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Abstract

An explanation of the Riemann Hypothesis is given in 8 parts, with the
first being a statement of the problem. In the next 3 parts, the complex
valued Dirichlet Eta sum, a known equivalence to Riemann Zeta in the
critical strip, is split into 8 real valued sums and 2 constants. Part 5
explains a recursive relationship between the 8 sums. Section 6 shows
that the sums must individually equal 0, and part 7 details conditions
generated from the recursive system. Finally, part 8 solves the system in
terms of the original inputs of the Dirichlet Eta sum. The result shows
that the only possible solution for the real portion of the complex input,
commonly labeled a, is that it must equal 1/2, and thus proves Riemann’s
suspicion.

1 A Statement of the Problem, and the General
Approach to the Solution

The explanation begins with a well known version of the hypothesis based on
the closely related Dirichlet Eta function. In that version, the Dirichlet Eta
sum η(s) is stated in a functional equation with the Riemann Zeta function, in
order to analytically continue the domain of the Zeta function, and it is shown
as equation 1.

η(s) ≡
∞∑

n=1

(−1)
n−1

ns
=
(
1− 21−s

)
ζ(s) (1)

Using the Dirichlet Eta sum, the Riemann hypothesis is often stated as ”all
the zeros of the Dirichlet eta function, falling in the critical strip 0 < < (s) < 1,
lie on the critical line < (s) = 1/2,” where < (s) is the real portion of the complex
input s. That real portion is commonly labeled as lower case a.

So what is the nature of the zeros of the Eta function? The Eta function is
an infinite sum of fractions, sometimes totaling to zero, where the denominator
of that fraction sequence is the changing index of the sum raised to a complex
valued power s. Small s is a standard complex number given as a + bi. The

1



numerator of the sum’s fraction also contains information. In this case, it’s a
negative 1 raised to a power involving the index, which causes the fraction to
alternate between positive and negative. The goal then, and challenge of the
problem, is to explain why the value of a, in the domain between 0 to 1, must
be 1/2, and only 1/2, in order for that entire infinite sum of fractions to sum to
zero. This is stated as equation 2.

η(s) ≡
∞∑

n=1

(−1)
n−1

na+bi
= 0 (2)

As stated in the paper’s abstract, an explanation of the Riemann Hypothesis
is given in 8 parts, with the first being a statement of the problem. In the next 3
parts, the complex valued Dirichlet Eta sum, a known equivalence to Riemann
Zeta in the critical strip, is split into 8 real valued sums and 2 constants. Part 5
explains a recursive relationship between the 8 sums. Section 6 shows that the
sums must individually equal 0, and part 7 details conditions generated from
the recursive system. Finally, part 8 solves the system in terms of the original
inputs of the Dirichlet Eta sum. The result shows that the only possible solution
for the real portion of the complex input, commonly labeled a, is that it must
equal 1/2, and thus proves Riemann’s suspicion.

The first major step is to separate the real and imaginary portions of the
complex Eta sum, so that there is no longer a complex number inside the sum,
but rather 2 real valued sums instead.

2 Separating the Real and Imaginary Portions
of the Complex Sum

Start by using exponent rules on the index raised to a complex power, a + bi;
equation 3.

ns = na+bi = nanbi (3)

Then expand the complex exponent nbi with Euler’s well known formula.
The result is shown in equation 4.

ns = na (cos (b lnn) + i sin (b lnn)) (4)

Put the now expanded form back into equation 2, and then express the
numerator as a complex number, equation 5. Please also note, that I changed
the n-1 to n+1 out of personal preference of convention, as I had used it while
working the problem out on paper. This is allowed, as it does not change any of
the values. That is, (−1)n−1 will always equal (−1)n+1 over the integer index.

(−1)n+1

ns
=

(−1)n+1 + 0i

na cos (b lnn) + na sin (b lnn) i
(5)
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Next, use the general formula for dividing complex numbers, equation 6, to
carry out the division shown in 7.

u+ vi

x+ yi
=

(ux+ vy) + (vx− uy) i

x2 + y2
(6)

(−1)n+1 + 0i

na cos (b lnn) + na sin (b lnn) i
=

(−1)n+1na cos (b lnn)

(na cos (b lnn))
2

+ (na sin (b lnn))
2 +

0− (−1)n+1na sin (b lnn)

(na cos (b lnn))
2

+ (na sin (b lnn))
2 i (7)

The result can be simplified by factoring out a na and by using trig rules
on the sin squared plus cos squared in the denominator. The complex input
Dirichlet Eta sum can now be expressed as the sum-difference of 2 sums with
only real inputs, equation 8.

