Heavy Dark Matter Neutrino Tau-Antitau Pair Existence
Reexamined

George R. Briggs

Abstract: A leptonic tau-antitau composite particle of presumably 3552 MeV mass was observed over 3 years ago. Later in 2017 I published about such a heavy dark neutrino particle, which I am here reexamining.

Nearly two years ago\(^1\) I published on the idea that heavy dark matter neutrinos exist following an earlier\(^2\) paper by others but I didn't continue with this idea. Since then I have obtained strong evidence\(^3\) that heavy ordinary neutrinos exist of 4430 MeV mass producing Hubble's Constant of \(h_0 = 78.20 \text{ (Km/s)/Mps}\) vs. 74.03 measured.

Heavy dark matter neutrinos of \(2 \times 1776 = 3552 \text{ MeV mass}\) would be expected if such a tau-antitau particle pair existed. The success of the 4430 MeV ordinary heavy neutrino in explaining the high Hubble's \(h_0\) value has convinced me to revive the idea that a dark matter heavy neutrino also exists.

We note that now\(^4\) we consider a 3.55 MeV mass for the up neutron quark a certainty and we have 2 of them for each neutron hence the 3552 MeV value for the dark neutrino mass is expected.

2. "CMS probes non-standard Higgs decays to 2 taus", Cerncourier, March, 2017
3. George R. Briggs, "The heavy neutrino leads to an accurate critical value for Hubble's constant \(h_0\) of 78.2 vs.74.03(Km/s)/Mps for the latest measurement", ViXra 1905.0424, (2019)