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ABSTRACT: 

Artificial intelligence algorithms are being created both investigationally and 
commercially. Evaluation of their performance is important for developers, investigators, clinical 
physicians, and regulatory agencies. No clear consensus exists on what metrics are best for 
algorithmic evaluation for AI and ML applications in radiology. We review the basics of the 
confusion matrix, continue to single number summary values such as accuracy, F1 score, and ɸ 
coefficient, and then discuss Receiver Operator Curves and their derivatives, Precision Recall 
Curves, and Cost Curves. Recommendations are made for potential future directions and what 
currently may be best practices in algorithmic evaluation metrics.  

  

 INTRODUCTION: 

  

 The increasing interest in Artificial Intelligence (AI) and Machine Learning (ML) 
algorithms for patient care is plainly apparent to those following developments in the academic 
and commercial space. Applications include risk stratification, prognosis evaluation, data mining 
of text reports, and of course imaging suitable for use in Diagnostic Radiology.  

 

Prognostications by technology pundits like Vinod Khosla in 2012 that “Technology will 
replace 80% of what doctors do” were not considered credible at the time by most academic or 
clinical radiologists.1 IBM Watson’s early announcement of a move into healthcare related fields 
with the purchase of Merge Healthcare in 2015 was noted.2 In 2017, Arterys was 510k 
FDA-approved for its Cardio DL program3 and shortly thereafter the CheXNet paper was 
published by Pranav Rajpurkar and Andrew Ng et. al. from the Stanford Group.4 Vinod Khosla 
doubled down, pontificating that “Radiologists would be obsolete in five years.”5 Suddenly, AI 
was at the forefront of many radiologist’s minds. 
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There were revisions of the CheXNet paper following discourse around the internet, with 
some authors focusing on the limitations of the Wang dataset6 and others focusing on the 
reporting methodology7. As commercial interests starting moving more rapidly into the space, 
and investigators started releasing papers at conferences and in journals, there is a general 
confusion and no immediate consensus on how to properly evaluate these AI algorithms. 
Fortunately, the answer lies in one of the Radiologists’ fortés - diagnostic testing. A test for the 
presence of HIV antibodies, an abdominal CT scan to r/o ureteral stone, or an AI algorithm to 
detect pneumonia all share the same commonality - to positively identify the presence or 
absence of disease.  

  

THE BASICS: 

  

  Diagnostic medical testing is a large portion of the average physician’s day and the 
radiologists’ lifeblood. Fundamentally, every test results in either a normal or abnormal result; a 
positive or negative. While every effort in medicine is made to try to minimize error, each test 
does have an associated inherent error rate – that is, sometimes the test will be Falsely 
Positive (FP), in the absence of abnormality, or Falsely Negative (FN) in the presence of 
abnormality. We term the accurate positives True Positive (TP) and the accurate negatives 
True Negative (TN). Each of these cases, TP, FP, TN, FN can be considered a class of results. 
These values can be displayed as a two by two matrix, termed a confusion matrix or 
contingency table.  

  

 Figure 1 - Confusion Matrix 



 

 

 For physicians trying to diagnose disease it is helpful to know how good the test is in 
detecting abnormal results. After all, a test which doesn’t catch most of the cases of what you 
are interested in is not much good at all, unless there is no other alternative. To gauge how 
good the test is, we can look at the ratio where an abnormality was detected and was real, 
compared to the same cases plus those that should have been detected but weren’t (Type I 
Error).  

 In other words, we can calculate the Sensitivity of a test as : TP/TP+FN. Sensitivity is 
also called recall, or the True Positive Rate (TPR). And thus the Specificity of the test 
becomes : TN/TN+FP, allowing us to understand the fraction where the test was truly negative 
compared to the same plus cases which were detected, but ultimately weren’t abnormal. 
Specificity is also termed selectivity or True Negative Rate (TNR).8 Those involved in MQSA 
reporting in the past will be intimately familiar with these terms. 

 

 Clinicians struggle with, but need to know and understand these measurements, so that 
they can most accurately diagnose and treat patients. The average clinician looks for tests with 
high sensitivity and specificity to decrease false negative misses, and Positive Predictive 
Value (PPV), calculated as: TP/(TP+FP), also termed precision – usually without considering 
pre-test probability. This is because summary statistics are relatively complex.9  

 

 Sensitivity as a measure excludes TN and FP, and is biased toward screening, finding 
as many positives in a population as possible. Most clinicians follow a positive high sensitivity 
test with a test of high specificity. Specificity omits TP and FN, so if a high specificity test is 



positive, one can be reasonably certain of ‘ruling in’, but if it has been the only test performed, 
the test does not ‘rule out’.  

