A D.M. FORMULA FOR MILKY WAY AND M31 HALO GOT BY BUCKINGHAM THEOREM – V5

Author Manuel Abarca Hernandez email mabarcaher1@gmail.com

1. ABSTRACT ...2
2. INTRODUCTION ...3
3. OBSERVATIONAL DATA FROM SOFUE. 2015 PAPER ..4
 3.1 POWER REGRESSION TO ROTATION CURVE ..5
4. DIRECT FORMULA FOR DM DENSITY ON M31 HALO GOT FROM ROTATION CURVE6
 4.1 THEORETICAL DEVELOPMENT FOR GALACTIC HALOS6
 4.2 DIRECT DM DENSITY FOR M31 HALO ..7
5. DARK MATTER DENSITY AS POWER OF GRAVITATIONAL FIELD7
 5.1 GRAVITATIONAL FIELD E BY VIRIAL THEOREM ...7
 5.2 DARK MATTER DENSITY AS POWER OF GRAVITATIONAL FIELD7
 5.3 THE IMPORTANCE OF $D_{DM} = A \cdot E^n$...7
6. RATIO BARYONIC MASS VERSUS DARK MATTER MASS DEPENDING ON RADIUS FOR M318
7. A DIFFERENTIAL EQUATION FOR A GRAVITATIONAL FIELD9
 7.1 INTRODUCTION ..9
 7.2 A DIFFERENTIAL BERNOULLI EQUATION FOR GRAVITATIONAL FIELD IN A GALACTIC HALO...9
8. DIMENSIONAL ANALYSIS FOR D.M. DENSITY AS POWER OF E FORMULA11
 8.1 POWER OF E BY BUCKINGHAM THEOREM ..11
 8.2 POWER E FORMULA FOR DM DENSITY WITH TWO PI MONOMIALS11
 8.3 MATHEMATICAL ANALYSIS TO DISCARD FORMULA WITH ONLY ONE PI MONOMIAL 11
 8.4 LOOKING FOR A D.M. DENSITY FUNCTION COHERENT WITH DIMENSIONAL ANALYSIS 12
9. RECALCULATING FORMULAS IN M31 HALO WITH $B = 5/3$13
 9.1 RECALCULATING THE PARAMETER a IN M31 HALO13
 9.2 RECALCULATING PARAMETER A IN M31 HALO ..14
 9.3 FORMULAS OF DIRECT D.M ..14
 9.4 BERNOULLI SOLUTION FOR E IN M31 HALO ...14
 9.5 GETTING DIRECT FORMULAS BY BERNOULLI FIELD WHEN PARAMETER $C = 0$16
 9.6 REDUCED BERNOULLI FORMULAS FOR DENSITY AND MASS IN HALO REGION 16
10. MASSES IN M31 ..19
 10.1 DYNAMICAL MASSES ...19
 10.2 DM MASSES OF SPHERICAL CORONA IN M31 HALO BY DIRECT FORMULA AND REDUCED FORMULA ..19
 10.3 TOTAL MASS IN M31 ...20
 10.4 COMPARISON OF TOTAL MASS DIRECT FORMULA AND TOTAL MASS NFW METHOD IN SOFUE PAPER ...20
11. PROPORTION OF GALACTIC DM IN THE ANCIENT UNIVERSE IS LOWER THAN AT PRESENT21
 11.1 COMPARISON BETWEEN DM OF M31 IN THE ANCIENT UNIVERSE AND AT PRESENT21
1. ABSTRACT

In this work has been calculated two new DM density profiles inside halo region of M31 galaxy and it has been demonstrated that both ones are mathematically equivalents. Its radius dominion is only the halo region because it is needed that baryonic matter density has to be negligible.

The first profile is called direct DM density because it is got directly from rotation curve and represents DM density depending on radius.

The second one, called Bernoulli because it is got from a Bernoulli differential equation, represents DM density depending on local gravitational field according a power law. The power of E is called B.

Hypothesis which is the basis to get Bernoulli profile stated that DM is generated locally by the own gravitational field according this formula. DM density = A·E^B where A & B are coefficients and E is gravitational intensity of field.

Briefly will be explained method followed to develop this paper. Rotation curve data come from [5] Sofue,Y.2015. Thanks this remarkable rotation curve, the regression curve of velocity depending on radius has a correlation coefficient bigger than 0.96 and data range from 40 kpc up to 300 kpc.

In fourth chapter it is got the function of DM density depending on radius, called direct DM density.

In fifth chapter it is demonstrated that function direct DM density is mathematically equivalent to the function DM density depending on E. Namely a power of E whose exponent is B= 1.6682

In sixth chapter it is got that for radius bigger than 40 kpc the ratio baryonic density versus DM density is under 1% so it is reasonable to consider negligible baryonic matter density in order to simplify calculus.

In seventh chapter it is got a Bernoulli differential equation for field and is solved.

In eighth chapter it is made dimensional analysis for magnitudes Density, field E and universal constants G, h and c. It is demonstrated that it is needed a formula with two Pi monomials. It is found that B = 5/3 is the value coherent with Buckingham theorem and differs only two thousandth regarding B=1.6682 which was got by regression analysis.
A D.M. FORMULA FOR MILKY WAY AND M31 HALO GOT BY BUCKINGHAM THEOREM –V5

In ninth chapter are recalculated parameters a,b and A as a consequence of being B=5/3 instead B=1.6682. Thanks this change the formulas are now dimensionally right. Also it has been introduced a new expression for DM density and mass called reduced formulas because the previous formulas has been rewritten by a dimensionless variable similarly to NFW or Burkert formulas. Furthermore thanks these new expression is more easy to calculate the exact values of density and masses.

In tenth chapter are calculated some different type of DM masses in M31 to be compared with DM calculated by Sofue. There is a good agreement between both results.

In the eleventh chapter through the Hubble law it is demonstrated that galaxies in the ancient universe were smaller than at present and as a consequence it is got that proportion of DM versus baryonic matter was lower in the ancient universe. Results got are in agreement with current observational evidences.

In the twelfth chapter, it is introduced Sofue data for Milky Way and it is applied DM theory by gravitational field to calculate the DM contained inside the halo at different radius. Results match perfectly with Sofue results. The importance of this chapter is based on the fact that the parameters of M31 has been used to do the calculus in Milky Way. These results back strongly the fact that DM generated by field theory is a general theory to explain DM nature.

In the thirteenth chapter it has been introduced the concept of extended halo and thanks to this concept the total mass calculated of Milky Way and M31 is equal to 4*10^{12} Msun , which is 10^{12} Msun heavier than total mass with standard halos, so there is only a lack of 10^{12} Msun to get the dynamical mass of Local Group instead of 2*10^{12} Msun.

2. INTRODUCTION

As reader knows M31 is the twin galaxy of Milky Way in Local Group of galaxies. Its disk radius is approximately 35 kpc and according [5] Sofue, Y. 2015. Its baryonic mass is M_{BARYONIC} = 1,61·10^{11} M_{SUN}

The DM theory introduced in [1] Abarca, M.2014. Dark matter model by quantum vacuum considers that DM is generated by the own gravitational field. Therefore, in order to study purely the phenomenon it is needed to consider a radius dominion where it is supposed that baryonic matter is negligible.

In previous paper [10] Abarca,M.2016. A New Dark Matter Density Profile for M31 Galaxy to Demonstrate that Dark Matter is Generated by Gravitational Field, author has studied DM inside M31 halo through Bernoulli DM profile. However in such paper DM density used it was NFW profile provided by [5] Sofue, Y. 2015 whereas in current paper DM density profile has been got directly from a power regression function on rotation curve in halo region.

This new DM profile has been called direct DM density because this profile is fitted directly from data measures inside halo region. In this work radius dominion begin at 40 kpc because at this distance baryonic density is negligible as it will be shown in chapter six. Therefore the only type of matter in halo region it is supposed to be non baryonic dark matter and it is quite simple to state the differential equation for field in these conditions.

As it is known, NFW profile is fitted over bulge, disk and galactic halo and taking in consideration that there is an unknown amount of baryonic DM in bulge and galactic disk it is needed concluded that NFW profile is more
imprecise than direct DM profile in order to study non baryonic DM in halo because direct DM density has been fitted exclusively with data of DM non baryonic in halo region.

In fact NFW density profile produce a bigger DM density throughout the whole halo region where is possible to compare direct DM density and NFW density and consequently the total amount of DM at a specific radius always is a bit bigger when ii is calculated with NFW density, as it will be shown in chapter 10.

In chapter seven it will be got a simple Bernoulli differential equation for gravitational field. However to get a so simple differential equation it is needed that $M'(r) = 4\pi r^2 \varphi_{DM}(r)$. In other words, it is needed that density of baryonic matter would be negligible versus D.M. density.

Several previous papers such as [2] Abarca,M.2015 and others have studied DM density as power of gravitational field in several galaxies: Milky Way, M33, NGC3198 and others galaxies. The results got support the formula for DM density depending on gravitational field $\varphi_{DM}(r) = A \cdot E^n$ being A&B quite similar for different giant galaxies.

3. OBSERVATIONAL DATA FROM SOFUE. 2015 PAPER

Graphic come from [5] Sofue,Y. 2015. The axis for radius has logarithmic scale. In previous version V2 of this work, dominion extended up to 252 kpc, whereas in this version dominion reach up to 303 kpc. In the following epigraph it will explained the reason for this extension.
As in previous version, in chapter six will be shown reason why dominion data begin at 40 kpc in this work, although it is accepted that disk radius of M31 is approximately 35 kpc.

3.1 POWER REGRESSION TO ROTATION CURVE

The measures of rotation curve have a very good fitted curve by power regression.

In particular coefficients of \(v = a \cdot r^b \) are in table below. Units are into I.S.

