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Abstract: In this work we discuss the possibility to classify relativity in accordance with the 

classification of second order partial differential equations that have been applied into the 

formulation of physical laws in physics. In mathematics, second order partial differential 

equations can be classified into hyperbolic, elliptic or parabolic type, therefore we show that 

it is also possible to classify relativity accordingly into hyperbolic, elliptic or parabolic type 

by establishing coordinate transformations that preserve the forms of these second order 

partial differential equations. The coordinate transformation that preserves the form of the 

hyperbolic equation is the Lorentz transformation and the associated space is the hyperbolic, 

or pseudo-Euclidean, relativistic spacetime. Typical equations in physics that comply with 

hyperbolic relativity are Maxwell and Dirac equations. The coordinate transformation that 

preserves the form of the elliptic equation is the modified Lorentz transformation that we 

have formulated in our work on Euclidean relativity and the associated space is the elliptic, or 

Euclidean, relativistic spacetime. Typical equations in physics that comply with elliptic 

relativity are the equations that describe the subfields of Maxwell and Dirac equations. And 

the coordinate transformation that preserves the form of the parabolic equation is the 

Euclidean transformation consisting of the translation and rotation in the spatial space and the 

associated space is the parabolic relativistic spacetime, which is a Euclidean space with a 

universal time. Typical equations in physics that comply with parabolic relativity are the 

diffusion equation, the Schrödinger equation and in particular the diffusion equations that are 

derived from the four-current defined in terms of the differentiable structures of the 

spacetime manifold and the Ricci flow. 

 

1. Introduction 

In physics it appears that physical objects are endowed with many different physical 

properties each of which couples to a physical field that obeys a specific physical law that can 

be described by a particular system of partial differential equations.  It is also conventionally 

assumed, due to our ability of observing and perceiving of the natural environment, that 

physical events occur in a three-dimensional space and progress forward in one-dimensional 

time, even though it is conceivable to speculate that physical events may also progress 

backwards in time and occur in a higher dimensional space. From the physical laws that are 

derived and formulated from observation, a mathematical structure of space and time can be 

constructed to conform to the corresponding observed physical occurrences. In Newton 

physics since the established dynamical laws that describe the dynamics of material particles 

seem to obey the Galilean transformation of space and time therefore it is reasonable to 



assume that time is absolute. On the other hand, in Einstein physics space and time are 

relative since it is established that Maxwell field equations of the electromagnetic field 

comply with the Lorentz transformation. Maxwell field equations are wave equations that 

describe the dynamics of a wave motion rather than that of a material particle. Until the 

quantum mechanics was invented which embraces the wave-particle dual characteristics of a 

material particle, it had been regarded that Newton and Maxwell dynamics are two different 

dynamics that describe physical systems that have completely different physical 

compositions, even though Newton himself speculated that the electromagnetic field is also 

composed of particles. Prominently, there is a more profound conception, which is the main 

topic that will be discussed in this work, that relates to the assumption in classical physics 

that the mathematical structure of space and time associated with the dynamics of a material 

particle should be the same as that of a wave motion, especially when it still remains 

unknown what an elementary particle such as an electron is composed of and how its 

physical structure can be presented mathematically. The difficulty associated with the wave-

particle duality may be due to the assumption that an elementary particle such as an electron 

is simply a mass-point with no internal structure. In fact, we have shown that it is possible to 

describe mathematically an elementary particle as a three-dimensional differentiable 

manifold whose mathematical structure can be expressed in terms of a Schrödinger 

wavefunction. Therefore, from the superposition principle associated with the wave motions 

and the assumption of internal structures of an elementary particle we may assume that a 

physical property endowed to an elementary particle does not have to satisfy the requirements 

that are imposed on other physical properties of the particle but rather follows its own 

physical law that obeys its own type of relativity. For example, in quantum mechanics the 

time-independent Schrödinger wave equation describes the structure of atoms and it has been 

shown that atoms are stable and their physical structures are invariant with respect to 

translation and rotation, and we have also shown that the spin dynamics can be formulated by 

the Schrödinger equation in terms of intrinsic coordinates rather than the Dirac relativistic 

equation, therefore the Schrödinger equation should not be considered as a non-relativistic 

limit of Dirac relativistic equation but rather a physical formulation that follows its own 

relativity and as we will show later that the relativity that the Schrödinger equation obeys is 

the parabolic relativity, in the same way as Maxwell and Dirac field to comply with the 

pseudo-Euclidean relativity. In this work we discuss a classification of relativity in which the 

spacetime manifold in which physical phenomena occur are classified into hyperbolic, elliptic 

or parabolic relativistic spacetime. A hyperbolic relativistic spacetime is a pseudo-Euclidean 

space that was formulated by Minkowski to establish a mathematical foundation for 

