Coordinate Transformation and Static Charged Sphere in General Relativity

Karl De Paepe

Abstract
We consider a static charged sphere in general relativity. We make a coordinate transformation of a specific form. The electromagnetic energy-momentum tensor in the transformed coordinates is shown to be zero contrary to what is expected.

1 Electromagnetic potential and field

Let \(A_\mu(t, x, y, z) \) and \(g_{\mu\nu}(t, x, y, z) \) be the electromagnetic potential and metric tensor respectively. The electromagnetic field is

\[
F_{\mu\nu}(t, x, y, z) = A_{\nu,\mu}(t, x, y, z) - A_{\mu,\nu}(t, x, y, z)
\]

For a scalar function \(\phi(t, x, y, z) \) define

\[
\hat{A}_\mu(t, x, y, z) = A_\mu(t, x, y, z) + (g_{\mu\alpha}\phi,\alpha)(t, x, y, z)
\]

We have by (1) and (2)

\[
F_{\mu\nu} = A_{\nu,\mu} - A_{\mu,\nu} = (A_\nu + \phi,\nu)_\mu - (A_\mu + \phi,\mu)_\nu = (g_{\nu\alpha}[A^\alpha + g^{\alpha\beta}\phi,\beta])_\mu - (g_{\mu\alpha}[A^\alpha + g^{\alpha\beta}\phi,\beta])_\nu = (g_{\nu\alpha}\hat{A}^\alpha)_\mu - (g_{\mu\alpha}\hat{A}^\alpha)_\nu
\]

2 Static charged sphere and Einstein field equations

Let there be a static charged sphere of total charge \(Q \) and mass \(M \) centred at the origin. Let the charge and mass densities be spherically symmetric. For this charged sphere let the metric \(g_{\mu\nu}(r) \) of isotropic coordinate form

\[
-a(r)dt^2 + b(r)(dx^2 + dy^2 + dz^2)
\]

satisfy the Einstein field equations

\[
G_{\mu\nu} = 8\pi \left[g^{\sigma\tau}F_{\mu\sigma}F_{\nu\tau} - \frac{1}{4}g_{\mu\nu}g^{\alpha\beta}F_{\sigma\tau}F_{\alpha\beta} \right] + 8\pi T_{\mu\nu}
\]

where \(T_{\mu\nu}(r) \) is the energy-momentum tensor of matter. Require the electromagnetic energy-momentum tensor is not zero and

\[
A_0(r) = A_1(r) = A_2(r) = A_3(r) = 0
\]

Define \(h_{\mu\nu}(r) = g_{\mu\nu}(r) - \eta_{\mu\nu} \). Require \(rA_\mu(r) \) and \(rh_{\mu\nu}(r) \) have finite limits as \(r \) goes to infinity. Consequently \(r[a^{-1}(r) - 1] \) and \(r[b^{-1}(r) - 1] \) have finite limits as \(r \) goes to infinity. Require also for small \(Q \) and \(M \) that

\[
|A_0(r)| <<< 1 \quad |h_{\mu\nu}(r)| <<< 1
\]

* k.depaepe@utoronto.ca
3 Coordinate transformation

Let
\[\phi(t, x, y, z) = x \] (8)

hence by (2), (6), and (8)
\[\hat{A}^0(r) = -(a^{-1}A_0)(r) \quad \hat{A}^1(r) = b^{-1}(r) \quad \hat{A}^2(r) = \hat{A}^3(r) = 0 \] (9)

Let \(Q \) and \(M \) be small so that \(b(r) \) is approximately one. Consider the transformation from \(x, y, z \) coordinates to \(x', y', z' \) coordinates given by
\[x' = \int_0^x b(\sqrt{u^2 + y^2 + z^2})du \quad y' = y \quad z' = z \] (10)

From the inverse of this transformation define the function \(\varphi \) by \(x = \varphi(x', y', z') \). Define the coordinate transformation from \(t', x', y', z' \) coordinates to \(t, x, y, z \) coordinates by
\[t = t' - \int_0^{x'} (a^{-1}A_0)(\sqrt{\varphi^2(u', y', z') + y'^2 + z'^2})du' \quad x = \varphi(x', y', z') \quad y = y' \quad z = z' \] (11)

The inverse of this transformation transforms \(\hat{A}^\mu(r) \) of (9) to \(\hat{A}^\mu(x', y', z') \) so that
\[\hat{A}^{\alpha}(x', y', z') = 0 \quad \hat{A}^1(x', y', z') = 1 \quad \hat{A}^2(x', y', z') = 0 \quad \hat{A}^3(x', y', z') = 0 \] (12)

