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Abstract 

 

The current gold standard for solving nonlinear partial differential equations, or PDEs, is the simplest 

equation method, or SEM.  As a matter of fact, another prior technique for solving such equations, the 

G'/G-expansion method, appears to branch from the simplest equation method (SEM).  This study will 

discuss a new method for solving PDEs called the generating function technique (GFT) which may 

establish a new precedence with respect to SEM.  First, this study shows how GFT relates to SEM and the 

G'/G-expansion method.  Next, the paper describes a new theorem that incorporates GFT, Ring and Knot 

theory in the finding of solutions to PDEs.  Then the novel technique is applied in the derivation of new 

solutions to the Benjamin-Ono, QFT and Good Boussinesq equations.  Finally, the study concludes via a 

discourse on the reasons why the technique is likely better than SEM and G'/G-expansion method, the 

scope and range of what GFT could ultimately accomplish, and the elucidation of a putative new branch 

of calculus, called "diversification".   

 

1. Introduction 

 

Many notable mathematicians, like Lawrence Evans, suggest a general theory of 

[nonlinear] partial differential equations cannot exist.  He claims there can never be a pithy 

theory to describe partial differential equations due to its vast number of [diverse] sources [1].  

However, there are semi-analytical methods, like Adomian decomposition and homotopy 

analysis, which have been shown to solve a large variety of NPDEs [2,3].  Unfortunately, these 

techniques are not purely analytical and come with extremely high computational costs and are 

very time-consuming.  Therefore, one must truly ask can one find or erect a purely analytical 

method for solving partial differential equations, especially NPDEs?  

 

Stone-Weierstrass theorem states that a continuous function can be closely approximated 

to a polynomial [4].  Assuming the polynomial is a formal power series of at least an exponential 

function, it should converge to the exact solution of partial differential equations with the right 

coefficients [5].   Ultimately, if one wishes to devise a method that can solve a wide variety of 

partial differential equations, (s)he may have to heed this theorem and utilize a formal power 

series of an exponential function with the appropriate coefficients [6]. 
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In the paper, a technique, called the Generating Function[s] Technique (GFT), for solving 

at least homogeneous partial differential equations will be discussed.  First, the paper will show 

how the method incorporates a set of Laurent series of formal power series with a solution, 

derived from an auxiliary/characteristic equation, and trigonometric-based coefficients; thus, the 

paper will compare GFT to other methods (i.e. the simplest equation (SEM), G’/G-expansion 

methods).  Next, the study will show how the set of formal power series, hence general and exact 

solution to the partial differential equations are connected to polynomial rings and knot 

polynomials via theorem.  Then the paper will apply the theory in several examples.  Finally, the 

study will conclude with a more exquisite explanation on why the method is more highly 

effective in comparison to other techniques, what other functions GFT can perform, and provide 

evidence of the possible existence of a branch of calculus, called “diversification”. 

 

2. Methodology 

 

The relationship between generating functions and the solution to the Riccati equation. 

 

The Riccati equation, a first-order ordinary differential equation (ODE), is the following 

expression:  

, 

where  is the solution to the equation and  is the [transformed] variable [7].  Solution  is defined as: 

. 

Now consider a generating function , or: 

, 

where f is some function in terms of  and pi is the i-th coefficient or parameter in the formal power series 

[8].  If one lets function f equal to e/2 and parameter pi equal the Lucas Li combinatorial number about 

zero divided by two, or cos2(i/2), the generating function  becomes: 

 

. 
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It is noteworthy to state  is equal to negative .  In other words, the solution to the Riccati equation can 

be redefined as a generating function. 

  

The relationship of other quintessential expressions and generating functions. 

 

There are other important functions used to solve [nonlinear] PDEs that can be defined as 

generating functions.  The table below provides a list of relationships between generating functions and 

quintessential expressions utilized in solving [nonlinear] PDEs. 

 

Bi, Li, Ui, Fi, and Hi are the i-th binomial, Lucas L, Chebyshev U, Fibonacci and Harmonic 

[combinatorial] numbers about zero, respectively. 