Einstein’s theory of special relativity. That is a four-dimensional differentiable manifold 

which possesses a fundamental quadratic form of Lorentz signature that makes the wave 

equation invariant under Lorentz transformation. On the other hand, we have shown in our 

work on the Euclidean relativity that quantum particles may possess physical properties that 

comply with the Euclidean relativity rather than the pseudo-Euclidean relativity. Since this 

type of relativity is associated with the elliptic equation therefore we will refer to the 

spacetime continuum whose mathematical structure complies with the Euclidean relativity an 

elliptic relativistic spacetime. And we have also shown in our work on Euclidean relativity 

that the elliptic equations are invariant under a modified Lorentz transformation. The two 



types of relativistic spacetime that we have considered depend essentially on the 

corresponding second order partial differential equations that are used to describe possible 

physical properties associated with a quantum particle. However, as it is well-known that 

second order partial differential equations can be classified into three distinctive types of 

equations therefore it seems appropriate also to classify relativistic spacetime into three 

different types, and the third type of relativistic spacetime that we introduce in this work is 

the parabolic relativistic spacetime. Therefore, by definition, a parabolic relativistic 

spacetime is a space whose mathematical structure is determined by the invariance of a 

parabolic equation such as the diffusion equation and the Schrödinger wave equation in 

quantum mechanics. Overall, we assume that a quantum particle may have different physical 

properties which are described by different physical laws each of which is formulated 

independently in either the hyperbolic or the elliptic or the parabolic relativistic spacetime. 

All of these relativistic spaces can be regarded as different fibres of the fibre bundle of the 

spacetime continuum. Since the classification of relativity is closely related to the 

classification of second order partial differential equations therefore for reference we first 

outline the classification of the second order partial differential equations in the next section. 

 

2. A classification of second order partial differential equations 

A general second order partial differential equation can be written in the form 

     
   

      

 

   

 

   

    
  

   

 

   

                                                                                            

If the matrix         is symmetric then it can be transformed into a diagonal matrix by 

applying a diagonalising matrix   

      
    
   
    

                                                                                                                          

Then the second order partial differential equation given in Equation (1) can be classified into 

three different types of partial differential equations as follows [1] 

 If all eigenvalues    are non-zero and have the same sign then Equation (1) is elliptic. 

 If all eigenvalues    are non-zero and have the same sign except for one of the 

eigenvalues then Equation (1) is hyperbolic. 

 If exactly one of the eigenvalues is zero and all the others have the same sign then 

Equation (1) is parabolic. In this case the matrix   is singular. 

In this work we consider the second order partial differential equations, and classify relativity 

accordingly, in the spacetime continuum in which space has three dimensions and time has 

one dimension therefore we only need to present the case of the partial differential equations 

in the four-dimensional space whose coordinates are specified by three spatial coordinates 



        and one temporal coordinate  . With this specification, the three different types of 

second order partial differential equations are given as follows 

 Elliptic equation can be written in the form 

   

   
 
   

   
 
   

   
 
   

   
  

  

  
  

  

  
  

  

  
  

  

  
                                               

As we have shown in our work on the nature of Maxwell and Dirac field [2], elliptic 

equations in the four-dimensional spacetime manifold play an important role in the 

determination of the dynamics of the subfields of these two fields. Therefore, the subfields of 

Maxwell and Dirac field comply with the Euclidean relativity that we will classify as elliptic 

relativity in this work. We will apply the modified Lorentz transformation for the elliptic 

relativity. 

