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Abstract

Adversarial attacking is an emerging worrying angle in the field of AI, capable of
fooling even the most efficiently trained models to produce results as and when re-
quired. Inversely, the same design powering adversarial attacks can be employed
for efficient white-hat modeling of deep neural networks. Recently introduced
GANs (Generative Adversarial Networks) serve precisely this purpose by gener-
ating forged data. Consequently, authentic data identification is a crucial problem
to be done away with, considering increased adversarial attacks. This paper pro-
poses an approach using DCGANs (Deep Convolutional Generative Adversarial
Networks) to both - generate and distinguish artificially produced fake captchas.
The generator model produces a significant number of unseen images, and the dis-
criminatory model classifies them as fake (0) or genuine (1). Interestingly enough,
both the models can be configured to learn from each other and become better as
they train along.
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1 Introduction

CAPTCHA, which stabds for Completely Automated Public Turing test to tell Computers and
Humans Apart, was an innovation to avoid and obstruct the attempts to automate the digital human-
specific authentication operations. In 1999, the students of CMU and MIT deployed automated
scripts to ram the online voting ballots with more than a thousand votes [35].

Both the schools had 21, 000+ votes, whereas the other schools ended up with a meager score
of fewer than 1000 votes. This incident was a significant factor in the development of captchas.
However, captchas were developed in order to stop earlier generations of what may now be termed
Artificial Intelligence, or more so Early Automated Intelligence.

Presently, using advanced machine learning designs, any level of automation may be deemed within
sight to engineers. These tasks are as straightforward as cat vs. dog prediction or as complex as
painting an image provided a text/voice based description.

A recently significant talk of the town has been GANs (Generative Adversarial Networks) [1]. His
paper proposed a class of specialized neural networks capable of producing fake data which stands
astonishingly close to real data. Contained within it are two interconnected networks, a discrimina-
tory network and a generatory network. The discriminator is essentially a binary classifier i.e., the
output is delivered as a boolean value (True or False) and distinguishes between artificial and real
data. The generator initiates itself with random noise and then attempts to reform it during training
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into look-alike-original data, such that the discriminator classifies it as real, or as close to real as
possible. Considering both the networks are trained together, they aid each other while training.

A DCGAN (Deep Convolutional Generative Adversarial Network) integrates a deep convolutional
network in both the networks. Hence, DCGANs are specialized GANs for improved image process-
ing. These networks, with some improvements in the architecture, manage to replicate the images
efficiently, and also produce a new combination of unseen images with superior results [3]. The
new data is employed to assist the training of secondary networks, like human face detection algo-
rithms where lack of data is a notable concern. We also share novel generated images, created by
permutation of the existing data.

However, this also introduces an issue of creating counterfeit data, capable of deceiving neural
networks and are called adversarial attacks [10] on neural nets. Therefore, developing a robust
discriminator which can differentiate between authentic and fraudulent data would assist in avoiding
such attacks by adding a supplementary layer of defense.

2 Literature Review

With the ongoing surge in the complexity of neural networks, online captchas are turning effortless
to be cracked with automated scripts powered with deep neural nets. Thereby, the pitfall of security
remains unfixed and orthodox captcha generation methods are unsubstantial and hence obsolete.
This parchment proposes a new technique to bridge the existing limitations to certain extent by
utilizing DCGANs.

This paper uses GANs, proposed initially in [1]. It describes the use of two interconnected networks
which engage in a min-max activity. As aforementioned, the discriminator network endeavors to
maximize the error-free classification of original and generated data. Whereas the generator network
tries to diminish the loss of the produced output from impulsive noise. Deep generative networks’
impacts were inconsiderable because of its inability to use all of its benefits. The paper resolves this
issue by combining a discriminator and generator.

Many variations of GANs have been adapted since then, and [2] the paper presents some pragmatic
instances of CGANs (Conditional GANs). This adaptation offers both the networks to accept input
conditionally. It helps in more accurate and objective defined outputs. A new attribute y is added
to the inputs, and it helps in mapping of the dataset to the significant distinct classes. Captcha’s
dataset also constitutes multiple classes; each different captcha is a new class. Since our goal was to
generate new captchas using the existing ones, we have not implemented the CGANs.

This [3] paper explains the unsupervised variant of GANs. It foregrounds how unsupervised learning
was unchartered with CNNs (Convolutional Neural Networks) and its promising advantages. Hence,
it proposes the architecture of DCGANs for an effectual blend of unsupervised learning and CNNs.
The networks can be trained with unlabeled data and learned feature representations could be reused
at a significant number of places. DCGANs tame the constraints of GANs, thereby finding a notable
role in captcha generation.

