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Abstract: Physical laws in spacetime are commonly represented by tensors. However, it is possible 

to give a vector form to them, where the vectors follow quite simple rules of sum, product and 

commutation. We present here a self-contained vector algebra for relativistic spacetime, which is a 

simplification and generalization of geometric (Clifford) and spacetime algebras, and apply it to 

electromagnetic theory. We emphasize that the vector algebra is convenient to use and flexible 

enough to accommodate Euclidean geometry and the symmetries of relativistic spacetime, 

providing an excellent mathematical framework for physics in spacetime.  
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1. Introduction 

The equations of electromagnetic field are traditionally formulated in three-dimensional (3-d 

for short) Euclidean space and the real line. For this formulation, some elementary mathematical 

objects, such as 3-d vectors, real numbers and differential operators, are involved, and a number of 

operation methods, such as additions and multiplications (or products), for each kind of the objects 

and between them, are defined independently. [1, 2] Actually, our understanding of physics is 

restricted by this mathematical framework. For example, electric and magnetic fields are taken as 

two related but different things, and the fields around charges are described by four differential 

equations, namely Maxwell equations. 

With the development of the special and general theory of relativity, it is realized that the 

fundamental laws of physics should be formulated in four-dimensional (4-d) spacetime, in which 

time is taken as the fourth dimension, in addition to the three spatial dimensions of space. Spacetime 

formulations always provide us deep insights into the underlying physics, and physical equations 

also find their most elegant expressions in spacetime. [3] For instance, the energy and momentum 

of a moving particle constitute its spacetime momentum. More importantly, electric and magnetic 

fields are combined into electromagnetic field as a whole, and the four Maxwell equations are 

unified into a single equation in spacetime.  

However, constructing a mathematical tool fit for relativistic spacetime is not an easy task, [4,  

5] because the tool should be as simple as possible in mathematics, and has to be compatible with 

Lorentz symmetry as well. [3, 6] Tensor is the most common tool used nowadays. While, since it 

does not consist of any information about physical space and time, many excessive operations are 

needed to fulfill Lorentz symmetry. [3, 7] For example, a displacement in spacetime is denoted by 

a 4-d tensor of the first rank, and two types of components, covariant and contravariant components, 

have to be introduced artificially to give its magnitude—spacetime interval. Furthermore, there are 
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four types of components for a tensor of the second rank, and to figure out the connection between 

them one has to be very familiar with the artificial sign-changing rules. 

A promising candidate is geometric algebra, in which points, (directed) line segments, (directed) 

plane segments and volumes are indicated by scalars (grade-0), vectors (grade-1), bi-vectors (grade-

2) and tri-vectors (grade-3), respectively, providing us more geometric interpretations than tensors. 

[4, 5, 8-10] A geometric algebra that is applied to relativistic spacetime is called spacetime algebra. 

It treats time and space basis vectors as “real” and “imaginary” units respectively, so the product of 

two time basis vectors is +1, and that of two identical space basis vectors is -1. [11, 12] With this 

algebra, the spacetime expressions of physical laws are much more natural and elegant than ever.  

It should be noted that, both geometric and spacetime algebras use the grade of vector to 

demonstrate the dimension of geometric object or that of physical quantity, and keep two grade-

dependent operations, inner and outer (wedge) products, as important calculation methods. [8-12] 

From the practical point of view, the grade-dependent products are not easy to use, because one has 

to know the grade of each factor before operation and apply different rules for each condition. From 

the geometric point of view, the wide use of grade-dependent products makes the algebras stressing 

on the dimensional properties of mathematical objects, rather than the geometric relations between 

them. 

In this paper, we introduce commutative and anticommutative products on the base of geometric 

product, instead of inner and outer products, by which all operation rules are independent of the 

grade of vector. We apply this grade-independent vector algebra to spacetime electromagnetism, 

and present some preliminary results. 

 

2. General vectors and operation rules 

It is assumed that general vectors follow three fundamental rules of operation: 

(i) The sum of a row of vectors results in a vector, and the result is independent of their 

sequence. 

