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Abstract

This tutorial parlays two simple properties of positive-integer powers of positive numbers into a closed
formula for arbitrary real-valued powers of positive numbers. The two properties are the very familiar
result for the derivative of a positive-integer power of a positive real variable, and the fact that positive-
integer powers of unity equal unity. Extended to real values of the powers of positive numbers, these
two properties comprise a set of first-derivative linear differential equations for functions of a positive
real variable, together with their initial conditions, so it isn’t surprising that a unique solution is in
fact forthcoming via Taylor expansion methods. The additive property of multiplied powers emerges
immediately from the two properties of powers that are initially assumed, and enters prominently into
working out the closed-formula result, which turns out to be a creature of the exponential function and
its inverse. Logarithms are defined in terms of the inverse operation of taking powers in the familiar way,
and the special base whose powers reproduce the exponential function and whose logarithms reproduce
the exponential function’s inverse is pointed out and developed.

Two simple properties that fully describe powers

Positive-integer powers j = 1, 2, 3, . . . of a positive real-number base b, denoted bj and defined as,

bj
def
=

j times︷ ︸︸ ︷
b× b× · · · × b,

have two simple properties whose extension generates all of the real powers: (a) powers of unity equal unity,

1j =

j times︷ ︸︸ ︷
1× 1× · · · × 1 = 1,

and (b) derivatives of such powers with respect to their base b are given by the familiar simple result,

dbj/db = limδb→0

[(
(b+ δb)j − bj

)
/δb
]

= limδb→0

[(
bj +

(
jbj−1

)
δb+O

(
(δb)2

)
− bj

)
/δb
]

= (j/b)bj .

Extended from positive-integer j to any real power x of the positive real base b, these properties are,

1x = 1, (1a)

and,
dbx/db = (x/b)bx, (1b)

which is a set of linear first-derivative differential equations in the independent variable b for real power
bx solutions, together with the initial conditions (b = 1)x = 1 of those solutions. Although the Eq. (1b)
differential equations are pathological at b = 0, standard theorems guarantee well-behaved unique real power
bx solutions in the region b > 0 where their initial conditions have been specified by Eq. (1a).

The solutions bx and by of different equations of the set specified by Eqs. (1b) and (1a) also have a crucial
fundamental relation to the solution bx+y of still another equation of that set, i.e.,

bxby = bx+y. (2a)

Eq. (2a) is true because Eq. (1b) implies that,

d(bxby)/db = ((x/b)bx)by + bx((y/b)by) = ((x+ y)/b)(bxby), (2b)

and Eq. (1a) implies that,
(bxby)b=1 = (1× 1) = 1. (2c)
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The fundamental Eq. (2a) relation among solutions of different equations of the set enables a Taylor expansion
around x = 0 which encompasses all of the solutions bx of the set ; that collective expansion of all of the
solutions bx of the set turns out to be well-defined and convergent for any specified positive value of b and
any specified real value of x.

Such a Taylor expansion around x = 0 requires the coefficients ((dkbx/dxk)x=0/k!), k = 0, 1, 2, 3, . . .,
which themselves are not-yet known functions of b. From Eq. (2a), however, we see that,

bx=0 by = b0+y = by for all by, so bx=0 = 1 is in fact already known. (3a)

Eq. (2a) also implies a crucial simplification of the derivative dbx/dx,

dbx/dx = limδx→0

((
bx+δx − bx

)
/δx
)

= limδx→0

((
bδx − 1

)
/δx
)
bx. (3b)

We evaluate limδx→0((bδx − 1)/δx), which is a function of b only, via working out its derivative with respect
to b and obtaining its value at b = 1. Since from Eq. (1a), 1δx = 1 for all values of δx, we see that,[

limδx→0

((
bδx − 1

)
/δx
)]
b=1

= limδx→0

((
1δx − 1

)
/δx
)

= 0. (3c)

We calculate the derivative with respect to b of limδx→0((bδx − 1)/δx) by interchanging the δx → 0 limit
with the differentiation with respect to b and then applying Eq. (1b) to carry out that differentiation,

d
(
limδx→0

((
bδx − 1

)
/δx
))
/db = limδx→0

((
(δx/b)bδx

)
/δx
)

= limδx→0

(
bδx/b

)
= (1/b). (3d)