The obstacle in scaling are a result of limited hardware, and consequently hinders the ability to train
on higher resolution images directly. Therefore, the images have to be down-scaled before training.
SRGANs [4] (GANs for super-resolution images) is a novel technique to solve the issue of low
resolution in GANs; it offers up to 4x times scalable images. Referenced document proposes the use
of perceptual loss for producing high-resolution images.

[37] propose another successful attempt using Conditional GANs to produce high-quality images.
They generate 2048 X 1024 realistic images employing new adversarial loss and new multi-scale
architectures. The paper also explains the extension of their work to incorporate two additional
features. First, object manipulation, which allows addition/subtraction of new objects and changing
the type of existing ones. Second, they install feature of one-to-many mapping, allowing different
results from the single input, helping users to edit the images interactively.
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3 Technical Review

Elaboration and background of technical terminologies used excessively in this parchment to aid the
reader’s comprehension of the further work.

3.1 Adversarial Attacks and Learning

The deep learning models are spectacularly good in the classification of audio and visual. However,
as explained in the paper of [10], these networks are highly vulnerable to adversarial examples.
They explain two significant flaws for the same. First, despite being individual or in randomized
linear combinations, high-level units are indistinguishable. It implies that space contains the most
semantic knowledge in the upper layers of the network rather than the individual units. Second,
they explain the discontinuous input-to-output mapping of the network, which causes the model to
misclassify the picture with minimal perturbation by maximizing the network’s error. An optically
similar image of a panda with noise is misclassified as Gibbon with 99% accuracy.

The paper [36] asserts linearity of networks as a primary vulnerability to adversarial examples. It
incorporates adversarial training applying the fast gradient sign method based function as an efficient
regularizer. After increasing the number of units to 1600 layers, they reduced the test set error from
1.14% to 0.782%. Moreover, the model depicted resistance to adversarial examples.

3.2 Generative Adversarial Networks

Generative models accomplish unsupervised learning tasks with core objective to comprehend the
unlabelled distribution of data [5]. Such networks try to regenerate the probability distribution and
are implemented as graphs [6], where the nodes represent a random variable, and the arcs represent
relations between these nodes. Their eye-catching success [7, 8] has been attributed to Backpropaga-
tion and dropout algorithms using piece-wise linear units [9]. Taking into account their inefficiency
due to difficulty in the approximation of complex probability distribution and inability to get benefits
of piece-wise linear units [1], created grounds for introduction of adversarial networks. In GANs,
the generative model has to learn along with discriminator model.

We can interpret it as an analogy of a fraudulent painter who is trying to sell his work to a critic.
The critic can judge the difference between real and fake work and hence labels the output as 0 or
1. With each iteration, the painter tries to update his painting in order to deceive the critic. This
game continues and shoulders both of them to improve until the critic is no longer able to declare
the difference between the authentic and forged painting.

The Generator learns distribution pg over data x. The noise variable is defined by z, and the mapping
is defined as G(z; θg), where G is a generator and a differentiable function with parameters θg .
Discriminator, another differentiable function is defined by D(x; θd) that outputs a single scalar.
D(x) is the probability over real data x. GANs tries to maximize D’s probability of assigning
correct labels to x and pg . Parallelly G tries to minimize the loss over D. These networks hence
enages in the min-max game with value function V (G,D) [1]:

minGmaxDV (D,G) = Ex∼pdata(x)
[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

3.3 Deep Convolutional GANs

Classical methods, like K-means, can be used for hierarchical clustering of image patches in [11].
DBN (Deep belief networks) were also proved to perform well in learning hierarchical represen-
tations [13]. Another popular method was to use the autoencoders, for stacked convolution layers
trained to denoise the input like in [12]; it bridged the performance gap with the DBN.

However, there was a gap for CNNs [3], they were unexplored for unsupervised learning. There
comes a new set of CNNs called DCGANs, which proved to be stable for training as compared to
GANs, the trained discriminator could contend against other unsupervised learning algorithms, it
could visualize filters, and smooth manipulation of the generated images’ semantic qualities.