<table>
<thead>
<tr>
<th>Radius (kpc)</th>
<th>Vel. (km/s)</th>
<th>Radius (m)</th>
<th>Vel. (m/s)</th>
<th>Vel. fitted</th>
<th>Relative Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.5</td>
<td>229.9</td>
<td>(1.250E+21)</td>
<td>(2.299E+05)</td>
<td>(2.510E+05)</td>
<td>(8.397E-02)</td>
</tr>
<tr>
<td>49.1</td>
<td>237.4</td>
<td>(1.515E+21)</td>
<td>(2.374E+05)</td>
<td>(2.393E+05)</td>
<td>(7.777E-03)</td>
</tr>
<tr>
<td>58.4</td>
<td>250.5</td>
<td>(1.802E+21)</td>
<td>(2.505E+05)</td>
<td>(2.292E+05)</td>
<td>(-9.304E-02)</td>
</tr>
<tr>
<td>70.1</td>
<td>219.2</td>
<td>(2.163E+21)</td>
<td>(2.192E+05)</td>
<td>(2.190E+05)</td>
<td>(-8.154E-04)</td>
</tr>
<tr>
<td>84.2</td>
<td>206.9</td>
<td>(2.598E+21)</td>
<td>(2.069E+05)</td>
<td>(2.093E+05)</td>
<td>(1.138E-02)</td>
</tr>
<tr>
<td>101.1</td>
<td>213.5</td>
<td>(3.120E+21)</td>
<td>(2.135E+05)</td>
<td>(2.000E+05)</td>
<td>(-6.755E-02)</td>
</tr>
<tr>
<td>121.4</td>
<td>197.8</td>
<td>(3.746E+21)</td>
<td>(1.978E+05)</td>
<td>(1.911E+05)</td>
<td>(-3.500E-02)</td>
</tr>
<tr>
<td>145.7</td>
<td>178.8</td>
<td>(4.496E+21)</td>
<td>(1.788E+05)</td>
<td>(1.826E+05)</td>
<td>(2.107E-02)</td>
</tr>
<tr>
<td>175</td>
<td>165.6</td>
<td>(5.400E+21)</td>
<td>(1.656E+05)</td>
<td>(1.745E+05)</td>
<td>(5.115E-02)</td>
</tr>
<tr>
<td>210.1</td>
<td>165.6</td>
<td>(6.483E+21)</td>
<td>(1.656E+05)</td>
<td>(1.668E+05)</td>
<td>(7.100E-03)</td>
</tr>
<tr>
<td>252.3</td>
<td>160.7</td>
<td>(7.785E+21)</td>
<td>(1.607E+05)</td>
<td>(1.594E+05)</td>
<td>(-8.307E-03)</td>
</tr>
<tr>
<td>302.9</td>
<td>150.8</td>
<td>(9.347E+21)</td>
<td>(1.508E+05)</td>
<td>(1.523E+05)</td>
<td>(9.891E-03)</td>
</tr>
</tbody>
</table>

Below is shown a graphic with measures data and power regression function.
Correlation coefficient equal to 0.96 is a hundredth bigger than data published in previous version V2 of this work, because this time it has been considerate a wide dominion up to 303 kpc. According theory of DM generated by field, halo extend up to a half of distance to Milky Way, 375 kpc, consequently the data for radius 303 kpc is trustworthy.

Furthermore, it has been calculated regression curve with another data placed at 363 kpc, but power regression is -0.28 and correlation coefficient is 0.954. This result shows that such data is not trustworthy because according dimensional analysis power has to be -0.25. As 363 kpc is placed in the border of M31 halo it is possible that such data might be influenced by a different field. Therefore it is better to study data only up to 303 kpc.

4. DIRECT FORMULA FOR DM DENSITY ON M31 HALO GOT FROM ROTATION CURVE

4.1 THEORETICAL DEVELOPMENT FOR GALACTIC HALOS

Outside disk region, rotation curve it is fitted by power regression with a high correlation coefficient according formula $v = a \cdot r^b$. As $M(<r) = \frac{v^2 \cdot R}{G}$ represents total mass enclosed by a sphere with radius r, by substitution of velocity results

$$M = \frac{v^2 \cdot R}{G} = \frac{a^2 \cdot r^{2b+1}}{G}$$

If it is considered outside region of disk where baryonic matter is negligible regarding dark matter it is possible to calculate DM density by a simple derivative. In next chapter will be show that for $r > 40$ kpc baryonic matter is negligible.

As density of D.M. is $D_{DM} \frac{dm}{dV}$ where $dm = \frac{a^2 \cdot (2b + 1) \cdot r^{2b} \cdot dr}{G}$ and $dV = 4\pi r^2 \cdot dr$ results

$$D_{DM} = \frac{a^2 \cdot (2b + 1) \cdot r^{2b-2}}{4\pi G}$$

Writing $L = \frac{a^2 \cdot (2b + 1)}{4\pi G}$ results $D_{DM}(r) = L \cdot r^{2b-2}$. In case $b = -1/2$ DM density is cero which is Keplerian rotation.
4.2 DIRECT DM DENSITY FOR M31 HALO
Parameters a & b from power regression of M31 rotation curve allow calculate easily direct DM density

| Direct DM density for M31 halo 40 < r < 300 kpc |
|-----------------|-----------------|
| $D_{DM}(r) = L_r^{2b-2}$ kg/m3 |

5. DARK MATTER DENSITY AS POWER OF GRAVITATIONAL FIELD
As independent variable for this function is E, gravitational field, previously will be studied formula for E in the following paragraph.

5.1 GRAVITATIONAL FIELD E BY VIRIAL THEOREM
As it is known total gravitational field may be calculated through Virial theorem, formula $E = v^2/R$ whose I.S. unit is m/s2 is well known. Hereafter, virial gravitational field, E, got through this formula will be called E.

By substitution of $v = a\cdot r^b$ in formula $E = \frac{v^2}{r}$ it is right to get $E = \frac{a^2 \cdot r^{2b}}{r} = a^2 \cdot r^{2b-1}$ briefly $E = a^2 \cdot r^{2b-1}$

5.2 DARK MATTER DENSITY AS POWER OF GRAVITATIONAL FIELD

As it is known direct DM density $D_{DM} = \frac{a^2 \cdot (2b + 1)}{4\pi G} r^{2b-2}$ depend on a & b parameters which come from power regression formula for velocity. In previous paragraph has been shown formula for gravitational field $E = \frac{a^2 \cdot r^{2b}}{r} = a^2 \cdot r^{2b-1}$ which depend on a & b as well. Through a simple mathematical treatment it is possible to get A & B to find function of DM density depending on E. Specifically formulas are $A = \frac{a^{2(2b-1)}(2b + 1)}{4\pi G}$ & $B = \frac{2b-2}{2b-1}$.

According parameters a & b got in previous chapter, A& B parameters are:

<table>
<thead>
<tr>
<th>M31 galaxy</th>
<th>$D_{DM} = A\cdot E^B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$3.6559956 \cdot 10^6$</td>
</tr>
<tr>
<td>B</td>
<td>1,6682469</td>
</tr>
</tbody>
</table>

As conclusion, in this chapter has been demonstrated that a power law for velocity $v = a\cdot r^b$ is mathematically equivalent to a power law for DM density depending on E. $D_{DM} = A\cdot E^B$

5.3 THE IMPORTANCE OF $D_{DM} = A\cdot E^B$
This formula is vital for theory of dark matter generated by gravitational field because it is supposed that DM is generated locally according an unknown quantum gravity mechanism. In other words, the propagation of gravitational field has this additional effect on the space as the gravitational wave goes by.
The formulas \(D_{DM} = \frac{a^2 \cdot (2b + 1)}{4 \pi G} r^{2b-2} \) and \(E = a^2 \cdot r^{2b-1} \) have been got rightly from rotation curve. Therefore it can be considered more specific for each galaxy. However the formula \(D_{DM} = A \cdot E^{-B} \) is much more essential.

The basis of this theory is that such formula is right for different gravitational systems. Therefore A & B parameters have to be the same for different galaxies. This is the initial hypothesis of this theory. However, there is an important fact to highlight. It is clear that A depend on a and b, both parameters are global parameters.

As the gravitational interaction time between masses is proportional to distance, it is right to think that DM generated by a gravitational field has a bigger proportion as the system increase its size. For example inside the Solar system it is clear that Newton and General Relativity Theory is able to explain with total accuracy every gravitational phenomenon without DM hypothesis. Therefore it is right to conclude that DM arises when gravitational interaction takes a longer time to link the matter. Namely, for galaxy scale or bigger systems.

Furthermore, there are clear observational evidences that inside cluster of galaxies the proportion of DM is bigger than inside galaxies. In other words, it is right to think that A&B might be different a bigger scale. Namely galaxy cluster scale.

However, there are observational evidences of DM inside dwarf and medium size galaxies that show a bigger proportion of DM than inside giant galaxies.

In my opinion this fact could be explained by other reasons. For example dwarf galaxies are always orbiting near giant galaxies, so it is possible that the proportion of baryonic matter cold, which is unobservable, could be bigger. Anyway this is an open problem for current cosmology.

To sum up, regarding theory of DM generated by gravitational field, parameters A&B has to be the same for different gravitational system on condition they have the same size. i.e. two similar giant galaxies should have the same parameters A&B. However, a bigger gravitational system, i.e. galaxy cluster should have bigger parameter in order to produce a bigger fraction of D.M. Nonetheless, in chapter 9, it will be shown that total DM increase with the square root of distance. For example, the proportion of DM inside galactic disk of M31 is lower than when it is considered the whole halo whose radius is 350 kpc, so the maximum proportion goes up to 90% of DM versus baryonic matter.

6. RATIO BARYONIC MASS VERSUS DARK MATTER MASS DEPENDING ON RADIUS FOR M31

In this paragraph will be estimated radius which is needed to consider negligible baryonic density regarding DM density in M31 galaxy.