Since from Eqs. (3d) and (3c), d(limδx→0((bδx − 1)/δx))/db = (1/b) and [limδx→0((bδx − 1)/δx)]b=1 = 0,

limδx→0

((
bδx − 1

)
/δx
)

=
∫ b
1
db′/b′, (3e)

which is well-defined for positive b, and is universally denoted as ln b. Eqs. (3e) and (3b) thus yield,

dbx/dx =
(∫ b

1
db′/b′

)
bx = (ln b) bx, (3f)

which implies,
dkbx/dxk = (ln b)k bx, k = 0, 1, 2, 3, . . . , (3g)

and since bx=0 = 1, (
dkbx/dxk

)
x=0

= (ln b)k, k = 0, 1, 2, 3, . . . , (3h)

yielding the Taylor expansion of bx around x = 0 as,

bx =
∑∞
k=0(x ln b)k/k! =

∑∞
k=0

(
x
∫ b
1
db′/b′

)k
/k!, (3i)

a sum which is well-defined and convergent for any specified positive value of the base b and any specified

real value of the power x. At b = 1 we see that ln b =
∫ b
1
db′/b′ vanishes, so Eq. (3i) yields,

1x = 1, (3j)

in accord with Eq. (1a). Moreover, upon differentiating bx with respect to b Eq. (3i) yields,

dbx/db = (x/b)
∑∞
k=1(x ln b)k−1/(k − 1)! = (x/b)

∑∞
l=0(x ln b)l/l! = (x/b)bx, (3k)

in full accord with Eq. (1b). Thus not only is Eq. (3i) a sum which is well-defined and convergent for
any specified positive value of b and any specified real value of x; it is as well the complete solution of the
differential equation set given by Eqs. (1b) and (1a). So Eq. (3i) by itself fully achieves the goal of extending
the positive-integer powers j, j = 1, 2, 3, . . . of the positive numbers to any real-valued power x whatsoever
of the positive numbers.

That said, it is nevertheless interesting to understand in more explicit detail how the function ln b =∫ b
1
db′/b′ meshes with the infinite sum in Eq. (3i) to achieve that goal.
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Relating the power formula’s infinite sum to the integral in each term

The structure of the infinite sum in Eq. (3i) is what is universally known as the exponential function,

exp(u)
def
=
∑∞
k=0 u

k/k!. (4a)

whose Eq. (4a) series converges for all real u. We see from Eq. (3i) that,

bx = exp(x ln b) = exp
(
x
∫ b
1
db′/b′

)
. (4b)

From Eq. (4a) we note that,
exp(u = 0) = 1, (5a)

and,
d exp(u)/du =

∑∞
k=1 u

k−1/(k − 1)! =
∑∞
l=0 u

l/l = exp(u), (5b)

so the derivative of exp(u) is equal to itself . Eqs. (5a) and (5b) completely determine exp(u) since they
imply that dk exp(u)/duk|u=0 = 1, k = 0, 1, 2, 3, . . ., which immediately yields Eq. (4a). They also allow us
to show that the exp function has the crucial property ,

exp(v1) exp(v2) = exp(v1 + v2), (5c)

because,
(exp(v1u) exp(v2u))u=0 = 1 and d(exp(v1u) exp(v2u))/du =

(v1 exp(v1u)) exp(v2u) + exp(v1u)(v2 exp(v2u)) = (v1 + v2)(exp(v1u) exp(v2u)),
(5d)

which implies that,

dk(exp(v1u) exp(v2u))/duk|u=0 = (v1 + v2)k, k = 0, 1, 2, 3, . . . , (5e)

and therefore,
(exp(v1u) exp(v2u)) =

∑∞
k=0(v1 + v2)kuk/k! = exp((v1 + v2)u), (5f)

so exp(v1) exp(v2) = exp(v1 +v2) follows from the u = 1 case. Application of this identity to bx = exp(x ln b)
immediately yields the crucial fundamental power relation bxby = bx+y that is given by Eq. (2a). This
relation by itself , albeit crucial, doesn’t ensure that b1 = b, a gap which is filled by the ln b function. Since
bx = exp(x ln b), b1 = exp(ln b), so to ensure that b1 = b, the ln function must be the inverse of the exp
function.

