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Abstract

This tutorial parlays two determining properties of positive-integer power functions of a positive real
variable into closed formulas for the real power functions of a positive real variable. These two determining
properties are that any positive-integer power of unity equals unity, and the linear first-order differential
equation that a positive-integer power function of a real positive variable satisfies, which is implicit in
its derivative. These two determining properties of positive-integer power functions of a positive real
variable are extended to arbitrary real values of the positive-integer power. The extended linear first-
order differential equations and initial conditions are then used to generate the Taylor expansions of those
real power functions of a positive real variable around the zero value of the real power; this can be carried
out in at least two different ways. Those Taylor expansions converge for every real value of the power and
every positive real value of the variable, and are readily reexpressed entirely in terms of the exponential
function and its inverse; one thus has closed formulas for all the real power functions of a positive real
variable. Logarithms describe arbitrary positive numbers as real powers of a given positive number; they
can expressed entirely in terms of the exponential function’s inverse. The value of the particular positive
constant whose powers yield the exponential function itself is worked out.

Extending two determining properties of positive-integer powers to real powers

A positive-integer power function bj of a positive real variable b is usually implicitly presented as,

bj
def
=

j times︷ ︸︸ ︷
b× b× · · · × b.

Alternatively , however, bj is completely determined by two properties: (a) bj = 1 when b = 1, i.e.,

(b = 1)j = 1,

and (b) the linear first-order differential equation implied by the derivative dbj/db = jbj−1 of bj , namely,

dbj/db = (j/b)bj .

We now extend these two determining properties of bj to j = x, where x is any real number ,

(b = 1)x = 1, (1a)

and,
dbx/db = (x/b)bx. (1b)

Eq. (1b) is a set of linear first-order differential equations for functions bx of the positive real variable b and
also of the real power x. Eq. (1a) specifies the initial conditions for all of the bx at b = 1. The Eq. (1b)
differential equations are undefined at b = 0, but standard theorems assure unique well-defined real solutions
for all of the bx when b is positive, since their initial conditions are specified at b = 1, which is positive.

The product of any two real power functions bx and by that satisfy Eqs. (1b) and (1a) is itself the real
power function bx+y that satisfies Eqs. (1b) and (1a), i.e.,

bxby = bx+y. (2a)

Eq. (2a) is true because Eq. (1b) implies that,

d(bxby)/db = ((x/b)bx)by + bx((y/b)by) = ((x+ y)/b)(bxby), (2b)

and Eq. (1a) implies that,
(bxby)b=1 = (1× 1) = 1. (2c)
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The Eq. (2a) relation among the solutions described by Eqs. (1b) and (1a) enables, when b is positive, Taylor
expansion around x = 0 of bx; to make such an expansion of course requires the (dkbx/dxk)x=0 functions of
b for k = 0, 1, 2, 3, . . . . Regarding k = 0, Eq. (2a) implies that bx=0 satisfies,

bx=0 by = b0+y = by for all by, and therefore bx=0 = 1. (3a)

Eq. (2a) furthermore implies the following factorization of the derivative dbx/dx,

dbx/dx = limδx→0

((
bx+δx − bx

)
/δx
)

= limδx→0

((
bδx − 1

)
/δx
)
bx. (3b)

We evaluate limδx→0((bδx − 1)/δx), which is a function of b, via working out its derivative with respect to b
and also obtaining its value at b = 1. Since from Eq. (1a), 1δx = 1 for all values of δx, we see that,[

limδx→0

((
bδx − 1

)
/δx
)]
b=1

= limδx→0

((
1δx − 1

)
/δx
)

= 0. (3c)

We work out the derivative of limδx→0((bδx − 1)/δx) with respect to b by interchanging differentiation with
respect to b with the δx→ 0 limit, which permits first applying Eq. (1b), followed by applying Eq. (3a),

d
(
limδx→0

((
bδx − 1

)
/δx
))
/db = limδx→0

((
(δx/b)bδx

)
/δx
)

= limδx→0

(
bδx/b

)
=
(
bδx=0/b

)
= (1/b). (3d)

