Definition Let G be a group and Z(G) be the center of G.

Theorem 1 If $|G| = p^n$, p a prime number, and $H \neq G$ is a subgroup of G, then there exists an $x \in G$, $x \notin H$ such that $x^{-1}Hx = H$.

Proof.

The proof is by induction on *n*. The statement is true for n = 1. Suppose the result is true for n - 1. Let *G* be a group of order p^n and $H \neq G$ be its subgroup. By Theorem 2.11.2 in [1], $Z(G) \neq (e)$. Since |Z(G)| > 1 and Z(G) is a subgroup of G, $|Z(G)| = p^k$, $1 \leq k \leq n$. If Z(G) is not a subset of *H*, then $\{g \in G | g^{-1}Hg = H\} \neq H$. Suppose not. Then $Z(G) \subset \{g \in G | g^{-1}Hg = H\} \subset H$, a contradiction. Now assume that $Z(G) \subset H$. Since *p* divides |Z(G)|, by Cauchy's theorem, Z(G) has an element $b \neq e$ of order *p*. Let *B* be the subgroup of *G* generated by *b*. So |B| = p. Since $b \in Z(G)$, *B* must be normal in *G*. Consider the quotient group G/B and its subgroup H/B. Since $|G/B| = p^{n-1}$, by the induction hypothesis, there is an element $X \in G/B, X \notin H/B$ such that $X^{-1}(H/B)X = H/B$. Since $X \in G/B, X = Bx$ for some $x \in G$. Thus $(Bx^{-1})(H/B)(Bx) = H/B$. Certainly $x \notin H$. Suppose $x \in H$. Then $X = Bx \in H/B$, a contradiction. Let $a \in x^{-1}Hx$. So $a = x^{-1}hx$ for some $h \in H$. Since $(Bx^{-1})(Bh)(Bx) \in (Bx^{-1})(Bh)(Bx) = Bh'$ for some $h' \in H$. But $a \in (Bx^{-1})(Bh)(Bx)$ and $(Bx^{-1})(Bh)(Bx) \subset Bh'$. Thus $a \in Bh'$. So a = b'h' for some $b' \in B$. To conclude $a \in H$ since $B \subset Z(G) \subset H$. Finally since $x^{-1}Hx \subset H$ and $|x^{-1}Hx| = |H|, x^{-1}Hx = H$.

References

- [1] I. N. Herstein, *Topics in Algebra*, John Wiley & Sons, New York, 1975.
- [2] I. M. Isaacs, *Algebra: A Graduate Course*, American Mathematical Society, Providence, 1994.