 Hyperbolic equation can be written in the form 

   

   
 
   

   
 
   

   
 
   

   
  

  

  
  

  

  
  

  

  
  

  

  
                                               

Hyperbolic equations play an important role in physics with Maxwell theory of the 

electromagnetic field and Dirac theory of quantum particles [3] [4]. In particular, the 

invariance of the hyperbolic equations under Lorentz transformation led Einstein to develop 

his theories of special and general relativity [5]. We will classify Einstein relativity as 

hyperbolic relativity in this work. Hyperbolic relativity complies with the Lorentz 

transformation. 

 Parabolic equation can be written in the form 

   

   
 
   

   
 
   

   
  

  

  
  

  

  
  

  

  
  

  

  
                                                             

In this work we classify as parabolic relativity for the mathematical structure of the spacetime 

manifold that make the parabolic equations invariant. The important parabolic equations in 

physics are the diffusion equation, the Schrödinger equation, and diffusion equations that are 

derived from the four-current associated with the differentiable structure of the spacetime 

manifold and the Ricci flow. The parabolic relativity complies with the Euclidean 

transformation which consists of translation and rotation in the spatial space. 

 

3. A classification of relativity 

In this section we show that relativity can be classified into three different types that are 

determined by the mathematical structures given to the spactime continuum so that it can 

manifest as three different types of relativistic spaces associated with the types of second 

order partial differential equations that are classified in the previous section. We call the 

spacetime continuum with the mathematical structure determined by the hyperbolic or wave 



equation a hyperbolic relativistic space and the corresponding relativity is the hyperbolic 

relativity. Similarly, we also define the elliptic and parabolic relativity. The problem that we 

address in this section is similar to our previous discussion on the fibre bundle structure of the 

spacetime continuum in which the spacetime continuum is the base space and all other 

physical events occur on different types of fibres and manifest in different physical forms that 

can be described by different mathematical structures [6]. We showed that the spacetime 

structures are resulted from different relationships between space and time and the apparent 

geometric and topological structures of the total spatiotemporal manifold are due to the 

dynamics and the geometric interactions of the decomposed cells from the base space of the 

total spatiotemporal manifold. The decomposed cells can form different types of fibres which 

may also geometrically interact with each other. In a more general context we also discussed 

in detail a spacetime which has the mathematical structure of a 6-sphere bundle in which the 

dynamics of the fibres are resulted from the geometric interactions of different types of 

decomposed cells that give rise to various relationships between space and time. In this case 

it is assumed that we can only perceive within our physical ability the appearance of the 

grown intrinsic geometric structures on the base space of the total spatiotemporal manifold 

and the base space itself may not be observable with a reasonable assumption that a physical 

object is not observable if it does not have any form of geometric interactions. It could be that 

the base space of the spatiotemporal manifold at the beginning was only a six-dimensional 

Euclidean spatiotemporal continuum    which had no non-trivial geometric structures 

therefore contained no physical objects. As we have shown in our work on Maxwell and 

Dirac field with three-dimensional time [7], we can assume that the spatiotemporal manifold 

is described by a six-dimensional differentiable manifold   which is composed of a three-

dimensional spatial manifold and a three-dimensional temporal manifold, in which all 

physical objects are embedded, then the manifold   can be decomposed in the form   

    
    

 , where   
  and   

  are the spatial and temporal 3-sphere, respectively. It is expected 

that the mathematical formulation of possible fibres of the spatiotemporal manifold should be 

derived from a general line element          
    . In the following, however, we 

propose that the three types of relativity are classified in accordance with the classification of 

their according coordinate transformations. 

 Hyperbolic relativity 

Hyperbolic relativity refers to the relativistic spacetime continuum with the mathematical 

structure of a pseudo-Euclidean space that associates with the hyperbolic type of the second 

order partial differential equations given in Equation (4). As we have shown in our work on 

the nature of the Maxwell and Dirac field, when the electric and magnetic field are 

formulated as a single field then the electric and magnetic component satisfy the 

electromagnetic wave equations in classical electrodynamics 

   

     
             

   
  

                                                                                                

   

     
             

   
  

                                                                                               



where we also assume the existence of magnetic monopole and current. Similarly, all 

components of Dirac wavefunction                
  satisfy the Klein-Gordon equation 

    

     
 
    

   
 
    

   
 
    

   
  

    

  
                                                                                      