[5] According Sofue, Y. data for M31 disk are

<table>
<thead>
<tr>
<th>M31 Galaxy</th>
<th>Baryonic Mass at disk</th>
<th>(a_d)</th>
<th>(\Sigma_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_d = 2 \pi \Sigma_0 \cdot a_d^2)</td>
<td>(5.28 \times 10^{11}) Msun</td>
<td>5.28 kpc</td>
<td>1.5 kg/m²</td>
</tr>
</tbody>
</table>

Where \(\Sigma(r) = \Sigma_0 \exp(-r/a_d) \) represents superficial density at disk. Total mass disk is given by integration of superficial density from cero to infinite. \(M_d = \int_0^{\infty} 2 \pi \cdot r \cdot \Sigma(r) \cdot dr = 2 \pi \Sigma_0 \cdot a_d^2 \)
In order to compare baryonic density and DM density it is considered differential baryonic mass and differential DM masses depending on radius.

\[dM_{\text{DISK}} = 2\pi \Sigma(r) dr \quad \text{where} \quad \Sigma(r) = \Sigma_0 \exp(-r/a) \quad \text{and} \]

\[dM_{\text{DM}} = 4\pi r^2 D_{\text{DM}}(r) dr \quad \text{where} \quad D_{\text{DM}}(r) = \frac{a^2 \cdot (2b + 1)}{4\pi G} r^{2b-2} \]

It is defined ratio function as quotient of both differential quantities \(\text{Ratio} = \frac{dM_{\text{DISK}}}{dM_{\text{DM}}} = \frac{\Sigma(r)}{2\pi r D_{\text{DM}}(r)} \)

<table>
<thead>
<tr>
<th>Radius</th>
<th>Ratio (r)</th>
<th>(\Sigma(r))</th>
<th>Direct DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kpc</td>
<td>m</td>
<td>kg/m^2</td>
<td>kg/m^3</td>
</tr>
<tr>
<td>36</td>
<td>1,110852E+21</td>
<td>2,310614E-02</td>
<td>1,64056151250E-03</td>
</tr>
<tr>
<td>38</td>
<td>1,172566E+21</td>
<td>1,715255E-02</td>
<td>1,12327743139E-03</td>
</tr>
<tr>
<td>40</td>
<td>1,234280E+21</td>
<td>1,268028E-02</td>
<td>7,69097762116E-04</td>
</tr>
<tr>
<td>42</td>
<td>1,295994E+21</td>
<td>9,339073E-03</td>
<td>5,26594188719E-04</td>
</tr>
<tr>
<td>44</td>
<td>1,357708E+21</td>
<td>6,854954E-03</td>
<td>3,60554214629E-04</td>
</tr>
</tbody>
</table>

For a radius 40 kpc ratio baryonic matter versus DM is only 1.2% therefore is a good approximation to consider negligible baryonic mass density regarding DM density when radius is bigger than 40 kpc.

This is the reason why in this work dominion for radius begin at 40 kpc.

7. A DIFFERENTIAL EQUATION FOR A GRAVITATIONAL FIELD

7.1 INTRODUCTION

This formula \(D_{\text{DM}} = \frac{a^2 \cdot (2b + 1)}{4\pi G} r^{2b-2} \) is a local formula because it has been got by differentiation. However E, which represents a local magnitude \(E = \frac{G \cdot M(<r)}{r^2} = \frac{a^2 \cdot r^{2b}}{r} = a^2 \cdot r^{2b-1} \) has been got through \(v = a \cdot r^b \) whose parameters \(a \& b \) were got by a regression process on the whole dominion of rotation speed curve. Therefore, \(D_{\text{DM}} \) formula has a character more local than E formula because the former was got by a differentiation process whereas the latter involves \(M(<r) \) which is the mass enclosed by the sphere of radius \(r \).

In other words, the process of getting \(D_{\text{DM}} \) involves a derivative whereas the process to get E(r) involves \(M(r) \) which is a global magnitude. This is a not suitable situation because the formula \(D_{\text{DM}} = A \cdot E^B \) involves two local magnitudes. Therefore it is needed to develop a new process with a more local nature or character.

It is clear that a differential equation for E is the best method to study locally such magnitude.

7.2 A DIFFERENTIAL BERNOULLI EQUATION FOR GRAVITATIONAL FIELD IN A GALACTIC HALO

As it is known in this formula \(\vec{E} = -G \frac{M(r)}{r^2} \cdot \hat{r} \), \(M(r) \) represents mass enclosed by a sphere with radius \(r \). If it is considered a region where does not exit any baryonic matter, such as any galactic halo, then the derivative of \(M(r) \) depend on dark matter density essentially and therefore \(M'(r) = 4\pi r^2 \varphi_{\text{DM}}(r) \).

If \(E = G \frac{M(r)}{r^2} \), vector modulus, is differentiated then it is got \(E'(r) = G \frac{M'(r) \cdot r^2 - 2rM(r)}{r^3} \).
A D.M. FORMULA FOR MILKY WAY AND M31 HALO GOT BY BUCKINGHAM THEOREM –V5

If \(M'(r) = 4\pi r^2 \phi_{DM}(r) \) is replaced above then it is got \(E'(r) = 4\pi G \phi_{DM}(r) - 2G \frac{M(r)}{r^3} \) As

\(\phi_{DM}(r) = A \cdot E^B(r) \) it is right to get \(E'(r) = 4\pi G \cdot A \cdot E^B(r) - 2 \frac{E(r)}{r} \) which is a Bernoulli differential equation.

\[E'(r) = K \cdot E^B(r) - 2 \frac{E(r)}{r} \] being \(K = 4\pi G A \)

Calling \(y \) to \(E \), the differential equation is written in this simple way \(y' = K \cdot y^B - \frac{2 \cdot y}{r} \)

Bernoulli family equations \(y' = K \cdot y^B - \frac{2 \cdot y}{r} \) may be converted into a differential linear equation with this variable change \(u = y^{1-B} \). Which is \(\frac{u'}{1-B} + \frac{2u}{r} = K \)

The homogenous equation is \(\frac{u'}{1-B} + \frac{2u}{r} = 0 \) Whose general solution is \(u = C \cdot r^{2B-2} \) being \(C \) the integration constant.
If it is searched a particular solution for the complete differential equation with a simple linear function \(u = z \cdot r \) then it is got that \(z = \frac{K \cdot (1-B)}{3 - 2B} \). Therefore the general solution for \(u \)- equation is \(u = C \cdot r^{2B-2} + z \cdot r \)

When it is inverted the variable change it is got the general solution for field \(E \).

General solution is \(E(r) = \left(Cr^{2B-2} + \frac{Kr(1-B)}{3 - 2B} \right)^{\frac{1}{1-B}} \) with \(B \neq 1 \) and \(B \neq 3/2 \) where \(C \) is the parameter of initial condition of gravitational field at a specific radius.

Calling \(\alpha = 2B - 2 \) \(\beta = \frac{1}{1-B} \) and \(D = \left(\frac{K(1-B)}{3 - 2B} \right) \) formula may be written as

\[E(r) = \left(Cr^\alpha + Dr \right)^\beta \]

Calculus of parameter \(C \) through initial conditions \(R_0 \) and \(E_0 \)

Suppose \(R_0 \) and \(E_0 \) are the specific initial conditions for radius and gravitational field, then

\[C = \frac{E_0^{\alpha + \beta} - D R_0}{R_0^\alpha} \]

Final comment

It is clear that the Bernoulli solution contains implicitly the fact that it is supposed there is not any baryonic matter inside the radius dominion and the only DM matter is added by \(\phi_{DM}(r) = A \cdot E^B(r) \). Therefore this solution for field works only in the halo region and \(R_0 \) and \(E_0 \) could be the border radius of galactic disk where it is supposed begins the halo region and the baryonic density is negligible.
8. DIMENSIONAL ANALYSIS FOR D.M. DENSITY AS POWER OF E FORMULA

8.1 POWER OF E BY BUCKINGHAM THEOREM

As it is supposed that DM density as power of E come from a quantum gravity theory, it is right to think that constant Plank h should be considered and universal constant of gravitation G as well.

So the elements for dimensional analysis are D, density of DM whose units are Kg/m³, E gravitational field whose units are m/s², G and finally h.

In table below are developed dimensional expression for these four elements D, E, G and h.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>L</th>
<th>T</th>
<th>G</th>
<th>h</th>
<th>E</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>-1</td>
<td>3</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>T</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

According Buckingham theorem it is got the following formula for Density

\[D = \frac{K}{\sqrt[7]{G^9 \cdot h^2}} E^{\frac{10}{7}} \]

being K a dimensionless number which may be understood as a coupling constant between field E and DM density.

As it is shown in previous epigraph, parameters for M31 is \(B = 1.6682469 \)

In this case relative difference between \(B = 1.6682469 \) and \(10/7 \) is 16.7%. A 17% of error in cosmology could be acceptable. However by the end of the chapter it will be found a better solution.

8.2 POWER E FORMULA FOR DM DENSITY WITH TWO PI MONOMIALS

As this formula come from a quantum gravitation theory it is right to consider that Universal constants involved are G, h and c. So elements to make dimensional analysis are D, E, G,h and c = \(2.99792458 \times 10^8 \) m/s.

According Buckingham theorem, as matrix rank is three, there are two pi monomials. The first one was calculated in previous paragraph and the second one involves G, h, E and c.

These are both pi monomials \(\pi_1 = D \cdot \frac{\sqrt[7]{G^9 \cdot h^2}}{E^{\frac{10}{7}}} \) and \(\pi_2 = \frac{c}{\sqrt[7]{G^9 \cdot h^2}} E^{\frac{2}{7}} \). So formula for DM density through two pi monomials will be \(D = J \cdot \frac{10}{7} \cdot E^{\frac{10}{7}} \cdot f(\pi_2) \) being J a dimensionless number and \(f(\pi_1) \) an unknown function, which can not be calculated by dimensional analysis theory.

8.3 MATHEMATICAL ANALYSIS TO DISCARD FORMULA WITH ONLY ONE PI MONOMIAL

As it was shown in paragraph 5.2 \(A = \frac{a^{2b-1} \cdot (2b+1)}{4 \pi G} \) and \(B = \frac{2b - 2}{2b - 1} \). Being a, b parameters got to fit rotation curve of velocities \(v = a \cdot r^b \)
Conversely, it is right to clear up parameters a and b from above formulas.

Therefore \(b = \frac{2B - 2}{2B - 2} \) and \(a = \left[\frac{4\pi GA(B - 1)}{2B - 3} \right]^{\frac{2\pi - 1}{2}} \) being \(B \neq 1 \) and \(B \neq 3/2 \).

As A is a positive quantity then \(2b + 1 > 0 \). As \(2b + 1 = \frac{2B - 3}{B - 1} > 0 \) Therefore \(B \in (-\infty, 1) \cup (3/2, \infty) \).

If \(B=3/2 \) then \(2b+1=0 \) and \(A=0 \) so dark matter density is zero which is Keplerian rotation curve.

In every galactic rotation curve studied, B parameter has been bigger than 3/2. See Abarca papers quoted in Bibliographic references. Therefore experimental data got in several galaxies fit perfectly with mathematical findings made in this paragraph especially for \(B \in (3/2, \infty) \).

The main consequence this mathematical analysis is that formula \(D = \frac{K}{\sqrt{G^9 h^2}} E^{10/7} \) got with only a pi monomial is wrong because \(B=10/7 = 1.428 \). Therefore formula \(D = \frac{J}{\sqrt{G^9 h^2}} E^{10/7} \cdot f(\pi) \) got thorough dimensional analysis by two pi monomials it is more suitable formula.