(ii) The product of a row of vectors results in a vector, and product operation distributes 

over sum operation. 

(iii) The product of two vectors are anticommutative if they are orthogonal, and 

commutative if they are parallel. 

Rule (i) and (ii) define the fundamental operations of sum and product, and rule (iii) give the 

geometric interpretations of commutativity and anticommutativity in a product. In a row of vectors 

to be added, the operation order is not specified in rule (i), so sum operation is associative. For the 

same reason, product operation is also associative.  

The product of any two vectors can be expressed as a sum of “symmetric” and “antisymmetric” 

parts in the following way 

�̂� �̂� =
1

2
(�̂� �̂� + �̂� �̂�) +

1

2
(�̂� �̂� − �̂� �̂�).                      (1) 

We can denote the symmetric part by 

�̂� ∙ �̂� =
1

2
(�̂� �̂� + �̂� �̂�),                            (2) 

and the antisymmetric part by 

�̂� × �̂� =
1

2
(�̂� �̂� − �̂� �̂�),                            (3) 
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then the product can be written as 

�̂� �̂� = �̂� ∙ �̂� + �̂� × �̂�.                              (4) 

The notation “∙” in Equation (2) is a “mixed” operation of sum and product, and this mixed 

operation is distributive (over sum operation): 

�̂� ∙ (�̂� + �̂�) =
1

2
�̂� (�̂� + �̂�) +

1

2
 (�̂� + �̂�) �̂� 

=
1

2
(�̂� �̂� + �̂� �̂�) +

1

2
(�̂� �̂� + �̂� �̂�) 

= �̂� ∙ �̂� + �̂� ∙ �̂�.                                  (5) 

Similarly, the mixed operation “×” in Equation (3) is also distributive: 

(�̂� + �̂�) × �̂� = �̂� × �̂� + �̂� × �̂�.                         (6) 

If distributivity is considered as an intrinsic property of “product”, the mixed operations, “∙” 

and “×”, can be considered as some kinds of product. As the product “∙” for any two vectors is 

commutative, and the product “×” for any two vectors is anticommutative: 

{ �̂� ∙ �̂� = �̂� ∙ �̂�
�̂� × �̂� = −�̂� × �̂�

,                               (7) 

we can call them commutative and anticommutative products, respectively.  

It can be proved that both commutative and anticommutative products are not associative, 

so they are binary operations, which means that one has to give an operation order in which 

commutative or anticommutative product is performed for there or more vectors. Commutative 

and anticommutative products are not as fundamental as the operations of sum and product that 

defined in rule (i) and (ii), so they are just useful expressions of the fundamental operations. 

Now, think about the product of a vector �̂� with itself, which is also a vector according to 

rule (ii). If it is true that any vector �̂� can be resolved into a vector �̂�∥ parallel to �̂� and a 

vector �̂�⊥ orthogonal to �̂�: 

�̂� = �̂�∥ + �̂�⊥,                                  (8) 

where  

{
�̂�∥ �̂� = �̂� �̂�∥

�̂�⊥�̂� = −�̂��̂�⊥

.                                 (9) 

Then, the product �̂��̂� is commutative with any vector �̂�: 

(�̂��̂�)�̂� = �̂��̂��̂�∥ + �̂��̂��̂�⊥ 

= �̂� �̂�∥�̂� − �̂� �̂�⊥�̂� 

= �̂�∥�̂��̂� + �̂�⊥�̂��̂� 

= �̂�(�̂��̂�).                                  (10) 

We can call the product �̂��̂� a commutative vector, or a scalar, and denote it by a character 

without hat: 

𝑑 = �̂��̂�.                                  (11) 

Therefore, a scalar is nothing else but a special vector that is commutative with any vector: 

𝑑 �̂� = �̂� 𝑑,                                 (12) 

and all operations defined above are applicable to scalars. 