Since from Eqs. (3d) and (3c), d(limδx→0((bδx − 1)/δx))/db = (1/b) and [limδx→0((bδx − 1)/δx)]b=1 = 0,

limδx→0

((
bδx − 1

)
/δx
)

=
∫ b
1
db′/b′, (3e)

which is well-defined when b is positive and has the standard denotation ln b. Eqs. (3e) and (3b) yield,

dbx/dx =
(∫ b

1
db′/b′

)
bx = (ln b)bx. (3f)

Using Eq. (3f) to repeatedly differentiate bx with respect to x produces,

dkbx/dxk =
(∫ b

1
db′/b′

)k
bx = (ln b)kbx, k = 0, 1, 2, 3, . . . , (3g)

and since bx=0 = 1, (
dkbx/dxk

)
x=0

=
(∫ b

1
db′/b′

)k
= (ln b)k, k = 0, 1, 2, 3, . . . , (3h)

which implies that the Taylor expansion of bx around x = 0 is,

bx =
∑∞
k=0

(
x
∫ b
1
db′/b′

)k
/k! =

∑∞
k=0(x ln b)k/k!, (3i)

a sum which, when b is positive, converges for all of the real values of x. At b = 1,
∫ b
1
db′/b′ vanishes, so

Eq. (3i) implies that,
1x = 1, (3j)

which accords with Eq. (1a). Moreover, differentiating Eq. (3i) with respect to b yields,

dbx/db = (x/b)
∑∞
k=1(x

∫ b
1
db′/b′)k−1/(k − 1)! = (x/b)

∑∞
l=0(x

∫ b
1
db′/b′)l/l! = (x/b)bx, (3k)

which accords with Eq. (1b). Thus not only is Eq. (3i) a sum which, when b is positive, converges for all of
the real values of x; it is as well, when b is positive, the unique well-defined real solution of the differential
equation set given by Eqs. (1b) and (1a). So Eq. (3i) by itself achieves the goal of extending the positive-
integer powers j of a positive real variable b to the real powers x of that positive real variable b.

That said, it is nevertheless of interest to understand in explicit detail how the infinite sum in Eq. (3i)

meshes with the integral
∫ b
1
db′/b′ = ln b that occurs in each of its terms to accomplish that goal .

Relating the power function’s infinite sum to the integral in each of its terms

The standard denotation for the Eq. (3i) infinite sum’s function structure is the exponential function,

exp(u)
def
=
∑∞
k=0 u

k/k!, (4a)

whose Eq. (4a) defining series converges for all real u. We have from Eq. (3i) that,

bx = exp
(
x
∫ b
1
db′/b′

)
= exp(x ln b) when b is positive. (4b)
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From Eq. (4a) we note that,
exp(0) = 1, (5a)

and,
d exp(u)/du =

∑∞
k=1 u

k−1/(k − 1)! =
∑∞
l=0 u

l/l! = exp(u), (5b)

so the derivative of exp(u) is equal to itself . Eqs. (5a) and (5b) completely determine exp(u) since they imply
that dk exp(u)/duk|u=0 = 1, k = 0, 1, 2, 3, . . ., which immediately yields Eq. (4a) as the Taylor expansion of
exp(u). Eqs. (5a) and (5b) also imply that exp(u) has the crucial property ,

exp(v1) exp(v2) = exp(v1 + v2), (5c)

because,
(exp(v1u) exp(v2u))u=0 = 1 and also d(exp(v1u) exp(v2u))/du =

(v1 exp(v1u)) exp(v2u) + exp(v1u)(v2 exp(v2u)) = (v1 + v2)(exp(v1u) exp(v2u)),
(5d)

which taken together yield that,

dk(exp(v1u) exp(v2u))/duk|u=0 = (v1 + v2)k, k = 0, 1, 2, 3, . . . , (5e)

so by Taylor expansion,

(exp(v1u) exp(v2u)) =
∑∞
k=0(v1 + v2)kuk/k! = exp((v1 + v2)u) ⇒ exp(v1) exp(v2) = exp(v1 + v2). (5f)

Application of exp(v1) exp(v2) = exp(v1+v2) to the Eq. (4b) representation bx = exp(x ln b) of bx immediately
yields the fundamental power relation bxby = bx+y that is given by Eq. (2a). That relation by itself , albeit
fundamental, doesn’t ensure that b1 = b, a gap which is filled by the ln b function. Since bx = exp(x ln b),
b1 = exp(ln b), so to ensure that b1 = b, the ln function must be the inverse of the exp function.