This raises the issue that the exp function is obligated to in fact have an inverse, so exp(u) must be
strictly increasing (or strictly decreasing) at every real value of its argument u. Since the derivative of the
exp function is equal to itself , exp(u) is strictly increasing at all real values u where it is positive. All
positive values of u are in this category because all of the terms of the series for exp(u) are positive when u
is positive, and exp(u) is positive as well at u = 0, where its value equals unity. To understand the nature
of exp(u) at the negative values of u, we note that Eq. (5f) implies that exp(u) exp(−u) = exp(0) = 1. Thus
exp(−u) = (1/ exp(u)) so the fact that exp(u) is positive at positive values of u means that it is positive as
well at all negative values of u, so it is strictly increasing at all values of u. Therefore exp(u) definitely does
have an inverse, albeit that inverse is only required to be a well-defined at the positive values of its own
argument . If we denote the inverse of exp(u) as exp−1(w), then exp−1(w) need only be well-defined on the
domain w > 0, but it definitely must satisfy ,

exp−1(exp(u)) = u, (5g)

which implies in particular that,
exp−1(w = 1) = 0. (5h)

Moreover, since d exp(u)/du = exp(u), the chain-rule differentiation of both sides of Eq. (5g) with respect
to u produces,

d
(
exp−1(exp(u))

)/
d exp(u) = (1/ exp(u)), (5i)

which, when more transparently expressed in terms of positive w in lieu of exp(u), reads,

d
(
exp−1(w)

)/
dw = (1/w), when w is positive. (5j)

3



When w is positive, Eqs. (5j) and (5h) together uniquely determine that,

exp−1(w) =
∫ w
1
dw′/w′, (5k)

so the Eq. (5k) inverse exp−1 of the exp function is precisely the ln function which enters into the Eq. (3i)

expression for bx when b is positive; note that in Eq. (3i) ln b is specifically pointed out to be
∫ b
1
db′/b′.

The power content is the logarithm. The exponential function’s inherent base.

Once the power idea is extended from the positive integers to all real numbers, it is the case that for a given
positive base other than unity, an arbitrary positive number uniquely corresponds to the real-valued power
of that base which is equal to that positive number . Such a mapping of positive numbers to the powers which
produce them with a given positive base is the inverse of the power function bx we have so far been discussing:
bx uses the given positive base b to map real-valued powers x into positive numbers bx, where (see Eq. (4b)),

bx = exp(x ln b). (6a)

It is straightforward to invert Eq. (6a) by noting that the inverse exponential function exp−1 is exactly the
same as the ln function, so,

x = ln(bx)/ ln(b).

However, the positive entities bx are now switched to the role of arbitrary positive inputs w, whereas the
consequent real-valued powers x of the base b are of course switched to the role of the dependent outputs,
which circa 1616 were in Latinate fashion christened “logarithms”, and therefore are written logb(w). Thus
the above inappropriate presentation of the inverse, namely x = ln(bx)/ ln(b), is properly rectified to,

logb(w) = ln(w)/ ln(b) when w > 0. (6b)

Eq. (6b) makes it apparent that the base b = 1 isn’t viable for logarithms.
The exponential function exp(u) and its inverse exp−1(w) = lnw =

∫ w
1
dw′/w′, which is a well-defined

real-valued function only when w > 0, are the sole function ingredients which enter into the mutually inverse
functions that take a base b to a real-valued power x, namely bx = exp(x ln b), and that give the real-valued
power of a base b that corresponds to a positive number w, namely its logarithm logb(w) = ln(w)/ ln(b).

The particular value of the base b for which bx = exp(x) has traditionally been of interest, as has
the particular value of the base b for which logb(w) = ln(w) when w > 0. Since bx = exp(x ln b) and
logb(w) = ln(w)/ ln(b) when w > 0, the particular value of the base b in both cases is such that ln(b) = 1;
therefore that base’s value b equals exp(1), which is universally denoted e,

ln(e) = 1 implies that ex = exp(x) and also implies that loge(w) = ln(w) when w > 0; moreover,

e = exp(1) =
∑∞
k=0 1/k! = (exp(−1))−1 =

(∑∞
k=0(−1)k/k!

)−1
= 2.718281828459045235 . . . .

(7)

4