   Indeed, the vectors defined by the three fundamental rules are general enough to accommodate 

a wide variety of mathematical objects. The objects that have directions, such as basis vectors of 4-

d spacetime, are indicated by non-commutative vectors. The objects that are directionless, such as 

real numbers and functions, are indicated by commutative vectors (scalars). One can distinguish 



4 

 

commutative product and dot product by that, commutative product can be operated on a basis 

vector and a real number, but dot product can not. [2] Commutative product is also different from 

inner product, because the inner product of a grade-1 vector and a grade-2 vector (or bi-vector) is 

anticommutative, [5, 11] but the commutative product is always commutative, with independence 

on the factors. 

   Unlike conventional algebra, an operator of differentiation with respect to a coordinate, say x, 

is considered here as a scalar. Its application to a function 𝑓(𝑥)  (f for short) is given by their 

product: 

𝜕

𝜕𝑥
𝑓 = 𝑓

𝜕

𝜕𝑥
=

𝜕𝑓

𝜕𝑥
.                            (13) 

And its application to the product of two functions 𝑓(𝑥) and 𝑔(𝑥) is expressed by 

𝜕

𝜕𝑥
𝑓𝑔 = 𝑓

𝜕

𝜕𝑥
𝑔 = 𝑓𝑔

𝜕

𝜕𝑥
=

𝜕𝑓

𝜕𝑥
𝑔 + 𝑓

𝜕𝑔

𝜕𝑥
.                  (14) 

   Thus we have a so abstract and general definition of vector that, all mathematical objects we are 

going to deal with have been considered as vectors. They follow the same, and only three 

fundamental rules, which are the rules of sum, product and commutation. The geometric relation 

we care most about is closely related to the commutation rule. 

 

3. Spacetime vectors and invariants 

A vector algebra for spacetime is built up from combinations of one time basis vector γ̂𝜏 and 

three space basis vectors, {γ̂𝑥 , γ̂𝑦, γ̂𝑧}, which are orthonormal: 

{
γ̂𝑖  γ̂𝑗 = −γ̂𝑗 γ̂𝑖  (𝑖 ≠ 𝑗)

γ̂𝑖  γ̂𝑖 = 1
,                            (15) 

If a physical quantity is the result of a measurement (or an observation), it is typically indicated 

by a real number or a series of real numbers. The measurement is surely performed at some instant, 

so each number in the result is definitely related to a time basis vector. Thus, the position of a moving 

particle at some instant in spacetime is indicated by 

�̂� = 𝜏 γ̂𝜏 + 𝑥 γ̂𝑥γ̂𝜏 + 𝑦 γ̂𝑦γ̂𝜏 + 𝑧 γ̂𝑧γ̂𝜏,                    (16) 

and a small displacement by 

𝑑�̂� = 𝑑𝜏 γ̂𝜏 + 𝑑𝑥 γ̂𝑥γ̂𝜏 + 𝑑𝑦 γ̂𝑦γ̂𝜏 + 𝑑𝑧 γ̂𝑧γ̂𝜏.                 (17) 

For convenience, we rewrite the product of basis vectors as one vector with a sequence notation: 

γ̂𝑖  γ̂𝑗 = γ̂𝑖𝑗.                            (18) 

Then, the small displacement vector can be expressed as 

𝑑�̂� = 𝑑𝑥 γ̂𝜏 + 𝑑𝑥 γ̂𝑥𝜏 + 𝑑𝑦 γ̂𝑦𝜏 + 𝑑𝑧 γ̂𝑧𝜏,                  (19) 

and its magnitude, spacetime interval, is 

𝑑𝛾 = √𝑑�̂�𝑑�̂� = √𝑑𝜏2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2,                 (20) 

where a system of units with the speed of light being set as 

c=1                                 (21) 

is used. 

   One may notice that a spacetime interval is a number without any basis vector. Since a 

spacetime basis is always associated with an inertial frame of reference, the absence of basis 

vectors means that a spacetime interval is independent on the choice of reference frame, and is 

a relativistic invariant.  