This formula is physically more acceptable because it is got considering \(G, h \) and \(c \) as universal constant involved in formula of density. As according my theory, DM is generated through a quantum gravitation mechanism it is right to consider not only \(G \) and \(h \) but also \(c \) as well.

8.4 LOOKING FOR A D.M. DENSITY FUNCTION COHERENT WITH DIMENSIONAL ANALYSIS

It is right to think that \(f(\pi) \) should be a power of \(\pi \), because it is supposed that density of D.M. is a power of \(E \).

<table>
<thead>
<tr>
<th>M31 galaxy</th>
<th>(D_{DM} = A \cdot E^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.6559956 \cdot 10^6</td>
</tr>
<tr>
<td>B</td>
<td>1.6682469</td>
</tr>
</tbody>
</table>

Taking in consideration A &B parameters on the left, power for \(\pi \) must be -5/6. This way, power of E in formula \(D_{DM} = A \cdot E^B \) will be \(5/3 = 1.666666 \), which is the best approximation to \(B = 1.6682469 \).

Finally \(D = \frac{J}{\sqrt{G^9 h^2}} E^{10/7} \cdot f(\pi) \) becomes \(D = \frac{M}{\sqrt{G^7 c^5 h}} E^{5/3} \) being \(M \) a dimensionless number.

CALCULUS OF DIMENSIONLESS NUMBER INCLUDED IN FORMULA OF DARK MATTER DENSITY

By equation of \(D = \frac{M}{\sqrt{G^7 c^5 h}} E^{5/3} \) and \(D = A \cdot E^B \)

It is right that \(A = \frac{M}{\sqrt{G^7 c^5 h}} \) and then \(M = A \cdot \sqrt{G^7 c^5 h} \)
9. RECALCULATING FORMULAS IN M31 HALO WITH \(B = 5/3 \)

Findings got through Buckingham theorem are crucial. It is clear that a physic formula has to be dimensionally coherent. Therefore it is a magnificent support to the theory of DM generated by gravitational field that statistical value got by regression analysis in M31, differs less than 2 thousandth regarding value got by Buckingham theorem.

Now it is needed to rewrite all the formulas considering \(B = 5/3 \). Furthermore, with \(B = 5/3 \), a lot of parameters of the theory become simple fraction numbers. In other words, theory gains simplicity and credibility.

In chapter 5 was shown the relation between \(a \& b \) parameters and \(A \& B \) parameters. Now considering \(B = 5/3 \)

\[
A = \frac{a^{2b-1} \cdot (2b + 1)}{4\pi G} \quad \text{and} \quad B = \frac{2b - 2}{2b - 1}.
\]

It is right to get \(b = \frac{B - 2}{2B - 2} = -\frac{1}{4} \) and \(A = \frac{a^{rac{4}{5}}}{8\pi G} \).

Therefore, the central formula of theory becomes

\[
D_{DM} = A \cdot E^\frac{5}{7} = \frac{a^\frac{4}{5}}{8 \cdot \pi \cdot G} \cdot E^\frac{5}{7}.
\]

9.1 RECALCULATING THE PARAMETER \(a \) IN M31 HALO

Table below comes from chapter 3 and represents regression curve of velocity depending on radius.

<table>
<thead>
<tr>
<th>Regression for M31 dominion 40-303 kpc</th>
<th>(V = a \cdot r^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>4.32928*10^{10}</td>
</tr>
<tr>
<td>(b)</td>
<td>-0.24822645</td>
</tr>
</tbody>
</table>

Due to Buckingham theorem it is needed that \(b = -1/4 \). Therefore it is needed to recalculate parameter \(a \) in order to find a new couple of values \(a \& b \) that fit perfectly to experimental measures of rotation curve in M31 halo.

RECALCULATING \(a \) WITH MINIMUM SQUARE METHOD

When it is searched the parameter \(a \), a method widely used is called the minimum squared method. So it is searched a new parameter \(a \) for the formula \(V = a \cdot r^{-0.25} \) on condition that \(\sum (v - v_e)^2 \) has a minimum value. Where \(v \) represents the value fitted for velocity formula and \(v_e \) represents each measure of velocity. It is right to calculate the formula for \(a \).

\[
a = \frac{\sum v_e \cdot r_e^{-0.25}}{\sum r_e^{-0.5}} = 4.727513 \cdot 10^{10}
\]

Where \(r_e \) represents each radius measure and \(v_e \) represents its velocity associated.
9.2 RECALCULATING PARAMETER A IN M31 HALO

At the beginning of this chapter was got that \(A = \frac{a^{-\frac{3}{4}}}{8\pi G} \).

In previous epigraph has been recalculated the parameter a. Therefore A has to change according this new value.

The beside table shows the value of new parameters.

<table>
<thead>
<tr>
<th>New parameters a&b and A&B</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>b = (\frac{B - 2}{2B - 2})</td>
</tr>
<tr>
<td>(a) new</td>
</tr>
<tr>
<td>(A = \frac{a^{-\frac{3}{4}}}{8\pi G})</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

9.3 FORMULAS OF DIRECT D.M.

With these new parameters recalculated it is going to get the direct formulas got at the beginning of paper.

Function of Density DM depending on radius.

\[
D_{DM}(r) = L \cdot r^{2b-2} = L \cdot r^{-\frac{5}{2}}
\]

being \(L = \frac{a^2 \cdot (2b + 1)}{4\pi G} = \frac{a^2}{8 \cdot \pi \cdot G} \) = 1.3326\times10^{30}

Function of E depending on radius \(E = a^2 \cdot r^{2b-1} = a^2 \cdot r^{-\frac{3}{2}} \)

being \(a^2 = 2.235\times10^{21} \)

Mass enclosed by a sphere of radius \(r. M(< r) = \frac{v^2 \cdot R}{G} = \frac{a^2 \cdot r^{2b+1}}{G} = \frac{a^2 \cdot \sqrt{r}}{G} \)

being \(\frac{a^2}{G} = 3.349\times10^{31} \)

9.4 BERNOULLI SOLUTION FOR E IN M31 HALO

In chapter 7 was got the solution for field in the halo region, now thanks dimensional analysis it is possible to get formulas far simple because some parameters are simple fractions.

\[
E(r) = \left(Cr^\alpha + Dr \right)^\beta
\]

being \(\alpha = 2B - 2 = \frac{4}{3} \) being \(\beta = \frac{1}{1 - B} = -\frac{3}{2} \) and \(D = \left(\frac{4 \cdot \pi \cdot G \cdot A(1 - B)}{3 - 2B} \right) = 8 \cdot \pi \cdot G \cdot A \)

Therefore \(E(r) = \left(C r^{\frac{4}{3}} + D r \right)^{-\frac{3}{2}} \)

being \(D = 8\pi GA = a^2 = 5.85\times10^{15} \) being \(C = \frac{E_a^{\frac{2}{3}} - D R_0}{R_0^{\frac{2}{3}}} \) the initial condition of differential equation solution for E.

CALCULUS OF PARAMETER C

As it was pointed in the epigraph 7.2 C is calculated through the initial condition in the halo region. As it was shown in the chapter 6 at 40.5 kpc (below point P) radius the baryonic matter may be considerate negligible so it is reasonable to calculate C at this point with its formula

\[
C = \frac{E_a^{\frac{2}{3}} - D R_0}{R_0^{\frac{4}{3}}}
\]
A D.M. FORMULA FOR MILKY WAY AND M31 HALO GOT BY BUCKINGHAM THEOREM –V5

Similarly it is possible to calculate C for different points inside the halo region. See in graph below points P, Q, R. They are the three first points to the left.

<table>
<thead>
<tr>
<th>Points</th>
<th>Radius</th>
<th>Velocity m/s</th>
<th>E field.</th>
<th>Parameter C</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>40.5 kpc = 1.25*10^7 m</td>
<td>2.29945*10^9</td>
<td>4,2293071*10^{-11}</td>
<td>6,88783573*10^{-25}</td>
</tr>
<tr>
<td>Q</td>
<td>49.1 kpc</td>
<td>2.374 E5</td>
<td>3,719857E-11</td>
<td>6,36196464E-24</td>
</tr>
<tr>
<td>R</td>
<td>58.4 kpc</td>
<td>2.505E5</td>
<td>3,482162E-11</td>
<td>-5,308924E-23</td>
</tr>
</tbody>
</table>

It is clear that there is a high difference between these three values for C. The reason is simple through the graph. There are two positives because such points (points P and Q) are below the regression curve, whereas the third (point R) is the above one. The value of C associated to the second point, Q, placed at 49.1 kpc is far smaller than the other ones because it is very close to the regression curve. In the following epigraph it will be a bit clear the reason why Q is so small.

Studying case \(C = 0 \)

Now it will be investigated the conditions to get \(C = 0 \). Then formula \(C = \frac{E_0 \frac{-2}{3} - D \cdot R_0}{R_0 \frac{4}{7}} \) leds to

\[
E_0 \frac{-2}{3} = D \cdot R_0 = a \frac{-4}{7} \cdot R_0 \quad \text{and as} \quad E = a \frac{2}{7} \cdot R^2 \quad \text{then} \quad E_0 \frac{-2}{3} = a \frac{-4}{7} \cdot R_0 \frac{2}{7} - 5 \quad = D \cdot R_0 = a \frac{-4}{7} \cdot R_0 \quad \text{and by equation of power of} \quad R_0 \frac{2}{3} - 4b = 1 \quad \text{it is got} \quad b = -1/4 .
\]

At the beginning of chapter was shown that B= 5/3 leds rightly to \(b = -1/4 \). So \(b = -1/4 \) is rigorously the power of radius on the rotation curve of galaxy in the halo region, where there is not any baryonic matter. Namely formula is \(V = a \cdot r^{-0.25} \). Therefore \(C = 0 \) for every point belonging to regression curve whose power is \(-1/4 \).

In the graph above, the point Q, at 49.1 kpc is very close to the regression curve so this is the reason why \(C \) is far smaller than the other two points. Unfortunately, measures of rotation curves might have considerable errors.

Summarising, in this epigraph has been demonstrated that \(C = 0 \) is the right option when it is calculated field E, or DM density inside the halo region. Namely, it is right to consider \(C = 0 \) even for point P, at 40 kpc because at this point was demonstrated that baryonic density is negligible, despite the fact that if it is considered the measures of point P, C calculated is far bigger than C calculated for point Q.
In brief, it is right to consider \(C = 0 \) inside halo region from 40 kpc and bigger values of radius.