 

 Sensitivity and Specificity alone may not be sufficient, so other measures have been 
proposed for use.  

 

SINGLE VALUE SUMMARIES: 

 

One of the most common measures used in ML is Accuracy (ACC).  

  

 Accuracy is relatively intuitive, measuring correctly predicted observations compared to all 
observations. However, accuracy can fail as a predictive measure when there is a large FP:FN 
ratio, for example 50:1. This is known as a class imbalance problem, and arises frequently in 
ML, where it carries over into end algorithmic performance as well.10 In practice, a 4:1 ratio 
would not be significant, but a 100:1 ratio could. Consider Breast Cancer Screening, in which 
the number of FP’s (overcalls, up to 20%) will hopefully exceed FN’s (missed cancers, 0.1%). A 
mammography model which fails to detect any cancers at all, TP or FP, could still result in a 
high accuracy.11  

 The F1 Score, also known as the DICE coefficient has also been proposed for use.  

  

It takes both false positives and false negatives into account, and is better than accuracy with 
an uneven distribution of classes in the confusion matrix, as seen in the above example. F1 will 
also seek a balance between Sensitivity and Specificity.  Useful in segmentation tasks, it cannot 
be used to ‘rule out’ as it does not incorporate TN. 

  

Finally, the Matthews correlation coefficient, ɸ coefficient, may be measured. It takes 
into account all positives and negatives, and can be used in cases of class imbalance. Its output 
is a scalar from -1 to 1, with 1 representing a perfect prediction, 0 no better than random 
prediction (null hypothesis) and -1 complete disagreement between observation and prediction. 

https://www.codecogs.com/eqnedit.php?latex=%5Cmathsf%7B%20ACC%20%3D%20%5Cfrac%7BTP%2BFN%7D%7BTP%2BFP%2BTN%2BFN%7D%7D%20%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathsf%20%7BF1%20%3D%20%20%5Cfrac%7B2TP%7D%7B2TP%2BFP%2BFN%7D%7D%0


 

 

 Perhaps the greatest issue with single value metrics is that the same values can 
correspond to very different test or model performance.8 The full range of statistics obtainable 
from the confusion matrix is displayed in figure 2. 

Figure 2 - Confusion Matrix Statistics12 

 

  

THE ROC CURVE, AUC-ROC, and derivatives 

 The receiver operator curve (ROC) has its humble origins in the Royal Air Force’s early 
warning radar systems during World War II. The radar operator could pick up enemy aircraft, or 
be fooled by flocks of geese. As a plot of TP vs FP, expressed by plotting Sensitivity on the 
Y-axis, compared with 1-Specificity on the X-axis, the radar receiver operator could be 
evaluated on their ability to maximize enemy aircraft detection (TP) and minimize geese 
detection (FP). The plot provided a representation of sensitivity vs. specificity. 1-specificity is 
also known as the fall-out or False Positive Rate (FPR). One advantage is that ROC is 
prevalence-invariant, independent on whether what is being tested is common or not.  

figure 3a and 3b - ROC and AUC-ROC  

https://www.codecogs.com/eqnedit.php?latex=%5Cmathsf%20%7B%5Cphi%20%3D%20%5Cfrac%7BTP%20x%20FN%20-%20FP%20x%20FN%7D%7B%5Csqrt%7B(TP%2BFP)(FT%2BFN)(TN%2BFP)(TN%2BFN)%7D%7D%7D%0


 

Generally, a test (or model) which lies more to the upper left on the ROC curve (fig 3a 
model A) without crossing is better. The ROC curve is constructed by rank ordering test 
thresholds and the sensitivities and specificities for each threshold. The slope of the tangent line 
at a given threshold gives the likelihood ratio (LR) for that threshold. The Area Under the ROC 
Curve (AUC ROC) measures the chance that a randomly selected TP will rank above a 
randomly selected TN, and thereby gives a graphical and numerical representation of the test’s 
discriminative ability.  

figure 4 – interpreting ROC curves16 

 