 

The general solution associated with GFT 

 

Consider the following expression: 
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, 

where ps is the power of the solution u in a putative series or the level of Laurent serial truncation for 

solution u, dl is the highest degree of the linear terms, dn is the total degree of a nonlinear term, pn is the 

total power of the same nonlinear term, pl is the highest power of the linear term which is one, and nn is 

the number of basic nonlinear terms (including the source type).  

 

SEM defines the general solution of a [nonlinear] PDE as a rudimentary linear combination or 

simple sum of the solution to the Riccati equation, or: 

, 

where i is the i-th coefficient or parameter [9,10].  The Riccati equation serves as an auxiliary equation 

to SEM and more specifically the G’/G-expansion method [11,12]. 

 

Now considered the [transformed] general solution for GFT which involves a [truncated] Laurent 

series [13].  If one lets ps equal , then the putative [transformed] general solutions u (or U) to many PDEs 

is defined as: 

. 

, where the Fibonacci k-th number/parameter given/for zero is the following expression: 

 

and the Chebyshev U k-th number/parameter given/for zero is expressed as: 

. 

Note:  the ansatz transformed variable  is a linear array of intermediates/variables, or the following 

expression:  

 = t + x, 

where  and  are coefficients to the variables or intermediates t and x, respectively.  This expression is 

only for 1 + 1 dimensional system. 

 

If one wishes not to work with coefficients with negative indices, then shift the [truncated] Laurent series 

via ps, like: 
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. 

The latter expression/general solution involves an offset.  Through GFT, the auxiliary/characteristic 

equation used for the facilitation of SEM and the G’/G-expansion method is a basic first-order ODE, or: 

. 

Its solution is simply defined as: 

. 

Using the solution to the above basic auxiliary equation in the general solution to some principal partial 

differential equation will give rise to hyperbolic secant, hyperbolic cosecant, hyperbolic sine, hyperbolic 

cosine via Fibonacci or sine-based parameters/generating functions and expressions involving one plus 

hyperbolic tangent and cotangent via Chebyshev U or cosine-based parameters/generating functions 

raised by various powers. 

The degree of “diversity” of solutions u of [nonlinear] PDEs established by GFT will be 

dependent upon the complexity of the auxiliary equation used.  The auxiliary equation of GFT, which is 

used to derive f, hence generating function , can be any order linear ODE just as long as it does not 

surpass the order of the differential equation being solved.  This will be further discussed in the 

conclusion section of this paper. 

 

3. Theorem 

 

Let ug be the general solution while ue be the exact solution to the differential equation F, defined 

as: 

F(u,ut,ux,utt,uxx,uxt,..) = 0. 

 

Definition 3.1:  the general solution ug, which is a set of formal power series and their multiplicative 

inverses, is a ring formed from the set of polynomials in one or more indeterminates with coefficients in 

another ring/field, or ug R[[x]]{E}.  The general solution ug may also include hyperbolic trigonometric 

functions (i.e. hyperbolic secant, hyperbolic cosecant, etc.) raised by various powers which are generally 

polynomial ring analogs. 

 

Definition 3.2:  transformed general solution Ug, which is a set of formal power series and their 

multiplicative inverses, is a ring formed from the set of polynomials in one indeterminate with coefficients in 

another ring/field, or Ug R[[]]{E}.  The general solution Ug may also include hyperbolic functions raised by 

various powers which are polynomial ring analogs. 

 

https://en.wikipedia.org/wiki/Ring_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Indeterminate_(variable)
https://en.wikipedia.org/wiki/Ring_(mathematics)
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Ring_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Ring_(mathematics)
https://en.wikipedia.org/wiki/Field_(mathematics)
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A formal power series (of an exponential function) establishes a polynomial ring R[[x]]{E} 

[14,15,16].  (Note: {E} designates a exponentiated entity.)  On the other hand, Maclaurin/Taylor series 

establishes a polynomial ring analog [17].  The multiplicative inverse of some formal power series will 

produce either another formal power series or the analog of a polynomial ring R[[x]]{E}.  Since polynomial 

rings can be commutative and associative, or undergo both addition and multiplication, another 

polynomial ring [analog] is generated by raising the power of a formal power and Maclaurin/Taylor 

series.  In essence, the general solution ug and its transformed general solution Ug is a set of Laurent series 

of polynomial rings and their analogs.  Since polynomial rings can be commutative and associative, their 

net sum is a larger polynomial ring [analog]. 