In the epigraphs 9.5 and 9.6 it will be shown that for \(C = 0 \) the Bernoulli solution for field becomes direct formula for field, and the same happens with Bernoulli DM density and mass formulas.

9.5 GETTING DIRECT FORMULAS BY BERNOULLI FIELD WHEN PARAMETER \(C = 0 \)

Thanks demonstration made in previous epigraph it is trustworthy to consider \(C = 0 \) in halo region.

FOR FIELD \(E \)

When in formula \(E(r) = \left(\frac{4}{C} r^3 + D r \right)^{-\frac{1}{2}} \) \(C = 0 \) then it is got \(E = a^2 \cdot r^{-\frac{1}{2}} \) being \(a^2 = 2.235 \times 10^{21} \) which is precisely direct formula for \(E \).

FOR DM DENSITY

As \(D_{DM} = A^*E^B \) Using field got by Bernoulli solution it is right to get

\[
D_{DM}(r) = A \left(Cr^3 + Dr \right)^{-\frac{5}{2}}
\]

Being \(A = 3.488 \times 10^{-6} \) \(D = 5.85 \times 10^{-15} \) if \(C = 0 \) then formula becomes

\[
D_{DM}(r) = A \cdot D^2 \cdot r^{-\frac{5}{2}} = L \cdot r^{-\frac{5}{2}} \quad \text{being} \quad L = \frac{a^2}{8 \cdot \pi \cdot G} = 1.3326 \times 10^{30} \quad \text{which is direct DM density formula.}
\]

FOR TOTAL MASS INSIDE A SPHERICAL CORONA

\[
M_{DM} = \int_{R_1}^{R_2} 4 \pi r^2 \rho(r) dr = \int_{R_1}^{R_2} 4 \pi r^2 AE^{\beta} dr = 4 \pi A \int_{R_1}^{R_2} r^2 \left(D \cdot r \right)^{\frac{5}{2}} dr
\]

whose indefinite integral is \(M(\leq r) = \frac{a^2 \cdot \sqrt{r}}{G} \)

which is direct formula of mass enclosed by a sphere of radius \(r \). Being \(\frac{a^2}{G} = 3.349 \times 10^{31} \).

Such formula is only right for radius belonging to halo. Therefore it is only possible to calculate the DM inside a spherical corona defined by two radius \(R_1 \) and \(R_2 \) so \(R_1 < M_{DM} < R_2 \) then

\[
R_1 < M_{DM} < R_2 = \frac{a^2}{G} \cdot \left[\sqrt{R_2^5} - \sqrt{R_1^5} \right]
\]

9.6 REDUCED BERNOULLI FORMULAS FOR DENSITY AND MASS IN HALO REGION

To consider \(C = 0 \) for M31 galaxy is a good approximation. Nevertheless it is possible to develop a new expression for Bernoulli formulas for density and total mass in order to simplify calculus.

REDUCED FORMULA FOR BERNOULLI DENSITY WITH DIMENSIONLESS VARIABLE \(X \)

Thanks to a simple mathematical treatment, it is possible to write a standard formula for density very similar to NFW or Burkert expression.
A D.M. FORMULA FOR MILKY WAY AND M31 HALO GOT BY BUCKINGHAM THEOREM – V5

\[D_{DM}(r) = A \left(C r^{3} + D r \right)^{\frac{5}{2}} \]

\[= \frac{A}{r^{5/2} \cdot \left(\frac{C}{D} \cdot r^{1/3} + 1 \right)^{5/2}} = \frac{A}{r^{5/2} \cdot D^{5/2} \left(\frac{C}{D} \cdot r^{1/3} + 1 \right)^{5/2}} \]

\[= \frac{A \cdot D^{-5/2}}{r^{5/2} \cdot \left(\frac{C}{D} \cdot r^{1/3} + 1 \right)^{5/2}} = \frac{L}{r^{5/2} \cdot \left(\frac{C}{D} \cdot r^{1/3} + 1 \right)^{5/2}} \]

\[D_{DM}(R) = \frac{L}{r^{5/2} \cdot \left(\frac{r}{R_s} \right)^{1/3} + 1}^{5/2} \]

\[= \frac{D_o}{X^{5/2} \cdot \left(X^{1/3} + 1 \right)^{5/2}} \]

\[X = r / R_s \]

Bernoulli Den. DM = D_{DM} (R) =

\[\frac{D_o}{X^{5/2} \cdot \left(X^{1/3} + 1 \right)^{5/2}} \]

Where

\[D_o = L / R_s^{5/2} \]

\[R_s = (D/C)^3 \]

\[L = \frac{a^2}{8 \cdot \pi \cdot G} = 1.3326 \times 10^{30} \]

REDUCED DENSITY FORMULA FOR M31

The only parameter which depend on the galaxy is C. From the epigraph 9.4 has been chosen parameter C at 49 kpc whose value is C = 6.36E-24 then R_s = 7.78E26 m R_s = 25.22 Gpc and D_o = 7.89*10^{-38} kg/m^3. This parameters so extremes are due to the fact that point measure at 49 kpc is very close to the regression curve. See epigraph 9.4.

It is clear that variable X is tiny throughout the whole radius dominion. In this case the formula tends to

\[D_{DM}(r) = L \cdot r^{-5} \]

because X is negligible versus 1. The exact value ranges from 3% to 7% lower versus direct formula throughout the whole dominion from 40 kpc to 770 kpc.

REDUCED FORMULA FOR SPHERICAL CORONA MASS INSIDE THE HALO REGION

By a similar treatment is possible to get a formula for mass with the dimensionless variable X = R / R_s
A D.M. FORMULA FOR MILKY WAY AND M31 HALO GOT BY BUCKINGHAM THEOREM – V5

\[M_{DM} = \int_{r_1}^{r_2} 4\pi \cdot r^2 \cdot \rho(r) dr = \int_{r_1}^{r_2} 4\pi \cdot r^2 \cdot AE^B dr = 4\pi A \int_{r_1}^{r_2} r^2 \left[C \cdot r^{4/3} + D \cdot r \right]^{5/2} \cdot dr \]

The indefinite integral \(I = 4\pi A \cdot \int \frac{r^2 \cdot dr}{(C \cdot r^{4/3} + D \cdot r)^{1/2}} = \frac{8\pi A \sqrt{r}}{D \cdot \left(C \cdot \sqrt[3]{r} + D \right)^2} = \sqrt{r} \)

\[= \frac{G \cdot D^{3/2} \cdot \left(\frac{C}{D} \cdot \sqrt[3]{r} + 1 \right)^{3/2}}{8 \cdot \pi \cdot L \sqrt{r} \left(\frac{C}{D} \cdot \sqrt[3]{r} + 1 \right)^{3/2}} = \frac{8 \cdot \pi \cdot L \sqrt{r} \left(\frac{C}{D} \cdot \sqrt[3]{r} + 1 \right)^{3/2}}{8 \cdot \pi \cdot L} \cdot \sqrt{R_s} \cdot \sqrt{X} \]

Indefinite integral for DM in spherical corona mass in halo.
\(M_{DM} (< R) = \frac{8 \cdot \pi \cdot L \cdot \sqrt{R_s} \cdot \sqrt{X}}{\left(\sqrt{X} + 1 \right)^{3/2}} = \frac{M_o \cdot \sqrt{X}}{\left(\sqrt{X} + 1 \right)^{3/2}} \)

Being \(X = r/R_s \) and \(R_s = (D/C)^3 \)

\[L = \frac{a^2}{8 \cdot \pi \cdot G} = 1.3326 \times 10^{30} \]
\[M_o = 8 \cdot \pi \cdot L \cdot \sqrt{R_s} \]

REDUCED FORMULA FOR MASS OF SPHERICAL CORONA IN M31 HALO

From previous paragraph \(R_s = 7.78 \times 10^{26} \) m \(R_s = 25.22 \) Gpc

Indefinite integral for DM in spherical corona mass in halo.
For M31 \(M_{DM} (< R) = \frac{8 \cdot \pi \cdot L \cdot \sqrt{R_s} \cdot \sqrt{X}}{\left(\sqrt{X} + 1 \right)^{3/2}} = \frac{M_o \cdot \sqrt{X}}{\left(\sqrt{X} + 1 \right)^{3/2}} \)

Being \(X = r/R_s \) and \(R_s = (D/C)^3 = 7.78 \times 10^{26} \) m

\[L = \frac{a^2}{8 \cdot \pi \cdot G} = 1.3326 \times 10^{30} \]
\[M_o = 8 \cdot \pi \cdot L \cdot \sqrt{R_s} = 4.69 \times 10^{14} \text{ Msun} \]
10. MASSES IN M31

It will calculated in this chapter some different types of masses related to M31 and will be compared with got by [5] Sofue.

10.1 DYNAMICAL MASSES

As it is known, this type of mass represents the mass enclosed by a sphere with a radius r in order to produce a balanced rotation with a specific velocity at such radius.

The formula of dynamical mass is

\[M_{\text{DYN}}(r) = \frac{V^2 \cdot r}{G}. \]

Beside is tabulated dynamical masses at different radius in kg and Solar masses, according rotation curve data of [5] Sofue.

<table>
<thead>
<tr>
<th>Radius (kpc)</th>
<th>Velocity (Km/s)</th>
<th>M Dynamic (kg)</th>
<th>M Dynamic (M sun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.5</td>
<td>229.9</td>
<td>9.898E+41</td>
<td>4.974E+11</td>
</tr>
<tr>
<td>49.1</td>
<td>237.4</td>
<td>1.280E+42</td>
<td>6.430E+11</td>
</tr>
<tr>
<td>58.4</td>
<td>250.5</td>
<td>1.695E+42</td>
<td>8.515E+11</td>
</tr>
<tr>
<td>70.1</td>
<td>219.2</td>
<td>1.558E+42</td>
<td>7.827E+11</td>
</tr>
<tr>
<td>84.2</td>
<td>206.9</td>
<td>1.667E+42</td>
<td>8.376E+11</td>
</tr>
<tr>
<td>101.1</td>
<td>213.5</td>
<td>2.131E+42</td>
<td>1.071E+12</td>
</tr>
<tr>
<td>121.4</td>
<td>197.8</td>
<td>2.196E+42</td>
<td>1.104E+12</td>
</tr>
<tr>
<td>145.7</td>
<td>178.8</td>
<td>2.154E+42</td>
<td>1.082E+12</td>
</tr>
<tr>
<td>175</td>
<td>165.6</td>
<td>2.219E+42</td>
<td>1.115E+12</td>
</tr>
<tr>
<td>210.1</td>
<td>165.6</td>
<td>2.664E+42</td>
<td>1.339E+12</td>
</tr>
<tr>
<td>252.3</td>
<td>160.7</td>
<td>3.013E+42</td>
<td>1.514E+12</td>
</tr>
<tr>
<td>302.9</td>
<td>150.8</td>
<td>3.185E+42</td>
<td>1.601E+12</td>
</tr>
</tbody>
</table>

10.2 DM MASSES OF SPHERICAL CORONA IN M31 HALO BY DIRECT FORMULA AND REDUCED FORMULA

The minimum radius will be 49.1 kpc because at this radius was calculated parameter C for the reduced formula.