Generative parametric models are widely explored. Original GANs [1] generated images that suf-
fered from noise and were unintelligible. Other approaches included a recurrent network approach
like in [14] called DRAW (Deep Recurrent Attentive Writer). However, to integrate GANs and
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CNNs several earlier made attempts were unsuccessful. This lead to the development of LAPGAN
(Laplacian Generative Adversarial Networks) [15] and later DCGANs [3].

The core changes adopted in DCGANs were [3]:

• Replaced all spatial pooling functions (like max-pooling) with strided convolutions for both
the generator and the discriminator like the All Convolution Network in [16].

• Eliminated all of the fully connected layers from the architecture. A strong example of this
is global average pooling like in [17]. A middle ground between stability and inability to
converge was obtained by directly connecting the output of the generator to the discrimi-
nator.

• Batch Normalization [18] of each layer helped in stabilizing the learning and helped in
avoiding the mode collapse, a renowned problem in GANs. The instability was circum-
vented by not using batchnorm to the generator’s and the discriminator’s outputs and inputs,
respectively.

• The ReLU [19] activation for generator (the output layer used the Tanh activation) and
the Leaky ReLU activation for all the layers of the discriminator. It allowed quick color
saturation of the image [3].

4 Architectural Design

4.1 Adversarial Network

Figure 1: Adversarial model

The adversarial network is constructed by connecting the generator model and the discriminator
model, as depicted in figure 1. Note, that the discriminator is compiled separately in order to update
the weights individually, and the generator’s weights are updated using the results of the discrimi-
nator.

Similar to the discriminator network, for compilation the RMSProp optimizer [26] is employed with
the (learning rate = 1e-4) and the (decay = 3e-8) [25]. The binary crossentropy is used for the loss
and the evaluation metrics is accuracy [27].

4.2 Discriminator

Figure 2 portrays the architecture of the discriminator, the input is the captcha image (explained in
section ahead), and the output is between 0 and 1. It is a conventional deep CNN architecture. The
input is an image with dimensions 30 * 150.

Each layer (except for output) has a LeakyReLU activation with alpha = 0.2. Initial layer has depth
= 64, and it doubles for every layer. Each layer also has a dropout = 0.4 [22], to prevent overfitting
in the network. Typical values for dropout rates range from 0.5 - 0.8. Padding is padding = same for
every convolution layer. The final layer is a flatten layer with dimensions from previous convolution
layer 4 * 19 * 512 = 38912.
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Figure 2: Discriminator model

Finally, the last component is a dense layer with one node, and the Sigmoid activation [23] function
applied to it, and ensures the output lies between 0 - 1. For compiling, initially, the Adam optimizer
[24] (with learning rate = 2e-4 and decay = 6e - 8 [25]) was used similar to [3], but after experimen-
tations and referring to [20] the RMSprop optimizer(with learning rate = 2e-4 and decay = 6e - 8
[25]) was tried and it portrayed better stability and learning.

The RMSProp (Root Mean Square Propagation) adapts the learning rate for each of the parameters.
It divides the learning rate by calculated average of the recent rates [26].

The binary crossentropy loss is used for the back-propagation and accuracy metrics for the evalua-
tion.

Figure 3 gives the architectural details. It is generated using Keras’ summary() method, explained
in [21].

4.3 Generator

Figure 4 depicts the architecture of the generator model. It is a DDCN (Deep De-Convolution
Network) [28], and it is deployed to perform semantic segmentation on CNN.

We input random noise in the generator, and 30 * 150 dimensioned image is the output, which is in
accordance to the actual data sent to the discriminator network as input.

Similar to the discriminator network, each layer has dropout = 0.4 [22] and activation function as
ReLU [19](except for output layer). Also, each layer has Batch Normalization with momentum =
0.9 [18].

We have chosen initial depth as 64 * 4 = 256, and it will be halved with each layer. The first layer
(fig 4) is a dense layer of dimension 8 * 38 * 64 * 4 = 77824, the 8 * 38 is necessary for upscaling
the final output image to 30 * 150. After applying batch norm, this layer is reshaped into a 3-D
vector of 8 * 38 * 256, and a dropout is applied. In the next layer, the image is upscaled (8 * 38)
-¿ (16 * 76), then a deconvolution layer is applied, which makes the final dimensions as 16 * 76 *
128. It is followed by the batch norm and the ReLU activation. The same is repeated until the last
deconvolution layer with dimensions of 32 * 152 * 16.

The final layer is only a deconvolution layer, which reduces the depth parameter to 1, and converts
it into a single 2-D vector of dimensions 32 * 152. Before activation, cropping is applied to convert
image into 30 * 150. At last, the Tanh activation function, necessary for the image’s pixels to lie in
the range of [-1, 1].