This obligates the exp function to have an inverse, so exp(u) must be strictly increasing (or strictly
decreasing) at every real value of its argument u. Since the derivative of the exp function is equal to itself ,
exp(u) is strictly increasing at all real values u where it is positive. When u is positive, all of the terms
of the series for exp(u) are positive, which makes exp(u) positive for u > 0, as it also is at u = 0 since
exp(u = 0) = 1. To understand the character of exp(u) at negative values of u, we note that Eq. (5f)
implies that exp(u) exp(−u) = exp(0) = 1. Thus exp(−u) = (1/ exp(u)), so the fact that exp(u) is positive
at positive values of u means that it is positive as well at negative values of u, so it is strictly increasing at
all values of u. Therefore exp(u) indeed has an inverse, but that inverse is only required to be well-defined
for the positive values of its argument . If we denote the inverse of exp(u) as exp−1(w), then exp−1(w) only
needs to be well-defined on the domain w > 0, but of course it must satisfy ,

exp−1(exp(u)) = u, (5g)

which when u = 0 implies that,
exp−1(1) = 0. (5h)

Since d exp(u)/du = exp(u), differentiation with respect to u of both sides of Eq. (5g) yields,[
d
(
exp−1(exp(u))

)/
d(exp(u))

]
exp(u) = 1, (5i)

which, upon denoting exp(u) as w, implies that,

d
(
exp−1(w)

)/
dw = (1/w) when w is positive. (5j)

Eqs. (5j) and (5h) together uniquely determine that when w is positive,

exp−1(w) =
∫ w
1
dw′/w′ = lnw. (5k)

so the ln function in the Eq. (4b) expression for bx is indeed the inverse of the exp function.

Changing the differential equations to integral relations before Taylor expanding

The quite involved direct Taylor expansion of bx around x = 0 that is carried out in Eqs. (3a) through (3i) is
greatly simplified if the set of linear first-order differential equations and initial conditions given by Eqs. (1b)
and (1a) is first converted to a set of integral relations. To do that we divide Eq. (1b) by bx to obtain,
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(1/bx)(dbx/db) = x(1/b), (6a)

and then note that,

d
(
k1 +

∫ bx
1
dw′/w′

)/
db = (1/bx)(dbx/db), where k1 is an arbitrary constant,

and also, d
(
k2 + x

∫ b
1
db′/b′

)/
db = x(1/b), where k2 is an arbitrary constant.

(6b)

Since, as pointed out below Eq. (3e), the standard denotation of
∫ b
1
db′/b′ is ln b, which is well-defined when

b is positive, Eq. (6b) implies that integrating both sides of Eq. (6a) with respect to b yields that,

k1 + ln(bx) = k2 + x ln b. (6c)

The Eq. (1a) initial conditions for bx, namely (b = 1)x = 1, when inserted into Eq. (6c) yield that k1 = k2,
so those initial conditions reduce Eq. (6c) to simply,

ln(bx) = x ln b. (6d)

It may initially seem puzzling that the entity ln(bx) on the left side of Eq. (6d) is well-defined only when bx

is positive. That isn’t actually an issue because, although the domain of ln(w) only encompasses w > 0, the
range of ln(w) turns out to encompass all real numbers. That assertion would be confirmed if the inverse
ln−1(u) of ln(w) was worked out, and ln−1(u) was then shown to be positive for all real numbers u. To
obtain bx from Eq. (6d) we anyway need to work out the inverse ln−1(u) of ln(w) since obviously,

bx = ln−1(x ln b). (6e)