The spacetime interval of a moving particle is also the time that the particle (or the clock 
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fixed on the particle) experienced, so it is also called proper time. Thus, the spacetime velocity 

of the particle is indicated by the direction of the small displacement vector:  

�̂� =
𝑑�̂�

𝑑𝛾
=

𝑑𝜏

𝑑𝛾
 γ̂𝜏 +

𝑑𝑥

𝑑𝛾
 γ̂𝑥𝜏 +

𝑑𝑦

𝑑𝛾
 γ̂𝑦𝜏 +

𝑑𝑧

𝑑𝛾
 γ̂𝑧𝜏.                  (22) 

And the spacetime momentum is 

 �̂� = 𝑚0�̂�,                                 (23) 

where 𝑚0 is the rest mass of the particle. The time component of the momentum is the energy 

(or mass) 𝑚: 

𝑚 = 𝑚0
𝑑𝜏

𝑑𝛾
=

𝑚0

√1−
𝑑𝑥

𝑑𝜏

2
−

𝑑𝑦

𝑑𝜏

2
−

𝑑𝑧

𝑑𝜏

2
=

𝑚0

√1−𝑣2
,                      (24) 

and the magnitude of the momentum is the rest mass 𝑚0: 

𝑝 = √�̂��̂� = 𝑚0√�̂��̂� = 𝑚0                        (25) 

which is also a relativistic invariant.  

 

4. Spacetime equations of electromagnetic field 

The inverse of a vector �̂�, if it exists, is denoted by �̂�−1 and defined by the equation 

�̂� �̂�−1 = �̂�−1�̂� = 1.                             (26) 

Thus, we can write the vector differential operator as 

�̂� =
𝜕

𝜕𝜏
 γ̂𝜏

−1 +
𝜕

𝜕𝑥
 γ̂𝑥𝜏

−1 +
𝜕

𝜕𝑦
 γ̂𝑦𝜏

−1 +
𝜕

𝜕𝑧
 γ̂𝑧𝜏

−1 

= 𝜕𝜏 γ̂𝜏 + 𝜕𝑥 γ̂𝜏𝑥 + 𝜕𝑦 γ̂𝜏𝑦 + 𝜕𝑧 γ̂𝜏𝑧.                       (27) 

Then the spacetime divergence and curl of a vector field �̂� can be expressed as 

{ 𝑑𝑖𝑣 �̂� = �̂� ∙ �̂�
𝑐𝑢𝑟𝑙 �̂� = �̂� × �̂�

.                                 (28) 

For an electromagnetic potential, 

�̂� = 𝜑γ̂𝜏 + 𝐴𝑥 γ̂𝑥𝜏 + 𝐴𝑦 γ̂𝑦𝜏 + 𝐴𝑧 γ̂𝑧𝜏,                  (29) 

its curl gives the electromagnetic field: 

�̂� × �̂� = (𝜕𝜏 γ̂𝜏 + 𝜕𝑥 γ̂𝜏𝑥 + 𝜕𝑦  γ̂𝜏𝑦 + 𝜕𝑧 γ̂𝜏𝑧) × (𝜑γ̂𝜏 + 𝐴𝑥 γ̂𝑥𝜏 + 𝐴𝑦 γ̂𝑦𝜏 + 𝐴𝑧 γ̂𝑧𝜏) 

= −𝜕𝜏(𝐴𝑥 γ̂𝑥 + 𝐴𝑦 γ̂𝑦 + 𝐴𝑧 γ̂𝑧) − (𝜕𝑥 γ̂𝑥 + 𝜕𝑦 γ̂𝑦 + 𝜕𝑧 γ̂𝑧)𝜑 

+(𝜕𝑦𝐴𝑧 γ̂𝑦𝑧 + 𝜕𝑧𝐴𝑦 γ̂𝑧𝑦 + 𝜕𝑧𝐴𝑥 γ̂𝑧𝑥 + 𝜕𝑥𝐴𝑧 γ̂𝑥𝑧 + 𝜕𝑥𝐴𝑦 γ̂𝑥𝑦 + 𝜕𝑦𝐴𝑥  γ̂𝑦𝑧) 