In chapter 9 was got direct formula

\[M_{\text{DM \, SPHERICAL \, CORONA}} = \frac{a^2}{G} \left(\sqrt{R_2^2} - \sqrt{R_1^2} \right) \]

being \(\frac{a^2}{G} = 3.349 \cdot 10^{31} \)

<table>
<thead>
<tr>
<th>Radius (kpc)</th>
<th>Direct mass (Msun)</th>
<th>Corona Direct mass (M sun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kpc</td>
<td>Msun</td>
<td>M sun</td>
</tr>
</tbody>
</table>
A D.M. FORMULA FOR MILKY WAY AND M31 HALO GOT BY BUCKINGHAM THEOREM –V5

<table>
<thead>
<tr>
<th>Radius (kpc)</th>
<th>Reduc M sun M sun</th>
<th>Corona Mass M sun</th>
<th>Total Mass Msun</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.1</td>
<td>6.73468E+11</td>
<td>0</td>
<td>6.43E11</td>
</tr>
<tr>
<td>49-100</td>
<td>9.56378E+11</td>
<td>2.8291E+11</td>
<td>9.26E11</td>
</tr>
<tr>
<td>49-200</td>
<td>1.34435E+12</td>
<td>6.7088E+11</td>
<td>1.3E12</td>
</tr>
<tr>
<td>49-385</td>
<td>1.85193E+12</td>
<td>1.1785E+12</td>
<td>1.8E12</td>
</tr>
<tr>
<td>49-770</td>
<td>2.5945E+12</td>
<td>1.921E+12</td>
<td>2.54E12</td>
</tr>
</tbody>
</table>

Beside is tabulated DM masses of spherical corona from 40.5 kpc up to 100,200, 300 and 385 kpc.

Being 385 kpc the half of the distance between M31 and Milky Way.

Below is tabulated the results of spherical corona masses got by the reduced formula for mass, as it is right, the reduced formula produces a bit lower DM than direct formula.

10.3 TOTAL MASS IN M31

<table>
<thead>
<tr>
<th>Radius (kpc)</th>
<th>Reduc M sun M sun</th>
<th>Corona Mass M sun</th>
<th>Total Mass Msun</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.1</td>
<td>6.73468E+11</td>
<td>0</td>
<td>6.43E11</td>
</tr>
<tr>
<td>100</td>
<td>9.56378E+11</td>
<td>2.83E+11</td>
<td>9.26E11</td>
</tr>
<tr>
<td>200</td>
<td>1.34435E+12</td>
<td>6.7E+11</td>
<td>1.3E12</td>
</tr>
<tr>
<td>385</td>
<td>1.85193E+12</td>
<td>1.18E+12</td>
<td>1.8E12</td>
</tr>
<tr>
<td>770</td>
<td>2.5945E+12</td>
<td>1.9E+12</td>
<td>2.54E12</td>
</tr>
</tbody>
</table>

Adding the dynamical mass up to 49.1 kpc = 6.43*1011 Msun to different corona masses, it is got the total mass at a specific radius, through reduced formula of mass, which is more trustworthy than direct formula of mass.

In the following epigraph will be compared data highlight in grey with results got by Sofue.

According Sofue Baryonic matter in M31 = 1.6*1011 Msun so the proportion Baryonic mass versus Total mass = 8.8% at 385 kpc.

10.4 COMPARISON OF TOTAL MASS DIRECT FORMULA AND TOTAL MASS NFW METHOD IN SOFUE PAPER

In [5] Sofue, the author has published the following results.

Total Mass up to 200 kpc by Sofue	13.9 ± 2.6 \times 10^{11} Msun
Total mass up to 385 kpc by Sofue	19.9 ± 3.9\times 10^{11} Msun
Total mas up to 200 kpc by direct formula	13 \times 10^{11} Msun
Total mass up to 385 kpc by direct formula	18 \times 10^{11} Msun
Total masses by reduced formula, above data in grey, with Sofue results match perfectly when it is considered the error in calculus.

It is important to highlight that reduced formula give results a bit lower than NFW method. I have explained the reason why this happen in several previous papers. i.e. [10] Abarca.

11. PROPORTION OF GALACTIC DM IN THE ANCIENT UNIVERSE IS LOWER THAN AT PRESENT

According the Hubble law, the expansion of the space in the Universe follows this simple differential equation.

$$\frac{\partial R}{\partial t} = H * R \quad \text{being} \quad H = \text{Constant Hubble} = 70 \text{Km/s/ Mpc} \quad \text{being} \quad 1 \text{Mpc} = 3.0857*10^{22} \text{m} \quad H = 2.2685*10^{-18} \text{s}^{-1}$$

And being R a specific distance, for example the radius of a galaxy.

The inverse of Hubble constant has time units and 1/H = 1.397*10^10 years. So 1/H is called Hubble time.

Hubble time is quite close to current Universe age equal to 1.38*10^10 years, according current cosmology. So for our proposes it is enough to approximate 1/H equal to the Universe age.

The solution of such simple differential equation is $$R = R_0 \cdot e^{H(t-t_c)}$$ where $$R_0$$ it is the initial radius of a specific galaxy for $$t=0$$. However, this formula is not suitable because at $$t=0$$ there was not any galaxies.

So it is better rewrite the solution including current time as a reference to measure the time, then

$$R = R_C \cdot e^{H(t-t_c)}$$ Where $$t_c$$ represents the current time, $$R_C$$ is the size of a specific galaxy nowadays and $$t$$ is the age of such galaxy.

With this solution it is clear that for $$t=t_c$$ $$R=R_C$$.

Going back 1/3 of the Universe age then $$t-t_c = -1/(3H)$$ and $$R = R_C \cdot e^{-1/3} = 0.72 \cdot R_C$$

In other words 4650 million years ago the size of a galaxy was 0.72 times its current size.

Going back 2/3 of the Universe age then $$t-t_c = -2/(3H)$$ and $$R = R_C \cdot e^{-2/3} = 0.51 \cdot R_C \approx 0.5 \cdot R_C$$

In other words 9300 million years ago the size of galaxies was one half of its current sizes.

11.1 COMPARISON BETWEEN DM OF M31 IN THE ANCIENT UNIVERSE AND AT PRESENT

In epigraph 10.2 was got the mass of DM inside the corona from 40 kpc up to 385 kpc = 1.24*10^{12} Msun through the formula

$$M_{DM, SPHERICAL CORONA} = \frac{a^2}{G} \cdot \left[\sqrt{R_2^2 - R_1^2} \right]$$ being $$\frac{a^2}{G} = 3.349 \cdot 10^{31}$$

Going back 4650 million years, the current distances are reduced by factor 0.72. So 40 kpc becomes R min= 29 kpc and 385 kpc becomes R max= 277 kpc then according the previous formula.
A D.M. FORMULA FOR MILKY WAY AND M31 HALO GOT BY BUCKINGHAM THEOREM –V5

\[M_{\text{DM SPHERICAL CORONA}} \text{ (from } 29 \text{ up to } 277) = 1.052 \times 10^{12} \text{ M}_\odot \]

Comparing this result with the current value \(M_{\text{DM SPHERICAL CORONA}} \text{ (40 up to } 385) = 1.24 \times 10^{12} \text{ M}_\odot \) it can be checked that the amount of DM 4650 million years ago was 15.3% lower.

Going back 9300 million years, the current distances are reduced by a factor 0.5 so \(R_{\text{min}} = 20 \text{ kpc} \) and \(R_{\text{max}} = 192.5 \text{ kpc} \) then \(M_{\text{DM SPHERICAL CORONA}} \text{ (from 20 up to 192.5 kpc } = 8.79 \times 10^{11} \text{ M}_\odot \) which means a 29% lower of DM regarding the current value.

Although these simple calculus have been made inside the spherical corona where baryonic matter is negligible, inside the galaxy it happens the same, the DM is lower because the galactic size in the ancient Universe is lower. What happens is that calculus of DM inside galactic disk is far more complex because it is needed to know baryonic density function and solve a far more complex differential equation than a simple Bernoulli one.

This previous calculus would be in agreement with majority of cosmologist, because it seems that observational evidences back a lower fraction of DM in measures of ancient galaxies. In other words in galaxies which are far away, and consequently the observational data inform about what happens thousand million years ago in a very far away galaxy.

Furthermore, in the paper [16] Alfred L. Tiley, 2018. After studying some 1,500 galaxies, researchers led by Alfred Tiley of Durham University have determined that the fraction of dark matter in galaxies placed 10 Gyrs (10\(^{10}\) light-years) away is at least 60% regarding current amount of DM for galaxies placed in the close Universe.

12. MILKY WAY MASS BY ITS EXTENDED HALO

In [17] Abarca M.2019. was introduced the extended halo of M31 whose radius was defined as the distance between M31 and Milky Way. Similarly the extended halo for Milky Way is the same distance. The reason to consider this extension is backed by the concept of DM nature according with theory of gravitational field as generator of DM.

This concept will be discussed widely at the end of the chapter.

12.1 SOFUE DATA OF MILKY WAY

This rotation curve of Milky Way comes from [5] Sofue. Tabla below has been got from such graphic.

It is clear that error measures are remarkable especially for radius bigger than 100kpc.
First and second column show data coming from above graph. Third and fourth column are data into I.S.

The sixth column shows the dynamical mass associated to its radius and velocity.