The fact that ln(w) actually has an inverse is verified by noting that d ln(w)/dw = (1/w) > 0 for every w
in the domain of ln(w), which is w > 0. The inverse ln−1(u) of ln(w) of course must satisfy ,

ln−1(ln(w)) = w when w is positive, (6f)

which when w = 1 implies that,
ln−1(0) = 1. (6g)

Differentiating Eq. (6f) with respect to w yields,[
d
(
ln−1(ln(w))

)/
d(ln(w))

]
(1/w) = 1 ⇒ d

(
ln−1(ln(w))

)/
d(ln(w)) = w = ln−1(ln(w)), (6h)

where the last equality in Eq. (6h) is simply Eq. (6f). Denoting ln(w) in Eq. (6h) as u implies that,

d
(

ln−1(u)
)/
du = ln−1(u), (6i)

for all real u which are in the domain of ln−1(u). Eqs. (6g) and (6i) for ln−1(u) exactly correspond to Eqs. (5a)
and (5b) for exp(u), which we have pointed out completely determine exp(u). Eqs. (6g) and (6i) likewise
completely determine ln−1(u) since they imply that dk ln−1(u)/duk|u=0 = 1, k = 0, 1, 2, 3, . . ., which yields
that the Taylor expansion of ln−1(u) around u = 0 is,

ln−1(u) =
∑∞
k=0 u

k/k!, (6j)

which converges for all real u; thus the domain of ln−1(u) encompasses all real u. Eqs. (6j) and (4a) imply,

ln−1(u) = exp(u), (6k)

so the fact that exp(u) is positive for all real u, which is demonstrated in the discussion below Eq. (5f),
implies that ln−1(u) is positive for all real u. This, together with the Eq. (6e) fact that bx = ln−1(x ln b),
removes the possible puzzlement from the implication of Eq. (6d) that bx is necessarily positive. The upshot
of Eqs. (6e), (6j) and (6k) is that,

bx = ln−1(x ln b) =
∑∞
k=0(x ln b)k/k! = exp(x ln b), (6l)
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which together with the fact that ln b =
∫ b
1
db′/b′ reproduces the formulas for bx given by Eqs. (4b) and (3i).

By first converting the set of linear first-order differential equations and initial conditions given by Eqs. (1b)
and (1a) to the Eq. (6d) set of integral relations, which immediately imply Eq. (6e), the quite involved direct
Taylor expansion of bx around x = 0 carried out in Eqs. (3a) through (3i) is replaced by the simple Taylor
expansion of ln−1(u) around u = 0 given by Eq. (6j).

The logarithm is the power description. The exponential as a power function.

The positive power function bx allows an arbitrary positive real number w to be described by the power x
which satisfies bx = w. Since bx = exp(x ln(b)), exp(x ln(b)) = w is solved for that power x, yielding,

x = exp−1(w)/ ln(b) = ln(w)/ ln(b) (since ln is the same as exp−1) when w>0, b>0 & b 6=1.

The function symbol logb(w) is the standard denotation for the power x which satisfies bx = w, i.e.,

logb(w) = ln(w)/ ln(b) when w>0, b>0 & b 6=1; logb(w) satisfies blogb(w) = w. (7)

The particular b for which exp(x) is equal to the power function bx has traditionally been of interest,
as has the particular b for which exp−1(w) = ln(w) is equal to the logarithm logb(w) for positive w. Since
bx = exp(x ln b) and logb(w) = ln(w)/ ln(b) for positive w, the particular b for both cases satisfies ln(b) = 1.
That particular b has the standard denotation e, and since ln(e) = 1, e = exp(1), i.e.,

{ln(e) = 1} ⇒ {exp(x) = ex & ln(w) = loge(w) for positive w} ⇒

{e = exp(1) =
∑∞
k=0 1/k! = (exp(−1))−1 =

(∑∞
k=0(−1)k/k!

)−1
= 2.718281828459045235 . . .}.

(8)
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