∞∑
n=1

(−1)n−1

ns
=

∞∑
n=1

(−1)n+1 cos (b lnn)

na
−
∞∑

n=1

(−1)n+1 sin (b lnn)

na
i = 0 (8)

Notice that the left sum is real valued and deals with cosines, and that the
right sum, though still sitting in front of the imaginary number i, is real valued
in magnitude and deals with sines. Since the Dirichlet Eta sum is a sum of
complex numbers, the result is also complex, which is expected. Therefore, in
order for the original complex Eta sum to equal zero, and thus have a root, both
the real and complex parts of its total must be zero. That is, equal to 0 + 0i.

After factoring out and dividing away a constant -1 from equation 8, the
results are the 2 sums, equations 9 and 10, labeled A and B as follows.

A =

∞∑
n=1

(−1)n cos (b lnn)

na
(9)

A is referred to as the real portion of the complex Dirichlet Eta sum.

B =

∞∑
n=1

(−1)n sin (b lnn)

na
(10)

B is referred to as the imaginary portion of the complex Dirichlet Eta sum,
though its magnitude is real valued.

Now, the task becomes to determine when these 2 new sums are both zero
at the same time. To do that, they will need to be broken down, and the first
stage for such, is separating each of them into their even and odd parts.
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3 Separating the Even and Odd Portions of Both
the Real and Imaginary Sums

Instead of using one sum for each of A and B, as they are stated thus far, and
instead of letting their indices n run over the full set of integers, use 2 sums for
each, separating the even and odd inputs of the indices. Do this by separating
n into 2n, for the evens, and into 2n-1, for the odds. This is shown for both A
and B in equations 11 and 12.

A =

∞∑
n=1

(−1)n cos (b lnn)

na
=

∞∑
n=1

(−1)2n−1 cos (b ln (2n− 1))

(2n− 1)a
+

∞∑
n=1

(−1)2n cos (b ln 2n)

(2n)
a = 0 (11)

B =

∞∑
n=1

(−1)n sin (b lnn)

na
=

∞∑
n=1

(−1)2n−1 sin (b ln (2n− 1))

(2n− 1)a
+

∞∑
n=1

(−1)2n sin (b ln 2n)

(2n)
a = 0 (12)

The behavior of -1 raised to even or odd powers allows the resulting sums of
equations 11 and 12 to be simplified, obtaining 13 and 14 respectively.

A =

∞∑
n=1

cos (b ln 2n)

(2n)
a −

∞∑
n=1

cos (b ln (2n− 1))

(2n− 1)a
= 0 (13)

B =

∞∑
n=1

sin (b ln 2n)

(2n)
a −

∞∑
n=1

sin (b ln (2n− 1))

(2n− 1)a
= 0 (14)

The sums involving 2n are known as the even portions, and the sums with
2n-1, the odd portions. Notice that in both cases it is the even sums minus
the odd sums. Specifically labeling the 4 sums from equations 13 and 14 gives
equations 15 through 18.

Aeven = Ae =

∞∑
n=1

cos (b ln 2n)

(2n)
a (15)

Ae is referred to as the real even portion.

Aodd = Ao =

∞∑
n=1

cos (b ln (2n− 1))

(2n− 1)a
(16)

Ao is referred to as the real odd portion.
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Beven = Be =

∞∑
n=1

sin (b ln 2n)

(2n)
a (17)

Be is referred to as the imaginary even portion.

Bodd = Bo =

∞∑
n=1

sin (b ln (2n− 1))

(2n− 1)a
(18)

Bo is referred to as the imaginary odd portion.

This isn’t yet broken down enough, and in order to determine when these
new sum-differences in the real and imaginary sums are equal to zero, they
must be deconstructed further. However, the odd sums do not lend themselves
to being broken down easily, if possibly at all. Luckily, the even sums do, and
later, functional relationships for the odd sums will be found so that they can
be handled. In the mean time, the next main phase of the explanation requires
separating the Sine and Cosine portions of the even parts.