 

Comparing ROC curves is a considered a quick way to a better test. But is it? Just 
because two different tests or models have equal AUC ROC’s, they may not be equally good for 
the same purpose.13 If the curves cross, this indicates that one test is superior to the other in 
some circumstances, like screening in our simple example, but inferior in others such as 
definitive diagnosis. Furthermore, in clinical practice, the radiologist chooses their single 
operating threshold level, whereas multiple thresholds exist in the ROC. AUC ROC will include 
performance over non-clinically relevant and possibly illogical thresholds.14 Since ROC AUC 
treats both sensitivity and specificity equally, a test or model with a lower AUC ROC could 
clinically outperform a higher AUC ROC. AUC ROC also can suffer from a similar problem as 
accuracy - class imbalance can cause AUC ROC to be inaccurate.15  

The Error Equal Rate (EER) or Crossover Rate has also been suggested and is used 
frequently in biometrics. It is simply the ROC curve at the threshold where FP=FN; frequently at 
the intersection of the curve with a diagonal line inverse to the null hypothesis line on the ROC 
curve. As a scalar value, it is simplistic and does not take into account the actual operating 
threshold on the ROC curve. See figure 3b. 

Different schema have been suggested for improving the ROC AUC, involving weighting. 
When little real-world experience exists with tests, in the early stage of test assessment, ROC 
comparison is reasonable. However, established tests in clinical use are subject to contexts of 
prevalence, and misclassification costs. A weighted formula for CT colonography screening 
where benefit of early disease detection outweighs the theoretical cost of a missed cancer was 
proposed and termed the Net Benefit function, where W is defined as the user assigned weight, 
and p the prevalence of abnormality in the defined population.13 No quantitative method for 
establishing W has been established however. 

 

PRECISION-RECALL CURVE, AUC-PR, and derivatives 

 Precision-Recall (PRC) curves are plots of sensitivity vs. PPV. One of the chief 
advantages of the PRC is it provides additional multi-threshold information that can be visually 
assessed. The closer to the upper right the curve moves, the better. The  AUC-PR, also termed 
average precision, can also be calculated through an integral and allows for a single value 
summary comparison between models or tests.17  

A test or model with a strong ROC and AUC-ROC need not necessarily have a similarly 
strong PRC, and ROC optimization may not improve the PRC. However, a model or test with 
better ROC, AUC-ROC, PRC and PRC-ROC than another can confidently be evaluated as 
better. Unlike AUC, PRC is useful for imbalanced classes particularly when one is most 
concerned with the positive class.18 Additionally, for high-value AUC-ROC models with a similar 

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathsf%7BNet%20Benefit%20%3D%20%20%20%CE%94sensitivity%20%2B%20%5Cleft(%20%CE%94specificity%20*%20%5Cleft(%20%5Cfrac%7B1%7D%7BW%7D%20%5Cright)%20%5Cleft(%20%5Cfrac%7B(1-p)%7D%7Bp%7D%20%5Cright)%20%5Cright)%20%7D%0


visual appearance, the PRC may allow more confident discrimination between the two on a 
visual basis. For this reason, some authors prefer it to ROC.15 

Figure 5 - PR curve 

 

New Measures 

The cost curve (CC) has been proposed as an improvement over the ROC curve, but 
has not received widespread use.19 Perhaps this is because its calculation is more complex than 
a ROC, but more likely because the word ‘cost’ has so many meanings in the ML space, often 
used interchangeably with ‘loss’, and that the cost curve in Economics and Business research 
and related publications arise so frequently that meaning (and discoverability) are lost in the 
noise. Perhaps the cost curve could benefit from a rebranding to the Drummond Cost Curve?  

Each point on the ROC space describes a line (format Y = Sx+b) defined by: 

 

Where ppositive is the probability between 0 and 1 of a positive example in the sample, also 
expressible by (TP+FP)/(TP+FP+FN+TN) - really just the positive fraction. 