<table>
<thead>
<tr>
<th>radius</th>
<th>km/s</th>
<th>Radius m</th>
<th>Vo m/s</th>
<th>Mdyn Msun</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,8</td>
<td>253,4</td>
<td>6,418E+20</td>
<td>2,534E+05</td>
<td>3,10E+11</td>
</tr>
<tr>
<td>26,05</td>
<td>252,6</td>
<td>8,038E+20</td>
<td>2,526E+05</td>
<td>3,86E+11</td>
</tr>
<tr>
<td>30,5</td>
<td>239,5</td>
<td>9,411E+20</td>
<td>2,395E+05</td>
<td>4,07E+11</td>
</tr>
<tr>
<td>36,6</td>
<td>220,7</td>
<td>1,129E+21</td>
<td>2,207E+05</td>
<td>4,14E+11</td>
</tr>
<tr>
<td>44,3</td>
<td>194,5</td>
<td>1,367E+21</td>
<td>1,945E+05</td>
<td>3,89E+11</td>
</tr>
<tr>
<td>53,7</td>
<td>174,9</td>
<td>1,657E+21</td>
<td>1,749E+05</td>
<td>3,82E+11</td>
</tr>
<tr>
<td>64,3</td>
<td>177,4</td>
<td>1,984E+21</td>
<td>1,774E+05</td>
<td>4,70E+11</td>
</tr>
<tr>
<td>77,1</td>
<td>188</td>
<td>2,379E+21</td>
<td>1,880E+05</td>
<td>6,33E+11</td>
</tr>
<tr>
<td>91,4</td>
<td>179,8</td>
<td>2,820E+21</td>
<td>1,798E+05</td>
<td>6,87E+11</td>
</tr>
<tr>
<td>110,6</td>
<td>156,1</td>
<td>3,413E+21</td>
<td>1,561E+05</td>
<td>6,26E+11</td>
</tr>
<tr>
<td>132,6</td>
<td>127,5</td>
<td>4,092E+21</td>
<td>1,275E+05</td>
<td>5,01E+11</td>
</tr>
<tr>
<td>158,8</td>
<td>106,3</td>
<td>4,900E+21</td>
<td>1,063E+05</td>
<td>4,17E+11</td>
</tr>
<tr>
<td>190,3</td>
<td>134,9</td>
<td>5,872E+21</td>
<td>1,349E+05</td>
<td>8,05E+11</td>
</tr>
<tr>
<td>228</td>
<td>207,6</td>
<td>7,035E+21</td>
<td>2,076E+05</td>
<td>2,28E+12</td>
</tr>
</tbody>
</table>
Graph of dynamical mass from 26 kpc to 156 kpc for Milky Way.

It is clear that measures does not match with theory because it is supposed that dynamical mass is a strictly growing function depending on radius.

It is possible that the range error of data especially for data bigger than 100 kpc might explain the disagreement between measures and theory.

However M31 dynamical mass it is far more trustworthy as it is shown in graphic below. Data have been got from the same paper [5] Sofue.

12.2 BERNOULLI FIELD SOLUTION FOR MILKY WAY

Accepting that DM generated for gravitational field theory has to work with the same parameters and formulas for all galaxies with similar size to M31 it is clear that it is needed to check the theory in Milky Way. Therefore parameters A&B and a&b should be the same for both galaxies and formulas for field, density and total mass as well.

<table>
<thead>
<tr>
<th>New parameters (a&b - A&B) calculated by M31 data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
</tr>
<tr>
<td>(b = \frac{B - 2}{2B - 2})</td>
</tr>
<tr>
<td>(a_{\text{new}})</td>
</tr>
</tbody>
</table>
According the theory the only one parameter free is C, the parameter associated to initial condition of Bernoulli solution for field.

\[
A = \frac{a}{8\pi G}\frac{\text{m}^4}{\text{kg}^2}\quad \text{New parameter } A = 3.488152 \times 10^{-6}
\]

\[
D = 8\pi GA = a^{\frac{4}{3}}\quad \text{New parameter } D = 5.85 \times 10^{13}
\]

12.3 STIMATING HALO REGION AND PARAMETER C

As it is known, Bernoulli solution is only right into the halo región, where the baryonic mass is negligible. Considering model provided by Sofue for baryonic disc, has been estimated the following proportion of Baryonic mass versus DM at different radius.

<table>
<thead>
<tr>
<th>Radius kpc</th>
<th>Proportion Baryonic vs DM</th>
<th>Baryonic vs DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>30.5</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>36.6</td>
<td>0.025</td>
<td>0.025</td>
</tr>
</tbody>
</table>

According these results it would be better to consider negligible baryonic matter for bigger radius than 36.6 kpc. Nevertheless it will be made DM mass calculus for 30.5 kpc as initial condition. Although at 30.5 kpc the proportion is about 6%, this value has been chosen because its error range for velocity is lower than error associated to radius 36.6 kpc.

In table below are written the data to get parameter C at different radius.

<table>
<thead>
<tr>
<th>Radius</th>
<th>Vel</th>
<th>Radius m</th>
<th>Vel. m/s</th>
<th>Eo m/s^2</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>26,05</td>
<td>252,6</td>
<td>8,038E+20</td>
<td>2,526E+05</td>
<td>7,938E-11</td>
<td>9,5234E-23</td>
</tr>
<tr>
<td>30,5</td>
<td>239,5</td>
<td>9,411E+20</td>
<td>2,395E+05</td>
<td>6,095E-11</td>
<td>1,0314E-22</td>
</tr>
<tr>
<td>36,6</td>
<td>220,7</td>
<td>1,129E+21</td>
<td>2,207E+05</td>
<td>4,313E-11</td>
<td>1,2961E-22</td>
</tr>
<tr>
<td>44,3</td>
<td>194,5</td>
<td>1,367E+21</td>
<td>1,945E+05</td>
<td>2,767E-11</td>
<td>1,9333E-22</td>
</tr>
</tbody>
</table>

Field Eo has been calculated by radius and velocity measures, \(E_0 = \frac{V^2}{R_0} \) and C by its formula \(C = \frac{E_0^{-\frac{2}{3}} - D \cdot \frac{R_0}{g^3}}{R_0^{-\frac{4}{3}}} \)
At this point it is important to highlight the difference between Milky Way and M31 regarding parameter C of Bernoulli formula. In the epigraph 9.4 was explained the reason why in M31 halo region the parameter C might be neglected. Above are the parameter C for both galaxies. Parameter C for M31 is in average 50 times smaller than parameter in Milky Way. Concerning values of radius in halo region, parameter C might be neglected because its influence in the formula is tiny. However, the parameter C is not negligible at all for MW in the halo region.

REDUCED FORMULA FOR BERNOULLI DENSITY IN HALO REGION FOR MILKY WAY

The only specific parameter for Milky Way is parameter C, which may be watched above. It is very similar at 26 kpc, 30 and 36 kpc. It will be chosen radius 30,5 kpc and its parameter C = 1.03E-22 then Rs = 1.83*10^23 m = 5.94 Mpc. The method followed is the same that was made for M31.

BERNOULLI DEN. DM = D_{DM}(R) = \frac{Do}{X^{5/2} \cdot (X^{1/3} + 1)^{5/2}} where X=R/R_s

\[L = \frac{a^2}{8 \cdot \pi \cdot G} = 1.3326 \times 10^{30} \]

12.4 TOTAL MASS IN MILKY WAY AT 200 KPC - 385 KPC AND 770 KPC BY ITS REDUCED FORMULA

In chapter 9 has been shown the definite integral to calculate the DM contained inside a spherical corona defined by two radii.

In the following chapter will be explained the physical meaning of extended halo equal to 770 kpc, that will be calculated in this chapter for Milky Way and in the following chapter for M31.

\[\int_{R_1}^{R_2} 4\pi \cdot r^2 \cdot \rho(r) dr = \int_{R_1}^{R_2} 4\pi \cdot r^2 AE^B dr = 4\pi A \int_{R_1}^{R_2} r^2 \left(C \cdot r^{4/3} + D \cdot r \right)^2 \cdot dr \]

Thanks to solution of indefinite integral is quite easy to do these calculus.
The indefinite integral

\[I = 4\pi A \cdot \int \frac{x^2}{(C \cdot r^{4/3} + D \cdot r)^{2/3}} = \frac{8\pi A \sqrt{r}}{D \cdot (C \cdot 3\sqrt{r} + D)^{3/2}} = \frac{\sqrt{r}}{G \cdot (C \cdot 3\sqrt{r} + D)^{3/2}} \]

As \(\frac{8\pi A}{D} = \frac{1}{G} \). Calling \(F(r) = \frac{\sqrt{r}}{G \cdot (C \cdot 3\sqrt{r} + D)^{3/2}} \) and by the Barrow’s rule, it is got

\[M_{DM}^{R2}_{R1} = F(R2) - F(R1) \]

that provided the DM contained inside the spherical corona defined by R1 and R2.

REDUCED FORMULA FOR SPHERICAL CORONA MASS IN MILKY WAY HALO

It is the same formula got for M31 except Rs value and consequently Mo value.

The indefinite integral for DM in spherical corona mass in halo.

For Milky Way \(M_{DM} (< R) = \)

\[= \frac{8 \cdot \pi \cdot L \cdot \sqrt{X}}{(\frac{1}{X} + 1)^{1/2}} = \frac{Mo \sqrt{X}}{(\frac{1}{X} + 1)^{1/2}} \]

Being \(X = r/Rs \) and \(Rs = (D/C)^3 = 1.83*10^{23} \) m

\[L = \frac{a^2}{8 \cdot \pi \cdot G} = 1.3326*10^{30} \]

\[Mo = 8 \cdot \pi \cdot L \cdot \sqrt{Rs} = 7.2*10^{12} \text{ Msun} \]

MASSES IN MILKY WAY WITH PARAMETER C AT 30.5 KPC BY REDUCED FORMULA

<table>
<thead>
<tr>
<th>C at 30.5 kpc</th>
<th>1.0314E-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius (kpc)</td>
<td>DM spherical corona (M sun)</td>
</tr>
<tr>
<td>30-200</td>
<td>4.61E+11</td>
</tr>
<tr>
<td>30-385</td>
<td>6.97E+11</td>
</tr>
<tr>
<td>30-770</td>
<td>9.95E+11</td>
</tr>
</tbody>
</table>

The total mass is calculated adding to spherical corona DM the dynamical mass at 30.5 kpc. Which is

\[M_{dy} < 30 \text{ kpc} = 4.07*10^{11} \text{ Msun} \]

<table>
<thead>
<tr>
<th>Radius (kpc)</th>
<th>Total mass [10^{11} M sun]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>8.68</td>
</tr>
<tr>
<td>385</td>
<td>11</td>
</tr>
</tbody>
</table>

Extended halo | 770 | 14 |

Results match perfectly if it is considered the range of errors.