4 Separating the Sin and Cos Portions of the
Real Even and Imaginary Even Sums

To separate the even sums, begin with the ln(2n) using log rules, equation 19,
and follow up with the trigonometry formulas for addition within Cosines and
Sines, equations 20 and 21. The initial results are then shown in 22 and 23.

ln 2n = ln 2 + lnn (19)

cos(x+ y) = cosx cos y − sinx sin y (20)

sin(x+ y) = sinx cos y + cosx sin y (21)

Ae =
∞∑

n=1

cos(b ln 2) cos(b lnn)− sin(b ln 2) sin(b lnn)

2ana
(22)

Be =

∞∑
n=1

sin(b ln 2) cos(b lnn) + cos(b ln 2) sin(b lnn)

2ana
(23)

In this case, 22 and 23 have addition and subtraction over a common denom-
inator, so they can each be separated into yet another 2 sums. Those resulting
sums take the form of products of functions of a and b independent of the in-
dex, multiplied by a portion of the sum dependent on the index, and therefore,
those independent portions that include a and b can be pulled out in front as
constants. This is shown as equations 24 and 25.
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Ae =

(
cos(b ln 2)

2a
∗
∞∑

n=1

cos(b lnn)

na

)
−

(
sin(b ln 2)

2a
∗
∞∑

n=1

sin(b lnn)

na

)
(24)

Be =

(
sin(b ln 2)

2a
∗
∞∑

n=1

cos(b lnn)

na

)
+

(
cos(b ln 2)

2a
∗
∞∑

n=1

sin(b lnn)

na

)
(25)

Next, respectively label Kc and Ks for the new cosine based and sine based
constants in equations 24 and 25, shown as 26 and 27.

Kc =
cos(b ln 2)

2a
(26)

Ks =
sin(b ln 2)

2a
(27)

Also, label the 2 different sums amongst 24 and 25, noting that the K con-
stants are the same for the real even, Ae, and imaginary even, Be, sums, only
in different positions. These are equations 28 and 29.

C =

∞∑
n=1

cos(b lnn)

na
(28)

This is known as the basic cosine sum.

S =

∞∑
n=1

sin(b lnn)

na
(29)

This is known as the basic sine sum.

Now finally, between the 10 terms A, B, Ae, Ao, Be, Bo, Kc, Ks, C, and
S, there is enough information to determine when the original infinite complex
valued Dirichlet Eta sum is equal to zero, and to answer why the real variable a
must be 1/2. In order to do that, the next step is to understand what maintains
an output of 0 throughout splitting the original Dirichlet Eta sum into 8 other
sums and 2 constants.

5 The Recursive Functional Relationships Be-
tween the Sums

For the remaining sections, the indices and upper bounds of the sums do not
change, and have mostly been omitted for brevity and visual clarity, as they do
not affect the relationships or outcomes.

The self referential relationship amongst the sums is generally stated in words
as follows. The real and imaginary sums are broken into even and odd sums,

6



then, the even sums are broken into sine and cosine sums. However, those new
sine and cosine sums end up being composed in terms of the earlier even and
odd parent sums, and thus include a loop.

Stating the relation from equation 13, using 15 and 16, gives equation 30,
which is the even and odd split of the real portion.

A = Ae −Ao (30)

Likewise, stating the relation from 14, using 17 and 18, gives 31, which is
the even and odd split of the imaginary portion.

B = Be −Bo (31)

With equation 8, it was noted that the sums A, eq.9, and B, eq.10, must
both be 0, and this is stated again with eq.30 and eq.31 as requirements in the
equations in 32.

A = Ae −Ao = 0 AND B = Be −Bo = 0 (32)

This leads to the requirement in 33.

Ae = Ao AND Be = Bo (33)

Using the labels from equations 26-29, 24 and 25 are written as 34 and 35.

Ae = KcC −KsS (34)

Be = KsC +KcS (35)

Now, review and more closely examine equations 28 and 29. Do the cosine
and sine sums look familiar? They sure look like the real sum A, eq.9, and the
imaginary sum B, eq.10, except for the -1 raised to the power, that is, except
for the alternating part. In fact though, that is exactly what they are! The
alternating real and imaginary sums, eqs.9 and 10, subtract out every other
term, while the sine and cosine sums, eqs. 28 and 29, add all the terms, of an
otherwise identical sum. What are those other terms, which are being subtracted
in the case of the real and imaginary sums, but are being added in the case of
the sine and cosine sums? Equations 13 and 14 show that those terms turn
out to be the odd function sums! That is, the real and imaginary sums are the
difference of their respective even and odd sums, while the cosine and sine sums
are the sum of their respective even and odd sums. This gives equations 36 and
37.