= [−(𝜕𝜏𝐴𝑥 + 𝜕𝑥𝜑)γ̂𝑥 − (𝜕𝜏𝐴𝑦 + 𝜕𝑦𝜑)γ̂𝑦 − (𝜕𝜏𝐴𝑧 + 𝜕𝑧𝜑)γ̂𝑧] 

+[(𝜕𝑦𝐴𝑧 − 𝜕𝑧𝐴𝑦) γ̂𝑦𝑧 + (𝜕𝑧𝐴𝑥 − 𝜕𝑥𝐴𝑧) γ̂𝑧𝑥 + (𝜕𝑥𝐴𝑦 − 𝜕𝑦𝐴𝑥) γ̂𝑥𝑦] 

= [𝐸𝑥γ̂𝑥 + 𝐸𝑦γ̂𝑦 + 𝐸𝑧γ̂𝑧] + [𝐵𝑥γ̂𝑦𝑧 + 𝐵𝑦γ̂𝑧𝑥 + 𝐵𝑧γ̂𝑥𝑦] 

= �̂� + �̂� 

= �̂�,                                                               (30) 

where electric and magnetic fields can be expressed as 

{
�̂� = 𝐸𝑥γ̂𝑥 + 𝐸𝑦γ̂𝑦 + 𝐸𝑧γ̂𝑧

�̂� = 𝐵𝑥γ̂𝑦𝑧 + 𝐵𝑦γ̂𝑧𝑥 + 𝐵𝑧γ̂𝑥𝑦

.                           (31) 

The curl of electromagnetic field is 

�̂� × �̂� = (𝜕𝜏 γ̂𝜏 + 𝜕𝑥 γ̂𝜏𝑥 + 𝜕𝑦 γ̂𝜏𝑦 + 𝜕𝑧 γ̂𝜏𝑧) × (�̂� + �̂�) 

= −𝜕𝜏 �̂� γ̂𝜏 + (𝜕𝑥 γ̂𝜏𝑥 + 𝜕𝑦 γ̂𝜏𝑦 + 𝜕𝑧 γ̂𝜏𝑧) × (�̂� + �̂�) 

= −𝜕𝜏 (𝐸𝑥γ̂𝑥𝜏 + 𝐸𝑦γ̂𝑦𝜏 + 𝐸𝑧γ̂𝑧𝜏) + (𝜕𝑥 𝐸𝑥 + 𝜕𝑦𝐸𝑦 + 𝜕𝑧 𝐸𝑧)γ̂𝜏 

+[(𝜕𝑦𝐵𝑧 − 𝜕𝑧𝐵𝑦) γ̂𝑥𝜏 + (𝜕𝑧𝐵𝑥 − 𝜕𝑥𝐵𝑧) γ̂𝑦𝜏 + (𝜕𝑥𝐵𝑦 − 𝜕𝑦𝐵𝑥) γ̂𝑧𝜏].      (32) 

The electromagnetic field generated by an electric current density  
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𝑗̂ = 𝜌0�̂�,                                   (33) 

can be expressed by 

�̂� × �̂� =
𝐽

𝜀0
,                                 (34) 

which is the spacetime expression of Maxwell equations.  

Applying divergence on both sides of the above equation, the left side is 

�̂� ∙ (�̂� × �̂�) =
1

2
�̂� ∙ (�̂��̂� − �̂��̂�) 

=
1

4
(�̂��̂��̂� + �̂��̂��̂� − �̂��̂��̂� − �̂��̂��̂�) 

=
(�̂��̂�)�̂� − �̂�(�̂��̂�)

4
 

=
𝜕2�̂� − �̂� ∂2

4
 

=0.                                          (35) 

where the D’Alembertian operator, 

𝜕2 = �̂��̂� = 𝜕𝜏
2 − 𝜕𝑥

2 − 𝜕𝑦
2 − 𝜕𝑧

2,                        (36) 

is commutative with any vector field. Then, the right side must be zero: 

�̂� ∙ 𝐽 = 0,                                 (37) 

and this equation is recognized as the conservation law of electric charges. 

