On the value of the function
\[\exp(ax)/f(a) \text{ at } a = 0 \text{ for } f(a) = 0 \]

Saburou Saitoh
Institute of Reproducing Kernels
Kawauchi-cho, 5-1648-16, Kiryu 376-0041, JAPAN
saburou.saitoh@gmail.com

October 1, 2019

Abstract: In this short note, we will consider the value of the function \(\exp(ax)/f(a) \) at \(a = 0 \) for \(f(a) = 0 \). This case appears for the construction of the special solution of some differential operator \(f(D) \) for the polynomial case of \(D \) with constant coefficients. We would like to show the power of the new method of the division by zero calculus, simply and typically.

Key Words: Division by zero calculus, construction of special solutions, ordinary differential equation.

Mathematics Subject Classification (2010): 30C25, 00A05, 00A09, 42B20.

1 Introduction

In this short note, we will consider the value of the function \(\exp(ax)/f(a) \) at \(a = 0 \) for \(f(a) = 0 \). This case appears for the construction of the special solution of some differential operator \(f(D) \) for the polynomial case of \(D \) with constant coefficients. We would like to show the power of the new method of the division by zero calculus, simply and typically.
2 Division by zero calculus

For the statement of the conclusion, we will recall the division by zero calculus.

For any Laurent expansion around \(z = a \),

\[
f(z) = \sum_{n=-\infty}^{-1} C_n(z - a)^n + C_0 + \sum_{n=1}^{\infty} C_n(z - a)^n,
\]

we define the division by zero calculus by the identity

\[
f(a) = C_0.
\]

For many basic properties and applications of the division by zero calculus, see [7] and the references.

3 Conclusion

From the definition of the division by zero calculus, directly, we obtain the theorem, simply

Theorem: For the function

\[
\frac{\exp(ax)}{f(a)}, \quad f(a) = 0
\]

if \(f(z) \) is analytic around \(z = 0 \) and \(f'(a) = f''(a) = ... = f^{(m)}(a) = 0 \) and \(f^{(m+1)}(a) \neq 0 \), by the division by zero calculus, we obtain the identity

\[
x^{m+1} \frac{\exp(ax)}{f^{(m+1)}(a)}.
\]

When \(f(D) \) is an (polynomial) ordinary differential operator with \(D = d/dx \) and with constant coefficients, in the ordinary differential equation

\[
f(D)y = \exp(ax),
\]

if \(f'(a) = f''(a) = ... = f^{(m)}(a) = 0 \) and \(f^{(m+1)}(a) \neq 0 \), then it gives a special solution.
References