C = Ae +Ao (36)

S = Be +Bo (37)
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Adding 2 copies of the corresponding odd function to each side of the equa-
tions in 32, using A and B in terms of the even and odd sums, and then substi-
tuting with equations 36 and 37 respectively, gives the 2 sets of equations shown
in 38. This is the same as using eq.33 with eqs.36 and 37.

C = Ae +Ao = 2Ao AND S = Be +Bo = 2Bo (38)

Eq.33 requires Ae = Ao and Be = Bo, so that it can also be written as eq.39.

C = 2Ae = 2Ao AND S = 2Be = 2Bo (39)

From this information, equation 33 can be split into 2 cases. At a minimum,
eq.33 shows that corresponding even and odd sums must have the same value.
Let case one be a shared value of 0, and let case 2 be sharing any value other
than 0. The next section shows that it must be case one, and that all the sums
must individually be 0.

6 Showing that the Sums Must Individually be
Zero

Using eq.39, and substituting into 34 and 35, gives 40 and 41.

C = 2(KcC −KsS) (40)

S = 2(KsC +KcS) (41)

Since the K values are constants to the sums, this can now be treated as a
system of 2 equations and 2 unknowns. Solving for S in eq.40 gives the following.

S =

(
Kc − 1

2

)
Ks

C (42)

Substituting 42 into 41 to solve the system, and simplifying, leaves 43.(
K2

c −Kc +K2
s +

1

4

)
C = 0 (43)

This shows that either C is 0, the portion in the parentheses is 0, or both
parts are 0. In either case where C is 0, it means from eq.39 and eq.42 that
case 1 must be true, and therefore that all sums must be 0. Using the quadratic
equation on the portion within the parentheses for Kc gives eq.44.

Kc =
1±

√
−4K2

s

2
(44)

From eq.27 it is known that Ks is real valued, and therefore its square will
be positive. Similarly, from eq.26, Kc is real valued. Because of the -4 inside the
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square root, the only possible solution is for Ks = 0, which then makes Kc =
1/2. This creates a contradiction as follows.

If Ks = 0, eq.27 requires that b ln 2 = nπ, a multiple of pi, for some integer
n. However, if b ln 2 = nπ, then the numerator of eq.26 is plus or minus 1, and
from eq.44, you get the following.

Kc =
±1

2a
=

1

2
(45)

This would then require that a is either complex valued or 1, which places
it outside the domain of a, and therefore that the solutions within the domain
of a, of which we know there are at least solutions when a=1/2, occur in case
one when C is equal to 0. Therefore, all sums must individually equal 0, stated
as 46.

A = B = Ae = Ao = Be = Bo = C = S = 0 (46)

Now that it’s been determined that all 8 sums must be 0 in order to make
the Dirichlet Eta 0, this allows systems of equations to be formed in terms of
the sums. Those systems allow the conditions on Kc and Ks to be examined
such that they can be solved for the requirements on a.

7 The Conditions Generated by the Systems of
Sums

Using the fact that the sums are each 0, along with the fact that if 2 values
are both 0 then the sum and difference of those 2 values are also both 0, 2 new
systems of equations are created to examine what each says about Kc and Ks.
Before doing this, first note that with sums equal to 0, eqs.34 and 35 suggest
that the values of Kc and Ks are independent from the sums, and that they
can be any value. That is, you can plug in whatever you like for the constants,
and the equations will still hold true due to the 0 values for Ae, Be, C, and
S. This is the same for eq.43. It will be shown for both systems, as it was in
eq.43, that there are no solutions for a within its domain, and that individually,
either system would seem to indicate that Kc and Ks are independent of the
sums and free to take any value. In fact they are, and it is the opposite that is
true, rather that the sums are somehow dependent on those constants as seen
in eqs.34 and 35. This raises the somewhat awkward question that even though
it is known that the sums must be 0, and that the constants are independent of
the sums, what restriction on the values of the constants insure that the even
sums still equal 0, specifically and independently of whatever values the C and
S functions take, all the while even though it is already known that C and S
will take values of 0?