 

Lemma 3.3:  if Ug is a polynomial ring, then the transformed differential equation F will be a polynomial ring 

also.  In other words, F R[[]]{E}. 

 

Lemma 4.4:  if the common denominator C of transformed differential equation F is a polynomial ring, or C

R[[]]{E}, then the product of the common denominator C and transformed differential equation F is another 

polynomial ring P, or C X F = P R[[]]{E}. 

 

Lemma 3.5:  since P is a polynomial ring, then ideal I is a subset of the polynomial ring P, or: . Also, 

ideal I possesses at least one set of generators (i.e. , , etc.). 

 

Plugging in Ug into a differential equation F will form a sum of differential polynomial rings 

which will be designate F.  Since differential polynomial rings can be commutative and associative like 

other polynomial rings, their sum is an even larger polynomial ring F.  Also, the common denominator of 

the differential equation F is the product of knots.  The product of knot polynomials involves the 

connected sum of knots [18].  The connected sum of knots will form a commutative ring C (Schubert’s 

theorem) [19].  The product of polynomials is another polynomial.  In other words, the product of knots 

of knot polynomials/invariants of polynomials and polynomial rings will [probably] establish another 

polynomial ring P.  The subset of the latter polynomial ring will form a new ideal I which possesses a set 

of generators (i.e.  <  > = {   n} , < e > = {e, e
  en}) [20]. 

 

Lemma 3.6:  if the coefficients of the polynomial ideal I are made to equal to zero, then the exact solution ue 

may exist.  

 

Definition 3.7:  the exact solution ue, is a polynomial subring of the transformed general solution Ug. 

 

The coefficients associated with the generators, linked to the ideal I, form algebraic equations that 

should equal zero.  Thus, an individual would consider the ideal I to be trivial.  With the trivial ideal I, 

one is able to determine the values of the constants (i.e. aij, bij,   etc.) of the set of [truncated] Laurent 
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series and its formal power series; (s)he is able to derive at least one exact solution ue for the differential 

equation F. 

 

Lemma 3.8:  if the exact solution ue exists for the differential equation F, then the differential equation F will 

vanish when the exact solution ue is plugged into the equation. 

 

The examples shown below will provide proof.  Once an exact solution ue is placed into the 

differential equation F, an individual will obtain zero.  In other words, the differential equation F will 

become a “zero” polynomial ring after introduction of the general solutions ug with solved constants (i.e. 

coefficients/parameters, etc.). 

 

Theorem 3.9:  if one is dealing with a [homogeneous] partial differential equation F, which occurs in the 

physical universe, then (s)he can utilize a set of Laurent series of formal power series, comprised of 

combinatorial numbers (specifically Fibonacci and Chebyshev U numbers about zero)/trigonometric-based 

parameters and some function f ( which is the solution to a [linear] ordinary differential equation), to find 

exact solutions ue to the equation F. 

 

This theorem is analogous to, but not the same as the Cauchy-Kovalevskaya theorem [5].  Both 

theorems suggest that if a (system of) equation[s] is analytical, then the solution[s] will be analytical.  

However, this new theorem does not require Cauchy initial or other conditions (i.e. Neumann, Dirichlet) for 

the derivation of exact solutions.  

 

4. Examples 

 

All calculations were performed with Mathematica®.  The supplemental to this paper 

contains Mathematica® spreadsheets for each example.  Finally, all general transformed general 

solutions U will be based upon polynomial exponential knots and/or rings. 

 

4.1 A 2nd order linear parabolic equation 

 

A 2nd order linear parabolic equation is defined as follows: 

ut + uxx = 0. 

The transformed LPDE F in terms of the transformed solution U() is: 

U + 2U = 0. 

First, one needs to determine which auxiliary equation (s)he wishes to use.  In this example, the 

paper will utilize a basic first-order linear ODE given below: 
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. 

