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Abstract 

 

      The Navier-Stokes differential equations describe the motion of fluids which are 

incompressible. The three-dimensional Navier-Stokes equations misbehave very badly 

although they are relatively simple-looking. The solutions could wind up being extremely 

unstable even with nice, smooth, reasonably harmless initial conditions. A mathematical 

understanding of the outrageous behaviour of these equations would dramatically alter the 

field of fluid mechanics. This paper describes why the three-dimensional Navier-Stokes 

equations are not solvable, i.e., the equations cannot be used to model turbulence, which is 

a three-dimensional phenomenon. 
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1.  The Navier-Stokes equations 

 

      The general equations of motion for a viscous fluid were obtained by Sir George Stokes 

in 1845. The following is the fundamental equation (in vectorial form) governing the flow 

of a viscous fluid:- 

 

∂v + (v.▽)v = - 1▽Pe - ▽φ + η▽2v , 

                                            ∂t                       p                     p 

 

_________________________ 
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where v is the velocity of the fluid (as a function of position), Pe the pressure, φ the 

gravitational potential, p the density and η the viscosity.  

 

      A fluid in motion could be characterised by its velocity field (velocity as a function of 

position). However, because of the complex nature of the forces affecting fluids (in general, 

forces of both compression and viscosity) the result of applying basic principles such as 

Newton’s second law is a set of nonlinear equations. Computational methods therefore play 

a large part in fluid dynamics. (Newton’s second law states that the rate of change of 

momentum p of a body equals the total force F acting upon it, as is described by the 

following equation:- 

 

F = ∂p/∂t  

 

If, as is normally the case, the mass of the body is constant, F = ∂(mv)/∂t reduces to F = 

m∂v/∂t or F = ma, where a is the acceleration of the body. Note that the force and 

acceleration are vectors. The first law is the null case of the second law (if F = 0 then a = 

0).) 

      The Navier-Stokes equation is a miracle of brevity, relating a fluid’s velocity, pressure, 

density and viscosity. In two dimensions, fluid flow governed by this partial differential 

equation is deterministic and predictable. But this equation fails when the fluid becomes 

turbulent as turbulence represents three-dimensional flow of the fluid, for which the 

Navier-Stokes equation does very poorly. Whereas fluid flow under normal conditions 

tends to be laminar, in turbulence it becomes irregular and develops eddies, ripples and 

whorls. But yet there is some sort of order found within this disorder or turbulence which 

could be described as self-similar or fractal. What mathematical technique could be used to 

describe this state? 

      The Navier-Stokes equations are nonlinear and do not submit to any general method of 

solution. Each new problem has to be carefully formulated as to geometry and proper 

boundary conditions. Then some scheme of attack might be adopted with the hope of 

reaching a solution. In most cases all attempts to obtain an exact solution fail. Approximate 

solutions have to make do. In a few cases exact solutions could be obtained. The possibility 

that perhaps the flow of the fluid is unidirectional, i.e., v (x, y, t) = 0, is not an assumption. 

It is rather an intuitive guess which is pursued until we either find a solution or become 

convinced that it does not lead to a solution, in which case we mark it as an unsuccessful 

trial. 

      Substitution of viscosity in the Navier-Stokes equations with viscosity = 0 reduces them 

to a form called the Euler equations:-  

 

p Dq = pg - �p  (in vectorial form) 

                                                Dt 

 

The Euler equations had been formulated earlier than the Navier-Stokes equations and 

considered an approximation. The Euler equations are of the first order and cannot in 

general satisfy the boundary conditions. We could therefore conclude that the Euler 

equations do not form a good approximation near a rigid boundary. Far from a boundary 
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and where viscosity = 0 is a fair estimate, they have an important role as approximations 

and are generally easier to solve than the full Navier-Stokes equations. 

      The Navier-Stokes equations do need for their solution initial conditions as well as 

boundary conditions. The following are proper boundary conditions for a velocity on a 

rigid boundary:- 

 

qn = qt = 0 , 

 

where qn is the normal component of the velocity relative to the solid boundary, and qt  is 

the tangential component. These conditions are also termed the no-penetration (qn = 0) 

and no-slip (qt = 0) viscous boundary conditions. When the region occupied by the fluid 

is not closed, i.e., the fluid is not completely confined, additional conditions are still 

required on some surfaces which completely enclose the domain of the solution. These 

might represent some real physical surfaces or they might be chosen quite arbitrarily, 

provided the velocity on them is known. The pressure, which is also a dependent 

variable, also requires boundary conditions. The Navier-Stokes equations are then 

satisfied and we now know the resulting pressure field. This flow can exist only if the 

obtained pressure is possible. An acceptable boundary condition might be: p  =  p∞  =   

const at r  à  ∞ , which then implies: p = p∞ - pQ
2
 . 1 . We also note  that  in  the  solution  

                                                                          8П
2
   r

2 

for the pressure there is no trace of the viscosity. This pressure therefore also satisfies the 

Euler equations. (As viscosity in a fluid enables it to smooth out or overcome the ripples, 

eddies and whorls of turbulence, a viscous fluid is in effect not so much affected by 

turbulence than a non-viscous fluid. Thus, the Navier-Stokes equations, as they relate to 

viscous fluids, present a better solution for incompressible fluids which are viscous and 

subject to turbulence than the Euler equations for non-viscous fluids.)  [1-4] 

 

2.  Modeling of turbulence 

 

      The scientist normally makes a forecast of the outcome of a flow and uses the Navier-

Stokes equations to model this forecast. However, in the instance of turbulence, making 

this forecast will be fraught with difficulty, if it can be carried out at all. Putting it another 

way, if turbulence could be forecasted, predicted and described by the Navier-Stokes 

equations it could not be turbulence, for turbulence implies puzzlement, lack of order or 

pattern and lack of predictability. 

      The Navier-Stokes equations are nonlinear due to the acceleration terms such as u∂u/∂x. 

As a result, the solution to these equations may not be unique. For instance, the flow 

between two rotating cylinders can be solved using the Navier-Stokes equations to treat a 

relatively simple flow with circular streamlines; it can also be a flow with streamlines 

which are like a spring wound around the cylinders as a torus; there are also more complex 

flows which are solutions to the Navier-Stokes equations, all satisfying the identical 

boundary conditions. 

      For simple geometries, the Navier-Stokes equations can be solved with relative ease. 

However, the equations cannot be solved for a turbulent flow even for the simplest of 

examples. A turbulent flow is highly unsteady, nonlinear and three-dimensional and 
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therefore requires that the three velocity components be specified at all points in a region 

of interest at some initial time, say t = 0. But, even for the simplest geometry, such  

information will be almost impossible to obtain.  [4]  

 

3.  Conclusion 

 

      Therefore, the solutions for turbulent flows have to be left to the experimentalist and 

are not attempted by solving the Navier-Stokes equations.  [4] 
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