Another way to summarize or understand this question is to say that even
though we have determined that the sums must equal 0, the constants ”don’t
know that,” and they must still take some value such as is appropriate to make
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the sums within the recursive relationships all settle to 0 at the same time. Yet
a third way to view the question is to recognize that the constants are actually
the 2nd terms of the infinite C and S sums, and to wonder what values the
second terms must take in order to be the negative of the sums of all other
terms, such that the overall sums then equal 0.

As it was stated above, neither system can do this alone. However, between
the 2 systems, exists a relation independent of the sums that places requirements
on the constants. This is exactly what is needed. Using the sum and difference
of the Real and Imaginary sums, along with 46 and 32, gives the following
requirement.

A+B = Ae−Ao +Be−Bo = 0 AND A−B = Ae−Ao−Be +Bo = 0 (47)

Substitute in using 34 and 35 for the even sums, and eq.39 for the corre-
sponding odd sums, to get 48 and 49.

KcC −KsS −
1

2
C +KsC +KcS −

1

2
S = 0 (48)

KcC −KsS −
1

2
C −KsC −KcS +

1

2
S = 0 (49)

Solving for C in 48 gives 50.

C =
(−Kc +Ks + 1

2 )

(Kc +Ks − 1
2 )

S (50)

Plugging 50 into 49, and then simplifying, gives 51.

(4K2
c − 4Kc + 4K2

s + 1)S = 0 (51)

Put that equation aside for the moment, and then repeat the process using
the sum and difference of odd sums. Using eq.38 you get the following.

Ao +Bo = C−Ae +S−Be = 0 AND Ao−Bo = C−Ae−S+Be = 0 (52)

Substitute in 52, again using 34 and 35 for the even sums.

C −KcC +KsS + S −KsC −KcS = 0 (53)

C −KcC +KsS − S +KsC +KcS = 0 (54)

Solving for C in 53 gives 55.

C =
(Kc −Ks − 1)

(−Kc −Ks + 1)
S (55)

Plugging 55 into 54, and then simplifying, gives 56.
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(2K2
c − 4Kc + 2K2

s + 2)S = 0 (56)

Now examine eqs.51 and 56, and notice they both take the form of eq.43
except in terms of S instead of C. In fact, the quadratic in 51 is a scaled version
of 43, has equivalent roots to the one in 43, and it means that the condition
generated by using the sum and difference of the real and imaginary sums is the
same as stating that the even sums are 0, as was the case in eq.43. From that, it
is already known that there are no solutions within the domain, or specifically,
that Kc=1/2, Ks=0, and a=1. What about eq.56?

Solving the quadratic in 56, and using the same logic as was employed in
eq.43, gives the only solution of Kc=1, Ks=0, and a=0, which again places a
outside of the original domain. Interestingly, we see a taking the values of the
lower and upper limits just outside the closed domain, 0 and 1, and furthermore,
that the average of those values is of course 1/2.

As the last step, it is now possible to solve the system independently of the
sums, and to do the substitutions back into Kc and Ks, showing the require-
ments on a from the original Dirichlet Eta sum.

8 Solving the Systems Independently of the Sums

At this point, setting eq.51 equal to eq.56 allows the sum to be divided out as an
unknown variable, and establishes a relation between the constants independent
of any sum.

4K2
c − 4Kc + 4K2

s + 1 = 2K2
c − 4Kc + 2K2

s + 2 (57)

Simplifying 57 gives 58.

K2
c +K2

s =
1

2
(58)

Substitute back in for Kc and Ks using eqs. 26 and 27 to get 59.

cos2(b ln 2)

22a
+

sin2(b ln 2)

22a
=

1

2
(59)

Finally, there it is. Simplifying eq.59 using the familiar trig. identity leaves
eq.60, leading to 2a = 1, and therefore eq.61, a=1/2.

1

22a
=

1

2
(60)

a =
1

2
(61)

This shows that there is indeed only one possible choice for a that allows the
recursive system of sums and coefficients to balance independently of the sums,
such that all 8 sums, and thus the original Dirichlet Eta function, are equal to
0.
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Therefore, a must = 1/2, and Riemann’s suspicions were correct!

Q.E.D.
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