Then, (s)he must calculate the possible maximal/minimal power of the solution ps.  An individual 

would obtain a ps equal to -1.  Then (s)he must plug in the ps value to the transformed general 

solution U().  Next, the individual must apply the transformed general solution U into the 

transformed LPDE.  By multiplying this transformed LPDE with its common denominator, (s)he 

will produce a large expression that can produce up to fourteen algebraic equations associated 

with the set of generators .  The fourteen algebraic equations are used to solve for constants 

aij, bij  and  whenever possible.  Substituting in the previously described constants into the 

transformed general solution will give rise to the final exact solution[s] u like: 

. 

 

4.2. The Benjamin-Ono equation. 

 

The nonlinear Benjamin-Ono equation is defined as follows: 

ut + uxx + uux = 0. 

The transformed NPDE F in terms of the transformed solution U() is: 

U + 2U + UU = 0. 

First, considers and solves the following first-order linear ODE to get the solutions that would be 

derived via SEM: 

. 

Then one must calculate the possible maximal/minimal power of the solution ps.  An individual 

would obtain a ps equal to 1.  Then (s)he must plug in the ps value to the transformed general 

solution U().  Next, the individual must apply the transformed general solution U into the 

transformed NPDE.  By multiplying this transformed NPDE with its common denominator, (s)he 

will produce a large expression that can produce at most eighteen algebraic equations linked to 

the generator set .  The eighteen algebraic equations are used to solve for constants aij, bij  

and  whenever possible.  Substituting in the previously described constants into the transformed 

general solution will give rise to the final exact solution[s] u like: 

. 

Now an individual can derive new solutions if they change the characteristic/auxiliary equation to 

a second-order linear ODE given below: 
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.  

The solution to this equation is as follows: 

. 

Then (s)he must plug in the same ps value and the to the transformed general solution U().  

Next, the individual must apply the transformed solution U into the transformed NPDE.  By 

multiplying this transformed NPDE with its common denominator, (s)he produces a large 

expression that establishes at most forty-five algebraic equations linked to generator sets  

and .  The forty-five algebraic equations are used to solve for constants aij, bij,  and 

 whenever possible.  Substituting in the previously described constants into the transformed 

general solution will give rise to the final exact solution[s] u like: 

 

and 

, 

 where . 

The latter solutions to the equation are new or exotic. 

 

4.3.  The nonlinear QFT[-like] equation. 

 

The QFT[-like] equation is defined as the following expression: 

utt + uxx + u + u3 = 0. 

The transformed NPDE F in terms of the transformed solution U() is: 

U + 2U + U+ U3 = 0. 

First, one must calculate the possible maximal/minimal power of the solution ps.  An individual 

would obtain a ps equal to 1.  Then (s)he must determine the solution to the following auxiliary 

equation: 
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, 

which is: 

. 

Next, (s)he plugs in the ps value and the solution to the to the characteristic/auxiliary equation 

into the transformed general solution U().  Next, the individual must apply the transformed 

solution into the transformed NPDE.  By multiplying this transformed NPDE with its common 

denominator, (s)he produces a large expression which establishes at most thirteen algebraic 

equations linked to the set of generators .  The thirteen algebraic equations are used to solve 

for constants aij, bij,  and  whenever possible.  Substituting in the previously described 

constants into the transformed general solution will give rise to the final exact solution[s] u like: 

 

and 

. 

The above solutions are considered new or exotic. 

 

4.4. The Good Boussinesq[-like] equation. 

 

The Good Boussinesq[-like] equation is defined as the following expression: 

utt + uxx + uxxxx + (u2/2)xx = 0. 

The transformed NPDE F in terms of the transformed solution U() is: 

U + U + U + 2(U2/2) = 0. 

First, one must calculate the possible maximal/minimal power of the solution ps.  An individual 

would obtain a ps equal to 2.  Next (s)he must find a solution to the auxiliary equation which is a 

linear ODE, like: 

. 

The above equation solution is: 

. 
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Then the individual must plug in the ps value and the solution of the characteristic/auxiliary 

equation into the transformed general solution U().  Next, the individual must apply the 

transformed solution U into the transformed NPDE.  By multiplying this transformed NPDE with 

its common denominator, (s)he produces a large expression which establishes at most four-

hundred and sixty-five algebraic equations linked to generator sets  and .  These 

algebraic equations are used to solve for constants aij, bij,  and  whenever possible.  