A line in ROC space with slope S and y-intercept TP0 then maps to CC space through the 
following equations, and an example of the conversion is shown in figure 6: 

 

 

Figure 6 - Cost Curves19 

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathsf%20%7B%20Y%20%3D%20(FN-FP)%20*%20p_%7Bpositive%7D%20%2B%20FP%7D%20%0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathsf%20%7BX%20%3D%20p_%7Bpositive%7D%20%3D%20%5Cfrac%7B1%7D%7B1%2BS%7D%7D%20%0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathsf%20%7BY%20%3D%20error%20%5Chspace%7B1mm%7Drate%20%3D%20(1-TP_%7B0%7D)%20%20*%20p_%7Bpositive%7D%7D%20%0


 

Visually, a CC shows lines forming a lower envelope curve pulling down and away from 
the large apical triangle, where trivial cases of discrimination exist in the lower left and right 
corners of the Figure 4b plot. Better is down and away from the triangle’s boundaries. 
Classifiers (ML models) can be compared in this manner, and potentially optimized for various 
different criteria. Unlike a ROC curve, which are independent of conditions, cost curves are 
designed for a specific performance measure. Misclassification costs, similar to that attempted 
in the Net Benefit weighted model above can be included. By using a bootstrap method20 on the 
confusion matrix, confidence intervals can be created for the CC, and significance testing can 
also be performed. It is suggested that the CC method gives most of the benefits of ROC 
analysis, with extra benefits not available through ROC. One area where CC underperform is 
also in the setting of imbalanced data.15 CC-AUC could provide a similarly comparable scalar, 
but more experience with that measure would be necessary. 

  

Future Directions 

Probably the biggest thing that would help solidify evaluation metrics in diagnostic 
imaging machine learning is a consistent effort for authors to publish multiple of these metrics 
so that we can review them across multiple algorithms and datasets, identifying those that have 
the most utility and are best in day-to-day use and evaluation. Too many investigators have 
insufficient experience with these metrics beyond sensitivity and specificity and perhaps the 
ROC curve.  

As has been shown by multiple authors, class imbalances can have significant effects on 
loss of performance in classifier systems. To document this, investigators have proposed the 
use of a class imbalance ratio as a summary statistic on data, which gives the population 



number N in each class and is represented like this for a typical 2x2 confusion matrix: 
{TP:861}{FP:240}{TN:3002}{FN:743}. This may have utility in model evaluation, particularly on a 
formal basis by regulatory agencies, as such information would lend context to disclosures of 
Accuracy, F1, and ROC scores.  

It should be noted that the confusion matrix reduces to a simple Positive-Negative, 
yes/no model. While currently most AI systems introduced use a similar binary classification, 
multiclass AI systems will require a more complex approach. We currently can create an 
ensemble of multiclass One-vs-All approaches. Finally, further experience with the Cost Curve 
method would have to be performed to decide if this method was superior to others mentioned. 

  

Conclusion 

 It is worth remembering the admonitions of Drummond and Holte : “a single, scalar 
performance measure cannot capture all aspects of the performance differences between two 
(classiers).”19 As physicians, we are used to specificity and sensitivity, but if we are to work with 
AI and ML models, we must be cognizant of other model evaluation metrics. Single summary 
scores like ACC, MCC, and F1 are useful, but do not give the whole picture. At this time, only 
ROC and AUC-ROC measures are sufficiently diffused within the radiology literature and 
community to enjoy more widespread use. Experience is hard-earned and comes with both 
familiarity and frustration. With that said, the authors would like to suggest the following 
recommendations: 

1.  We admit that we don’t know what we don’t know.  There is, collectively, insufficient 
experience with AI model evaluation and subsequent real-world followup assessment in 
clinical practice.  Therefore, multiple measures for any AI model should be presented.  At 
a minimum: Accuracy, F1, MCC and ROC. 

2. Disclosure of the class imbalance ratio for any dataset or AI model should be strongly 
encouraged, particularly as we extend our reach into evaluation of multiple classes. 

3. For tests that have imbalanced data or a bias toward screening, serious consideration 
should be given to use of PRC over ROC, and probably both should be routinely 
provided.  A superior model will likely have both higher AUC-ROC and AUC-PR.  

4. Consideration to further development of the Drummond Cost Curve, a statistical method 
of calculating W in the Net Benefits function and new discriminative metrics should be 
given.  Further basic applied statistical research would help here. 

5. A perfect ML paper would include not only the confusion matrix, but the class imbalance 
ratio, ACC, F1, MCC, ROC, ROC-AUC, PRC and PRC-AUC statistics. 

6. Considerations relating to external validation, spectrum bias, model drift, and edge cases 
are in no way minimized by the foregoing.  
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