set focus on a particular situation that there are m sequences
and their lengths are j1≤j2≤. . .≤ jm. Then 2≤ j1 and j1+ . . .+jm=k, and for
this particular case there is the number of cases which is how variously we
can permute this m-tuple (j1, j2, . . . , jm). This corresponds to G(j1, j2, . . . , jm)
(22).

So (23) follows.

12



(e.g.)
When k=5,

if (j1)=(5), then G(5)[5/2]=(1!/1!)×2=2,
and if (j1,j2)=(2,3), then G(2,3)[2/2][3/2]=(2!/(1!1!))×1×1=2,
so |FB(5)|=2+2=4.

When k=7,
if (j1)=(7), then G(7)[7/2]=(1!/1!)×3=3,
if (j1,j2)=(2,5), then G(2,5)[2/2][5/2]=(2!/(1!1!))×2×1=4,
if (j1,j2)=(3,4), then G(3,4)[3/2][4/2]=(2!/(1!1!))×1×2=4,
and if (j1,j2,j3)=(2,2,3),
then G(2,2,3)[2/2][2/2][3/2]=(3!/(2!1!))×1×1×1=3,
so |FB(7)|=3+4+4+3=14.

Now let us denote p(n) as the number of partitions of the number n [3],
that is to say, the number of all possible partitions of the natural number
n as the sum of other integers, sorted, for instance, in non-increasing order,
and denote p(n,2) as the number of partitions of n that does not include 1 as
their component, in other words, any component of a partition is larger than
or equal to 2. Then the number of m-tuples of (23) is equal to p(k,2). Also,
it is well known that p(n)=p(n−1)+p(n,2), so the above-mentioned number
of m-tuples is equal to p(k)−p(k−1).

Theorem 5
|PC(n, k)|

=nCk(|C∗(k)|+|M∗(k)|) (when n 6= k)
=nCk(|C∗(k)|+|M∗(k)|)−1 (when n = k)

Proof.
By the definition (18) through (20), both C∗(k) and M∗(k) correspond to

the case of C(n). And D∗(k) corresponds to the case of D(n).
For an element of C∗(k) or M∗(k), its corresponding PC(n, k)’s element

has k non-zero components, so this kind of elements of PC(n, k) are nCk

in number. But note that there is only one exception, (A,A,. . .,A)∈C∗(k),
which does not belong to PC(n, k). So if n=k, the right side of the equation
is smaller than the other cases, by 1.

6. Computing Results

By using what have been defined and proved, we can obtain C(n) as
follows.
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First we make Table 1 for |C∗(k)|,|M∗(k)|,|D∗(k)|,|FB(k)|,|P∗(k)| for k=1
to 10, after setting initial and trivial values for k=1. On this process we use
Theorem 2, Theorem 3 and Theorem 4.

If we have known the values for k−1, then we can compute |C∗(k)| by
Theorem 3, |D∗(k)| by Theorem 2, |FB(k)| by Theorem 4 and |P∗(k)|=2k, all
values for k.

Table 1:
k 1 2 3 4 5 6 7 8 9 10

|C∗(k)| 1 1 3 4 9 14 28 47 85 155
|M∗(k)| 0 1 0 2 1 5 5 14 23 38
|D∗(k)| 0 0 1 2 6 13 31 67 148 319
|FB(k)| 0 1 1 3 4 9 14 24 47 89
|P∗(k)| 1 2 4 8 16 32 64 128 256 512
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Second we make Table 2 for |F(n)|,|S(n)|,|C(n)|,|D(n)|,|P(n)|,|PC(n)|,
|PD(n)|,|P(n, 1)|,|PC(n, 1)|,|PD(n, 1)|,. . .,|P(n, n)|,|PC(n, n)|,|PD(n, n)|
for n=1 to 10.

Having created Table 1, we can compute the values for Table 2 as be-
low, after setting initial and trivial values for n=1, 2 and 3, |PC(n, k)| and
|PD(n, k)| by Theorem 5, |PC(n)| and |PD(n)| by Lemma 2, |C(n)| by Theo-
rem 2, |S(n)|= (2n−1) (2n−1−1) , |D(n)| by Lemma 1, all values for n. Note
that values of |C(n)|/|S(n)| are rounded off to three decimal places.

Table 2:
n (=|E(n)|) 1 2 3 4 5 6 7 8 9 10

|F(n)| 1 3 7 15 31 63 127 255 511 1023

|S(n)| 0 3 21 105 465 1953 8001 32385 130305 522753
|C(n)| 0 3 20 95 399 1588 6164 23590 90215 343350
|C(n)|/|S(n)| - 1.000 0.952 0.905 0.858 0.813 0.770 0.728 0.692 0.657
|D(n)| 0 0 1 10 66 365 1837 8795 40090 179403

|P(n)| 0 3 12 39 120 363 1092 3279 9840 29523
|PC(n)| 0 2 11 33 94 264 739 2068 5789 16207
|PD(n)| 0 0 1 6 26 99 353 1211 4051 13316

|P(n, 1)| |PC(n, 1)| 0 2 3 4 5 6 7 8 9 10
|PD(n, 1)| 0 0 0 0 0 0 0 0 0 0

|P(n, 2)| |PC(n, 2)| - 1 6 12 20 30 42 56 72 90
|PD(n, 2)| - 0 0 0 0 0 0 0 0 0

|P(n, 3)| |PC(n, 3)| - - 2 12 30 60 105 168 252 360
|PD(n, 3)| - - 1 4 10 20 35 56 84 120

|P(n, 4)| |PC(n, 4)| - - - 5 30 90 210 420 756 1260
|PD(n, 4)| - - - 2 10 30 70 140 252 420

|P(n, 5)| |PC(n, 5)| - - - - 9 60 210 560 1260 2520
|PD(n, 5)| - - - - 6 36 126 336 756 1512

|P(n, 6)| |PC(n, 6)| - - - - - 18 133 532 1596 3990
|PD(n, 6)| - - - - - 13 91 364 1092 2730

|P(n, 7)| |PC(n, 7)| - - - - - - 32 264 1188 3960
|PD(n, 7)| - - - - - - 31 248 1116 3720

|P(n, 8)| |PC(n, 8)| - - - - - - - 60 549 2745
|PD(n, 8)| - - - - - - - 67 603 3015

|P(n, 9)| |PC(n, 9)| - - - - - - - - 107 1080
|PD(n, 9)| - - - - - - - - 148 1480

|P(n, 10)| |PC(n, 10)| - - - - - - - - - 192
|PD(n, 10)| - - - - - - - - - 319
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7. Discussion and computation

We have computed for n=1 to 10 as in Table 2.

According to Table 2, when n=10, |C(n)|=343350, |D(n)|=179403,
|S(n)|=522753, and |C(n)|/|S(n)| which is so called, the ratio of ’comparable’,
is 0.6568· · · . This ratio decreases monotonously with n, provided that n≤10.

As mentioned above, we can obtain |C(n)| for any n, even much more
than 10 with the aid of Table 1 of the advanced version. We can continue
to compute |FB(k)| (23) according to Theorem 4, and recreate Table 1 for
larger k’s.

But there remains one drawback that the computations are quite tough,
for |FB(k)| includes floor functions and tuples so can’t be described in a simple
form. We can’t dispense with |FB(k)| for any k(1≤k≤n-1). Therefore if n
grows larger, almost certainly it takes time and trouble to compute |C(n)|.

However by the method we have presented, |C(n)|, |D(n)| and |C(n)|/|S(n)|
can be computed for any n in a recursive manner, without enumerating all
pairs of elements one by one.

In the near future we want to find out easier method to compute them.
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