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Abstract

The rational root test gives a way to solve polynomial equations. We

apply the idea to factoring quadratics (and other polynomials). A calculator

speeds up the filtering through possible rational roots.

Introduction

The rational root test (RRT) is typically taught in college algebra classes

[1]. It says that a polynomial will have a rational root, p=q, if p divides its

constant term and q divides its leading coefficient. Typically students are

given a high degree polynomial and asked to test a series of such numbers

using synthetic division. If a root is found, then the process can be repeated

on the quotient derived.

The rational root test is not used, in the college and elementary algebra

books I’ve read, to factor a quadratic. In this article we will make a case that

it can be used to factor quadratics.

The potentially tedious task of trial and error in finding rational roots

with the RRT is speeded up by writing program in a calculator. The pro-

gram requires a for loop, an if statement, and various other features of the

language; it is a good programming exercise. It is especially nice in that

the theory is proven to be useful in a practical way. All in all one can give

to students a feeling of the power of exhaustive, clear thinking leading to

perfect factoring.

We’ll first give the theory, in its simplest form, and then present the

program. The program is short and sweet.
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The theory

We’ll make it simple. Consider the linear case: solve ax C b D 0. The

solution is x D �b=a. That means the constant divides the numerator of the

solution rational and the leading coefficient divides its denominator. This

generalizes to the quadratic case. So, for ax2 C bx C c D 0, a rational root,

p=q will be such that p divides the constant c and q divides the leading

coefficient a. We can actually read this off of the quadratic formula:

p

q
D �b ˙

p
b2 � 4ac

2a
(1)

implies that if one root is rational, so is the other. It also implies that

 

x � �b C
p

b2 � 4ac

2a

! 

x � �b �
p

b2 � 4ac

2a

!

D x2 C b

a
x C c

a

has the same roots as ax2 C bx C c. So rational roots, if they exist, will be

products of two denominators equal to c and two numerators equal to a.1

The rational root test yields that any rational root must be between �jcj
and jcj as the smallest and largest rational with the divisor for numerators

and denominators is c is the largest divisor of c and 1 is the smallest divisor

of a. We then know that a rational root will be some multiple of the form

x
1

a
;

where x an integer is such that �jcj � x � jcj. This looks like a for loop

for a computer program. We have our theory.

1One can make a program that gives these two roots in fraction form and asks for denominators

of displayed fractions. This entry is converted into a ax C b form and is listed as one factor. Done

twice per (1) the quadratic is factored. We don’t supply this code; it’s more cumbersome than

using the RRT.
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The code

Screen captures on a TI-83 calculator are given in Figures 1 and 2

Figure 1: Code for getrr, get rational roots program.

The number of iterations is equal to the number of fractions with 1=a

denominator between �c and c.

Figure 2: Code continued for getrr.

Conclusion

It is possible to speed the given program up and further tweak it. On a TI-83,

an older version of this calculator, it can take a full minute to cycle through

all the combinations. Certainly a while loop could be used with a STOP

command. As the program is written in cycles through the entire list even

after two roots have been found. Also if A, B , and C are all positive the roots

can’t be negative, so the range of values tested can be further shortened for

such cases. These tweaks make for nice extra credit possibilities.
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