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Can we predict?
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ABSTRACT
We simulate artificial data for a sinusoid having a period P = 1. Then we show that
this period can be detected from a short ∆T = 0.3P slice of data. We proceed to
show that the slice length is irrelevant for high quality measurements. The frustrating
frequency resolution limit f0 = 1/∆T of the power spectrum methods is pulverized.
It is possible to predict the behaviour of non-linear periodic models.
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1 INTRODUCTION

Jetsu (2019, paper i) presented a method for solving the
free parameters of non-linear models. He divided the free
parameters β̄ into two parts. The ones that make the model
non-linear (β̄I), and those that do not (β̄II). If the β̄I free
parameters are fixed to constant tested values, the model
becomes linear. No one, including us, has realized the full
potential of this approach.

2 METHOD

Imagine that the model is a line. If there are only two points
(n = 2), it is trivial to solve the line that goes trough them.
However, if three measurements yi do not coincide with a
line, it is still possible that their distance from the line, the
residuals εi, is of the same order as their measurement er-
rors σi. The standard least squares fit minimizes the test-
statistic χ2 =

∑n

i
ε2i /σ

2
i , and gives unique solution for the

free parameters of this linear model. A successful model has
χ2 ≈ n, because the relation σi ≈ εi should be fulfilled. The
sample size n must be larger than the number of free pa-
rameters of a non-linear model pβI + pβII . If β̄I are fixed
to constant values, then n ≥ pβII + 1 is sufficient, and the
model becomes linear!

3 SIMULATIONS

Our one period model is

g1(t) = A1 cos (2πf1t) +B1 sin (2πf1t), (1)

where the free parameters are β̄ = [f1, A1, B1], β̄I = [f1] and
β̄II = [A1, B1]. Our test statistic for each tested constant
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frequency f1 is

z(f1) =
√
χ2/n. (2)

3.1 Simulation 1

We show the result for one simulated data sample in Fig.
1. Although these data span only 30% of the full period,
∆T = 0.3P , we can easily detect the period P = 1. This is
a unique solution for our non-linear periodic model.1

3.2 Simulation 2

The results for the combination n = 100,∆T = c1P1, c1 =
0.3, σ = c2A1 and c2 = 0.05 in Fig. 1 do not necessarily
convince the readers. The next simulation in Fig. 2 has the
same frequency and the same amplitudes, but the revised
values are n = 500, c1 = 0.01 and c2 = 0.00001. These
results should convince even the worst sceptics. Actually,
the period can be solved from an infinitesimal short slice of
measurements, if σ and n are sufficient. This applies to all
non-linear models, not only the periodic ones.

4 DISCUSSION

One could argue that we do not know the correct real model.
This is true. However, all models can be compared with the
F-test (paper i: Eqs. 33 and 34). For example, the compar-
ison of the one period and the two period models showed
that the latter was a better model for the light curves of FK

1 We made our simulations with the Python program Test1.py.

Our “swap-technique” is described in freely available version

https://www.mv.helsinki.fi/home/jetsu/Test1.py
We will check and polish this program in the next days. This

updated version will be published in Zenodo.
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Figure 1. Our ∆T = 0.3P1 simulation. Up: Model g(t) for f1 = 1, A1 = 1 and A2 = 2 in Eq. 1. Simulated data extends to dotted

vertical line. Middle left: Data yi simulated from g(t) model plus Gaussian noise N(0, σ), where σ = A1/20. Sample size is n = 100.
Middle right: Test statistic z(f1) of Eq. 2 in period range Pmin = 0.5 and Pmax = 10.0. Vertical red and blue lines denote simulated

period P1 = 1 and best detected period Pbest, respectively. Down: Results for free parameters in 20 bootstrap samples (blue circles),

their mean of bootstrap estimates (green cross) and simulation values used (large red circle). Dotted ellipse denotes ±3σ limits for
bootstrap estimates.

Com. This was typically confirmed at QF < 10−16 signif-
icance level, which is a major improvement to the correct
direction in finding the real model.

One could also argue that we do not know the cor-
rect test intervals in the non-linear free parameter space
(NLFPS). This is only partly true, because we check, if there
are other solutions, even far from the correct one. Further-
more, the z values close to each other correlate in NLFPS.
For example in physics, the reasonable limits are already
known in many cases. We use the bootstrap method to com-
pute the errors for σβI and σβII . We have published a de-
tailed description of how the free parameter search could be
done in multi-dimensional NLFPS (paper i: Sect. 11).

The method relies on brute numerical force. This takes a
lot of computation time. However, observing a phenomenon
having a long period P requires a long observing time ∆T .
Unlike the power spectrum method, our method does not
suffer from the frustrating f0 = 1/∆T frequency resolution

limit emphasized by Loumos & Deeming (1978), so why
wait? Here, we assume that the correct model is a sinu-
soid, but so do also all those who apply the power spectrum
method. The free parameter estimates will become more ac-
curate as the observations continue. Although the computa-
tions take time for more complex models, the solution is at
least unique (i.e. unambiguous).

5 CONCLUSIONS

Here, we show that our numerical χ2 method can predict the
period of a non-linear model. Even a short slice of measure-
ments can be used to solve its free parameters. In paper i,
we showed that for the two period models it is possible to
go beyond the f0 resolution limit of the power spectrum
methods (Loumos & Deeming 1978).

Imagine, what super computers, quantum computers
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Figure 2. Our ∆T = 0.01P1 short slice simulation. σ = 0.0001A1 and n = 500, otherwise as in Fig. 1

or artificial intelligence can achieve with our numerical ap-
proach. Frankly, we find this scary. Maybe somebody can
prove us wrong.

ACKNOWLEDGEMENTS

We thank the anonymous referee and Thomas Hackman for
their comments on the manuscript. This work has made use
of NASA’s Astrophysics Data System (ADS) services.

REFERENCES

Jetsu L., 2019, submitted to MNRAS on Sep 20, 2018,

Loumos G. L., Deeming T. J., 1978, Ap&SS, 56, 285

This paper has been typeset from a TEX/LATEX file prepared by
the author.

MNRAS 000, 1–3 (2019)

http://dx.doi.org/10.1007/BF01879560
http://cdsads.u-strasbg.fr/abs/1978Ap%26SS..56..285L

	Introduction
	Method
	Simulations
	Simulation 1
	Simulation 2

	Discussion
	Conclusions