Substituting in the previously described constants into the transformed general solution will give 

rise to the final exact solution[s] u like: 

, 

 where . 

The above solution is considered new or exotic. 

 

5. Conclusions 

 

From one dimension to beyond. 

 

GFT can be used to solve a large range of PDEs including problems that have more than one 

spatial dimension.  This paper primarily focused on the generation of soliton-based solutions for (1 + 1) 

PDEs; thus, the "bilinear" form of GFT is only utilized in this study.  If one needs to solve (N + 1) PDEs, 

where N > 2, then the individual just adds more coefficients and variables or intermediates to , like the 

following for N = 3: 

 = t + 1x + 2y + z, 

then make the appropriate transformations to the PDE.  Next, (s)he can find the exact solution by 

committing the same steps used to solve 1 + 1 equations, but one must also solve for additional 

coefficients of the added variables or intermediates if deemed necessary.  (Generally, (s)he just needs to 

solve for  concerning the other coefficients.)  Therefore, "multilinear" GFT would be needed to solve N 

+ 1 PDEs.  An individual can also apply "unilinear" GFT to solve ordinary differential equations, by 

restricting  to one specific coefficient and variable/intermediate product, like t, then committing the 

same steps that are described above. 

 

The distinction between SEM, its specific extension G’/G-expansion and GFT. 
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The major difference in SEM and GFT is how their auxiliary equations are used.  The auxiliary 

equation utilized in SEM creates the template by which solutions are established while the generating 

function performs that same task for GFT. The auxiliary equation usage in GFT is for adding complexity 

or greater diversification of the template through which solutions are established.  As discussed before, an 

auxiliary equation that is a first-order linear ODE will let GFT create solutions similar to SEM. It is 

important to note these solutions tend to be primarily comprised of a [hyperbolic] secant, cosecant, 

tangent or cotangent function in the numerator position.  If an individual uses a higher-order auxiliary 

equation, (s)he will produce a greater variety of solutions where "differing (and large) combinations" of 

[hyperbolic] sine, cosine and exponential functions appear in both the numerator and denominator 

positions.  

 

A new branch of calculus. 

 

In traditional calculus, there are two well-known branches of mathematics called "differentiation" 

and "integration".  Due to the invention of various techniques to derive solutions to nonlinear PDEs, 

another branch, "non-integration", came about:  the techniques represent a process through which an 

individual can by-pass the process of integration to derive a solution to a differential equation.  This paper 

may have identified another subfield of calculus, "diversification" which exists between the three fields.  

It allows one to "proactively" generate a plethora of distinct exact solutions for both integrable and non-

integrable equations via changing the order and/or presence of terms in the auxiliary equation. 

 

Several principles can be elucidated in the field.  For instance, the more terms the auxiliary 

equation has, the greater the number of possible exact solutions one can generate.  Another principle 

would state that one can use inverse Z-transforms to define the coefficients of the formal power series 

solutions to a (particular auxiliary and) principal equation.  Then (s)he can utilize permutations of the set 

of exact solutions generated from a (particular auxiliary and) principal equation to establish different 

exact solutions via taking either the arithmetic or geometric mean of the defined coefficients of the formal 

power series solutions present in the set.  In other words, the above states that a [sub]set of exact solutions 

is the summation of the product between a [sub]set of coefficients (dependent upon the i-th iteration) and 

the [exponentiated] linear array of intermediates, or: 

, 
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where the [sub]set of exact solutions Su is defined as: 

 , 

and where the [sub]set of parameter/coefficients SP which is: 

 . 

The arithmetic mean a and geometric mean g for the entire set of exact solutions with proportional 

arguments would be described as: 

, 

where  

and 

, 

where . 

Both the arithmetic and geometric mean operations exemplify the fact that exact solutions, derived from 

at least GFT, are polynomial rings, which again can be associative and commutative; these operations 

exploit the ability of the exact solutions to undergo some variation of addition and multiplication.  Note: 

the arithmetic mean a represents the “centroid” to the entire [sub]set of exact solutions Su. 
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