In physics, the concept of a pseudo-Euclidean spacetime, or relativistic hyperbolic spacetime, 

was introduced by Minkowski in order to accommodate Einstein’s theory of special relativity 

in which the coordinate transformation between the inertial frame   with spacetime 

coordinates            and the inertial frame    with coordinates                are derived 

from the principle of relativity and the postulate of a universal speed  , which is assumed to 

be the speed of light in vacuum. The coordinate transformation is the Lorentz transformation 

                                                                                                             

where       and          . It can be shown that the Minkowski spacetime interval 

              is invariant under Lorentz transformation given in Equation (9). Now, 

in order to show that the hyperbolic equations are associated with the hyperbolic relativity we 

need to show that the part that composes of the second order derivatives of the hyperbolic 

equation given in Equation (4) is invariant under Lorentz transformation. The Lorentz 

transformation given in Equation (9) and its inverse can be rewritten in the following forms 

        
                           

                                                                                                 

where               and the Lorentz matrix     and its inverse   
  are given as 

 
 
   

      
      
    
    

                       
   

     
     
    
    

                                    

In order to show that the hyperbolic relativity associates with the hyperbolic type of second 

order partial differential equations we only need to show that the d’Alembert operator 

   
              is invariant under Lorentz transformation given in Equation (10), 

where the differential operators    and    are defined as                            

and                                  . This can be seen by the fact that the  

differential operators    and    are vectors therefore by using the transformations   
  

  
    and          

  we then obtain   
        

 . 

Now, it is remarkable that even though the concept of a relativistic hyperbolic spacetime 

originates from the invariance of Maxwell field equations under Lorentz transformation, 

Einstein was able to generalise it into a more general structure utilising the mathematics of 

differentiable manifold and the resulted theory has only been applied into the description of 

the gravitational field in which the electromagnetic field can only act as a source. And the 

only invariance that is required is the transformation of general coordinates. Einstein general 

relativity that complies with the hyperbolic relativity in curved spaces is represented in tensor 



form as           
 

 
          . Then using the centrally symmetric gravitational 

field with Schwarzschild metric 

                                                                                                             

Schwarzschild solution can be found as [8] 

       
 

 
          

 

 
 
  

                                                                     

where         . From the Schwarzschild solution, Newton law of gravity can be 

obtained as an approximation. We show in the next section on the elliptic relativistic 

spacetime that this result can also be obtained from the elliptic or Euclidean relativity. 

 Elliptic relativity 

Elliptic relativity refers to the relativistic spacetime continuum with the mathematical 

structure of a Euclidean space that associates with the elliptic type of the second order 

partial differential equations given in Equation (4). As we have shown in our work on the 

nature of the Maxwell and Dirac field, when the electric and magnetic field are formulated 

as two separate subfields then the electric and magnetic component satisfy the elliptic 

equations 

   

     
             

   
  

                                                                                              

   

     
             

   
  

                                                                                              

On the other hand, for the case of Dirac field, with negative time we obtain the following 

equation for the components of the function          
  

    

     
 
    

   
  

    

   
  

    

   
   

    

  
                                                                       

Similarly, with positive time we obtain the following equation for the components of the 

function          
  

    

     
 
    

   
  

    

   
  

    

   
   

    

  
                                                                       

We have also shown in our work on Euclidean relativity that it is possible to construct a 

special relativistic transformation that will make the four-dimensional spacetime continuum a 

Euclidean space rather than a pseudo-Euclidean space as in the case of Einstein’s theory of 

special relativity. Consider the following modified Lorentz transformation 

                        
                                                                                   



where       and    will be determined from the principle of relativity and the postulate of 

a universal speed. If we now assume the invariance of the Euclidean interval         

                        then from the modified Lorentz transformation given in 

Equation (18), we obtain           .  It is seen from this expression for    that there is 

no upper limit in the relative speed   between inertial frames. The value of    at the universal 

speed     is        . For the values of    , the modified Lorentz transformation 

given in Equation (18) also reduces to the Galilean transformation. However, it is interesting 

to observe that when     we have      and      , and in this case we have 

       and      . This result shows that there is a conversion between space and time 

when    . We can also derive the relativistic kinematics from the modified Lorentz 

transformation given in Equation (18), such as the transformation of a length, the 

transformation of a time interval and the transformation of velocities. Let    be the proper 

length and     is the proper time interval then the length and the time interval 

transformations can be found as           and             . It is observed from 

the length transformation that the length of a moving object is expanding rather than 

contracting as in Einstein theory of special relativity. It is also observed from the time 

interval transformation that the proper time interval is longer than the same time interval 

measured by a moving observer. With the modified Lorentz transformation given in Equation 