4 Size of metric perturbation

We have by (10) that
\[\frac{\partial x}{\partial y'} = -y'b^{-1}(\sqrt{\varphi^2(x', y', z') + y'^2 + z'^2}) \int_0^{\varphi(x', y', z')} \frac{db}{db}(\sqrt{u'^2 + y'^2 + z'^2})du' \] (13)

Now \(r[b(r) - 1] \) and \(r[b^{-1}(r) - 1] \) have finite limits as \(r \) goes to infinity hence \(r^2(db/dr)(r) \) has finite limit as \(r \) goes to infinity. Consequently the integral is finite as \(x' \) goes to infinity and goes to zero as \(\sqrt{y'^2 + z'^2} \) goes to infinity. For small \(Q \) and \(M \) since \(b(r) - 1 \) is small we then have \(\partial x/\partial y' \) is small. We have by (11) that
\[\frac{\partial t}{\partial y'} = -\int_0^{x'} \frac{d(a^{-1}A_0)}{dr}(\sqrt{\varphi^2(u', y', z') + y'^2 + z'^2})\varphi(u', y', z')\partial y' \] (14)

Now \(r(a^{-1}A_0)(r) \) has finite limit as \(r \) goes to infinity. Consequently \(r^2(d(a^{-1}A_0)/dr)(r) \) has a finite limit as \(r \) goes to infinity. Also we just showed \(\partial \varphi/\partial y' = \partial x/\partial y' \) is small for small \(Q \) and \(M \). Consequently the integral is finite as \(x' \) goes to infinity. Also \(\partial t/\partial y' \) will go to zero as \(\sqrt{y'^2 + z'^2} \) goes to infinity. For small \(Q \) and \(M \) we then have \(\partial t/\partial y' \) is small. Also we have
\[\frac{\partial t}{\partial t'} = 1 \quad \frac{\partial t}{\partial x'} = -(a^{-1}A_0)(\sqrt{\varphi^2(x', y', z') + y'^2 + z'^2}) \quad \frac{\partial y}{\partial y'} = 1 \] (15)

We can then conclude for small \(Q \) and \(M \) that
\[\left| \frac{\partial x^\mu}{\partial x'^\mu} - \delta^\mu_\nu \right| << 1 \] (16)
Now
\[g'_{\mu\nu}(x',y',z') = \frac{\partial x'^{\alpha}}{\partial x^{\mu}} \frac{\partial x'^{\beta}}{\partial x^{\nu}} g_{\alpha\beta}(\sqrt{\varphi^2(x',y',z') + y'^2 + z'^2}) \] (17)
and define \(h'_{\mu\nu}(x',y',z') = g'_{\mu\nu}(x',y',z') - \eta_{\mu\nu} \). By (7) and (16) we have for small \(Q \) and \(M \) that
\[|h'_{\mu\nu}(x',y',z')| << 1 \] (18)

5 Contradiction

We have by (3) transformed to \(t', x', y', z' \) coordinates and (12) that
\[F'_{\mu\nu} = A'_{\nu,\mu} - A'_{\mu,\nu} = (g'_{\mu\alpha} \hat{A}^{\alpha}_{\nu})_{,\mu} - (g'_{\nu\alpha} \hat{A}^{\alpha}_{\mu})_{,\nu} = g'_{\nu\mu} - g'_{\mu\nu} = h'_{\nu\mu,\nu} - h'_{\mu\nu,\nu} \] (19)
Assuming the Principal of General Covariance and transforming (5) to \(t', x', y', z' \) coordinates and using (19) we have \(h'_{\mu\nu}(x',y',z') \) satisfies
\[G'_{\mu\nu} = 8\pi g'^{\sigma\tau}[h'_{\sigma1,\mu} - h'_{\mu1,\sigma}][h'_{\tau1,\nu} - h'_{\nu1,\tau}] - 2\pi g'_{\mu\nu} g'^{\alpha\sigma} g'^{\beta\tau}[h'_{\tau1,\sigma} - h'_{\sigma1,\tau}][h'_{\beta1,\alpha} - h'_{\alpha1,\beta}] + 8\pi T'_{\mu\nu} \] (20)
By (18) and (20) we have \(h'_{\mu\nu}(x',y',z') \) approximately satisfies
\[G'_{\mu\nu}(x',y',z') = 8\pi T'_{\mu\nu}(r') \] (21)
From (21) we can conclude that the electromagnetic energy-momentum tensor in \(t', x', y', z' \) coordinates is zero. This is a contradiction since we started with a charged sphere with nonzero electromagnetic energy-momentum tensor.

References