According Sofue Baryonic matter in Milky Way = 1.4*10^{-11} Msun so the proportion of Baryonic mass versus Total mass = 12.7% when it is considered halo up to 385 kpc, whereas the same proportion for M31 is 8.8%.
13 THE MASS CALCULUS FOR THE LOCAL GROUP OF GALAXIES BY EXTENDED HALOS

According [5] Sofue the relative velocity between M31 and Milky Way is 170 km/s. Assuming that both galaxies are bounded gravitationally it is possible to calculate the total mass of the Local group by a simple formula because of the Virial theorem.

\[M = \frac{v^2 \cdot r}{G} \]

As \(r = 770 \) kpc and \(v = 170 \) km/s then \(M_{\text{LOCAL GROUP}} = 5.17 \times 10^{12} \) Msun

According [5] Sofue, the total mass of M31 and Milky Way is approximately \(3 \times 10^{12} \) Msun, so there is a mass lack of \(2 \times 10^{12} \) Msun which is a considerable amount of matter. Namely read epigraph 4.6 of [5] Sofue paper.

Up to now, in order to do calculus with data of rotation curve, the border of M31 is right to be placed at a half the distance to Milky Way because it is supposed that up to such distance its gravitational field dominates whereas for bigger distances is Milky Way field which dominates.

This hypothesis is right when it is considered rotation curves of different systems bounded to each galaxy i.e. stars or dwarf galaxies. However when it is considered the gravitational interaction between both giant galaxies it is needed to extend their halos up to 770 kpc. Therefore the M31 halo extend up to 770 kpc and reciprocally the Milky Way halo extend up to 770 kpc. It is simply Newtonian Mechanics. For example the Moon orbit is calculated through the Earth field at the Moon radius.

13.1 M31 TOTAL MASS WITH ITS HALO EXTENDED UP TO 770 KPC

In the chapter 10 was got the total mass for M31 adding the DM from spherical corona mass plus dynamical mass at 49 kpc. The total mass got for M31 was \(M_{\text{TOTAL}} = 2.54 \times 10^{12} \) Msun.

NFW HALO EXTENDED UP TO 770 KPC

According parameters of NFW model got for M31 by [5] Sofue, it is possible to calculate total DM inside an extended halo up to 770 kpc then \(M_{\text{TOTAL,DM}} = 2.54 \times 10^{12} \) Msun which added to Baryonic matter of M31 = \(1.6 \times 10^{11} \) Msun gives a total mass for M31 = \(2.7 \times 10^{12} \) M sun, which is a bit bigger regarding calculated by Reduced mass formula.

The big difference between my model, DM generated by gravitational field and standard model of DM is that the former allows a right extension of halo because the origin of DM is the own field whereas the standard model of DM in galaxies is a numerical method ad hoc to fit the extra of mass that shows the measures of galactic rotation curves.

13.2 THE TOTAL MASS OF MILKY WAY AND M31 VERSUS DYNAMICAL MASS OF THE LOCAL GROUP

In chapter 12 was got the total mass of Milky Way when it is considered the extended halo equal to \(1.4 \times 10^{12} \) Msun, that added to \(2.5 \times 10^{12} \) Msun relative to M31 gives a total mass for both galaxies equal to \(3.9 \times 10^{12} \) Msun. Therefore, thanks to the concept of extended halo the mass of both galaxies is \(10^{12} \) Msun heavier than considering halos up to 385 kpc.

It is known that by dynamical measures the total mass of Local group of galaxies is at least \(5 \times 10^{12} \) M sun. Consequently there is a lack of matter equal to \(10^{12} \) Msun. However also it should be considered the rest of medium size and dwarf galaxies, so if it were considered the concept of extended halo for each gravitational system in the Local Group perhaps the total amount of DM produced by these systems could explain the lack of \(10^{12} \) Msun up to get \(5 \times 10^{12} \) Msun.
Final discussion

The concept of extended halos applied to galaxy cluster may explain the reason why the proportion of DM inside a cluster is bigger than inside a galaxy. The gravitational interaction inside the intergalactic space produces an extra of DM.

For example Baryonic mass of Local Group is approximately $3 \times 10^{11} \text{Msun}$ and total mass is bigger than $5 \times 10^{12} \text{Msun}$ so the proportion of baryonic mass versus total mass is lower than 6% whereas such proportion was 9% inside M31 and 12% for Milky Way

However for bigger scales the effect of DM growing is compensated by the Dark energy. See [9] Abarca. A study about Coma cluster. Some years ago was checked that super clusters are the biggest structures gravitationally bounded because the universal expansion dominates over gravitational forces between super clusters.

14. CONCLUSION

This work is focused in halo region of M31 where baryonic density is negligible regarding DM non baryonic. The reason is that according the main hypothesis of this theory, the non baryonic DM is generated locally by the gravitational field. Therefore it is needed to study DM on the radius dominion where it is possible to study gravitational field propagation without interference of baryonic mass density or at least where this density is negligible.

In order to defend properly the conclusion of this paper, it is important to emphasize that correlation coefficient of power regression over velocity measures in rotation curve in halo region is bigger than 0.96. See chapter 3 where was got coefficients a & b for $v = a r^b$ law.

In chapter four was mathematically demonstrated that the power law $v = a r^b$ in halo region is equivalent a DM density called direct DM, whose formula is $D_{DM} = \frac{a^2 \cdot (2b+1)}{4\pi G} r^{2b-2}$.

In chapter five was demonstrated mathematically that the power law for velocity $v = a r^b$ on the rotation curve is mathematically equivalent to a power law for DM density depending on E. $D_{DM} = A E^B$.

Where $A = \frac{a^{2b-1} \cdot (2b+1)}{4\pi G}$ & $B = \frac{2b-2}{2b-1}$.

Therefore joining chapters 3,4 and 5 it is concluded that the high correlation coefficient bigger than 0.96 at power regression law for rotation curve $v = a r^b$ in halo region support strongly that DM density inside halo region is a power of gravitational field $D_{DM} = A E^B$ whose parameters A & B are written above.

As it was pointed at introduction, it is known that there is baryonic dark matter such as giant planets, cold gas clouds, brown dwarfs but this type of DM is more probable to be placed inside galactic disk and bulge.

In chapter seven was got a Bernoulli differential equation for M31 halo in order to look for a local method to calculate the local field E.

29
A D.M. FORMULA FOR MILKY WAY AND M31 HALO GOT BY BUCKINGHAM THEOREM –V5

The core this paper is chapter eight, where it is made dimensional analysis for magnitudes Density and field \(E \) and for universal constants \(G \), \(h \) and \(c \). It is demonstrated that formula for DM density need two \(\Pi \) monomials. Furthermore it is found that coefficient \(B = 5/3 \), power of \(E \), is coherent with Buckingham theorem and it differs only two thousandth regarding \(B \) value got by statistical regression of rotation curve in M31 halo. As a consequence of this simple fraction for \(B \), the others parameters \(a \& b \) and \(A \) were recalculated and formulas of theory were rewriting. This way, these formulas achieve dimensional coherence and the theory gains simplicity and credibility.

It is important to state that Buckingham theorem allows the value \(B=5/3 \) as power for field, although another different fractions would be allowed too. However, it is such fraction which match perfectly with the value got by statistic regression of rotation curve data on rotation curve in M31 halo.

Results got about \(D_{DM} = AE^B \) in other galaxies, see [8] Abarca,M.2016, suggest that DM density follows a similar law in different galaxies. Namely the power for \(E \) is close to \(5/3 \), on condition that galaxies should be similar giant galaxies i.e. its velocity is bigger than 200 km/s in the disk region of the rotation curves.

In the eleventh chapter, through a simple application of Hubble law has been demonstrated that in the ancient Universe, the galaxies are smaller and consequently the proportion of DM versus baryonic is lower. These calculus are in agreement with current observational evidences.

In the twelfth chapter, it is introduced Sofue data for Milky Way and it is applied DM theory by gravitational field to calculate the DM contained inside the halo at different radius. Results match perfectly with Sofue results. The importance of this chapter is based on the fact that the parameters of M31 has been used to do the calculus in Milky Way. These results back strongly the fact that DM generated by field theory is a general theory to explain DM nature.

In the thirteenth chapter it has been introduced the concept of extended halo and thanks to this concept the total mass calculated of Milky Way and M31 is equal to \(4 \times 10^{12} \) Msun, which is \(10^{12} \) Msun heavier than total mass with standard halos, so there is only a lack of \(10^{12} \) Msun to get the dynamical mass of Local Group instead of \(2 \times 10^{12} \) Msun. Also it is suggested that theory applied to the other dwarf and medium size galaxies of Local Group could add the rest of mass to find the dynamical mass in the Local Group of galaxies.

In my opinion these facts suggest strongly that nature of non baryonic DM is generated by gravitational field according a Universal mechanism. In other words, it is clear that DM it is a phenomenon of quantum gravitation.

14. BIBLIOGRAPHIC REFERENCES

A D.M. FORMULA FOR MILKY WAY AND M31 HALO GOT BY BUCKINGHAM THEOREM –V5

A new Dark matter density profile for Milky Way which depend on gravitational field.

Dark matter density on big galaxies depend on gravitational field as Universal law.

A New Dark Matter Density Profile as Power of Gravitational Field for Coma Cluster.

A New Dark Matter Density Profile for M31 Galaxy to Demonstrate that Dark Matter is Generated by Gravitational Field

Do micro brown dwarf detections explain the galactic dark matter?

Do the Herschel cold clouds in the Galactic halo embody its dark matter?

Gravitational hydrodynamics versus observations of voids, jeans clusters and MACHO dark matter.

The OGLE View of Microlensing towards the Magellanic Clouds. III. Ruling out sub-solar MACHOs with the OGLE-III LMC data.

A new look at microlensing limits on dark matter in the Galactic halo.

The Shapes of the Rotation Curves of Star-forming Galaxies Over the Last 10 Gyr

A dark matter formula for M31 halo got through Buckingham theorem.V3.