Contrary to the discriminator model, the generator model is not compiled separately, it is incorpo-
rated into the adversarial network, along with the discriminator, explained in the section ahead.
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Figure 3: Discriminator Architectural Details

Figure 4: Generator model

5 Data and Pre-procesing

The data is 3,600 pictures of 30 different captchas. We scrapped it from [36]. All the images
preprocessing functions are performed using the OpenCV library. Figure 5 shows an example of
raw and processed data. Here is the sequence of steps:

1. The images are accessed in grayscale format.
2. The Binary Threshold is applied to the images [30]; it set a predefined value if the pixel is

higher than a threshold.
3. The images are then blurred (to get rid of noise) using MedianBlur [31].
4. Finally, the images are normalized from (0 ,255) to (-1 , 1) for the Tanh activation function.
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(a) Raw Captcha (b) Processed Captcha

Figure 5: Data: Before and After preprocessing

6 Training and Evaluation

6.1 Algorithm

iter = 0, epochs = 10000, batch size = 256;
while iter ≤ epochs do

fake Image← generator(noise);
data← concatenate(real Image, fake Image);
output[real Image]← 1;
output[fake Image]← 0;
discriminator.train on batch(x, y);
output[fake Image]← 1;
adversarial.train on batch(noise, y);
print epoch, loss, accuracy;
iter ← iter + 1

end

GANs are somewhat troublesome to train, due to their instability, as explained in [1, 3]. We trained
the model for 10000 epochs with a batch size of 256. Algorithm 1 explains all the steps performed
while training.

The dataset is loaded with real images (after preprocessing), and a set of images is produced using
the generator. Then initially, the real images are alloted 1, and the generated images are set to 0 for
the training of the discriminator.

For, the adversarial network’s training, the output is set to 1 for the generated images. Note that, we
use the train on batch method for training of both the networks [32].

6.2 Results

As explained in the aforemintioned section, we trained the model for a little more than 10000 epochs.
Table 1 shows the average losses and the accuracies for both the adversarial and the discriminator
models. Table 2 shows the actual raw and the processed data compared with the generated data.
Also, table 3 displays some unseen captchas generated. Figure 6 plots the loss versus accuracy
graph for both the discriminator and the adversarial network. Note the instability in the training.
The centerline plots the mean with a window of 1000 epochs to represent the trend in the training.

Average Loss Average Accuracy
Discriminator 0.2314 91.977%
Adversarial 8.3181 0.2542%

Table 1: Mean Metrics for both the models

The average accuracy for the discriminator is 91.977%, and for the adversarial network is
0.2542%. We have not trained the model to the ideal discriminator loss of 0.5, because we in-
tend to create a robust discriminator and at the same time generate some unseen captchas, which
were evident at this number of epochs, and therefore we did not over-train it.

Although, in experimentations, the model was trained up to 15000 epochs, which lowered the loss
and reduced the number of anew generated captchas.

It proves that the GAN’s permute the data like a jig-saw puzzle, moreover, newly generated images
are just a failure of fixing the right piece in the right puzzle.
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Figure 6: Loss Vs Epoch Graph for Discriminator and Adversarial Newtork

Raw Processed Generated

Table 2: Actual and Generated data

7 Limitations

Drawbacks observed in this research stand as followed:

1. Mode collapse: Defined as the tendency of the generator to create the same output to de-
ceive the discriminator. It tends to depend upon 3 - 4 classes out of the whole dataset to
diminish loss as early as possible. During training, the generator assumes a single fixed
point to be the global optimum and thus producing the same output regardless of the vari-
ation in noise. Mode collapse is revisited in various ways [3, 37], and occasionally occurs,
in most of the cases.

2. Variety in data: Due to previous two reasons our model is based on only 30 different
images. With increased variety the generator gets stick into local minima and is unable to
train further.

8 Conclusion and Future Works

One of the most interesting applications of the this work can be for enhanced training of facial
recognition technologies. The discriminatory model can be re-configured to detect and prevent
adversarial attacks on the same face recognition technology. Our team is working to cure the
aforementioned limitations [7] of the work with interesting approaches involving the WGANs
(Wasserstein GAN) [33] which applies a novel loss function along with certain architectural
changes. Another interesting application this research work is serving as the basis for is detection
of counterfiet currency and subsequent training of such detection models for banking systems
worldwide.
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