With the Lorentz gauge 

�̂� ∙ �̂� = 0,                                 (38) 

the spacetime Maxwell equation can also be expressed as 

𝜕2�̂� =
𝐽

𝜀0
.                                 (39) 

The motion equation of a charge q in the electromagnetic field �̂� is 

𝑑

𝑑𝛾
�̂� = 𝑞�̂� × �̂�,                               (40) 

where the right side is the general Lorentz force, 

𝑓 = 𝑞�̂� × �̂�.                                (41) 

 

5. Discussion and conclusions 

Although commutative and anticommutative products are not fundamental operations, they 

are widely used to indicate the geometric relations between various vectors, and thus have 

strong effects on the whole vector algebra. Firstly, they are so easy to operate that one need not 

to know the grades of the factors before operation. Secondly, since all kinds of vectors follow 

the same rules of operation, it is not necessary to classify them by grade. In other words, grade 

become meaningless for operation. Thirdly, the concept of vector is greatly generalized. Not 

only real numbers but also differential operators can be taken as general vectors, and all their 

operation rules are unified. Finally, the main theme of vector algebra is changed from the 

dimensional property of an object to its geometric relations with the others. 

Actually, the concepts of “parallel” and “orthogonal” are also generalized here. A real 

number is commutative with a basis vector, so they are “parallel” to each other according to 

rule (iii). If the real number corresponds to a point, and the basis vector a directed line segment, 
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what dose “parallel” mean for them? Suppose we had defined that, two objects are parallel if 

only one direction can be obtained from them. On this assumption, a directionless point and a 

directed line segment are parallel. However, the commutativity in product is a more compact 

and general way for the definition of parallel.  

Conventionally, a physical quantity in spacetime, such as the position of a particle at some 

instant, is represented by a 4-d vector that consists of a time component and three space 

components. To fill the need of Lorentz symmetry (or relativistic invariance), the time and 

space basis vectors must follow different rules of operation, which inevitably increases the 

number of rules and breaks the beautiful symmetry of Euclidean geometry. It seems reasonable, 

because the conception of time is intuitively different from that of space. 

From purely mathematical considerations, Lorentz symmetry and Euclidean geometry can 

be fulfilled simultaneously without changing any rule. If a 4-d vector is constructed with a time 

component and three space-time components, as shown in equation (16), it is naturally 

consistent with Lorentz symmetry, and the Euclidean geometry is preserved as well. Thus, 

every operation in this vector algebra has a clear geometric meaning as that in the conventional 

vector algebra, and the noncommutativity of any two vectors is finally attribute to the 

anticommutativity between the basis vectors, which bring us great convenience in operation 

and conception. 

Beyond that, some underlying physics and beautiful symmetries emerge with this algebra. 

The weird expression of a displacement vector indicates that each component is associated 

with a measurement at some instant. The unit vectors for each component of a displacement 

vector can be replaced by gamma matrices, or vice versa, and the vector differential operator 

is precisely the same as the Dirac operator, [11] which is usually used together with gamma 

matrices in the Dirac equation. The connections between various quantities in electromagnetic 

theory become so clear. The curl of electromagnetic potential is naturally electromagnetic field, 

and the curl of electromagnetic field is electric current density over 𝜀0 (Maxwell equation). 

The divergence of electromagnetic field is zero according to Lorentz gauge, and the divergence 

of electric current density is zero, manifesting the conservation of electric charges. A 

remarkable notation is that, the conservation law of charges can be derived from Maxwell 

equation in such a simple way that not even a coordinate system is needed, as shown in equation 

(35). 

   In this paper we have presented a brief introduction to the generalized, grade-independent 

vector algebra, and have demonstrated its practicality in formulating the spacetime equations 

of electromagnetic field. This algebra not only generalizes the beautiful symmetries of 

Euclidean space into relativistic spacetime, but also produces tremendous insight about the 

electromagnetic theory in a simple way. This general vector algebra is also applicable to other 

relativistic theories. 
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