(18), the transformation of velocities can be found as 

  
  

     

       
                 

  
  

           
                 

  
  

           
                           

From Equation (19), if we let      then we obtain   
                . Therefore in 

this case   
    only when the relative speed   between two inertial frames vanishes. In 

other words, the universal speed   is not the common speed of any moving physical object or 

physical field in inertial reference frames. In order to specify the nature of the assumed 

universal speed we observe that in Einstein theory of special relativity it is assumed that 

spatial space of an inertial frame remains steady and this assumption is contradicted to 

Einstein theory of general relativity that shows that spatial space is actually expanding. 

Therefore it seems reasonable to suggest that the universal speed   in the modified Lorentz 

transformation given in Equation (18) is the universal speed of expansion of the spatial space 

of all inertial frames. The modified Lorentz transformation given in Equation (18) and its 

inverse can be rewritten in the following forms 

        
                           

                                                                                                 

where               and the modified Lorentz matrix     and its inverse   
  are given as 

 
 
   

       
        
    
    

                
   

        
       
    
    

                                  



In order to show that the elliptic relativity associates with the elliptic type of second order 

partial differential equations we only need to show that the Euclidean differential operator 

   
              is invariant under the modified Lorentz transformation given in 

Equation (20), where the differential operators    and    are defined as 

                           and                                 . Since 

the differential operators    and    are vectors therefore by using the transformations 

  
    

    and          
  we then obtain   

        
 . 

We assume that a general relativity that complies with the elliptic relativity in curved spaces 

can also be represented in tensor form as           
 

 
          . Then using the 

centrally symmetric gravitational field with Schwarzschild-like metric 

                                                                                                             

Schwarzschild-like vacuum solution is found as 

       
 

 
          

 

 
 
  

                                                                     

where         . It can be shown from the Schwarzschild-like solution given in Equation 

(23) that Newton law of gravity is obtained as an approximation. 

 Parabolic relativity 

We have shown that the hyperbolic and elliptic relativity are classified according to the 

mathematical structure of the second order derivatives of the second order partial differential 

equations      
 
   

 
             . For the hyperbolic relativity associated with the four-

dimensional spacetime manifold we have      
 
   

 
                      

                       . On the other hand, for the elliptic relativity we have 

     
 
   

 
                                             . Now, for the 

case of the parabolic equation, because there are only three spatial components of second 

order derivatives for the four-dimensional spacetime continuum therefore as a consequence 

we consider the invariance of the parabolic equation only for these components under a 

parabolic coordinate transformation. Parabolic relativity refers to the relativistic spacetime 

continuum with the mathematical structure of a Euclidean space that associates with the 

parabolic type of the second order partial differential equations given in Equation (4). There 

are many physical events that are described by the second order partial differential equations 

that involve only the spatial components of the second order derivatives therefore these 

physical events can be regarded as being associated with the parabolic relativity. In 

particular, the physical events that can be described by the diffusion equation and the 

Schrödinger equation that can be written generically as follows 

   

   
 
   

   
 
   

   
  

  

  
                                                                                                                    



In Equation (24), we obtain the diffusion equation if          and the Schrödinger 

equation by setting                     . As in the case of the hyperbolic and 

elliptic relativity in which the Lorentz and modified Lorentz transformation involve only the 

second order derivatives of the differential equations, therefore to discuss coordinate 

transformation for the parabolic equation we should also consider the second order 

derivatives which form the Laplace operator. Therefore the corresponding transformations for 

the parabolic equation that leave the Laplace operator unchanged, that is in the parabolic 

relativity we only consider the invariance of the Euclidean spatial interval          

           . The time in parabolic relativity is therefore a universal time which is 

assumed to flow uniformly with the same rate in all reference systems. In general, the 

parabolic relativity is invariant with respect to the translation and rotation given as follows 

  
                                        

        

 

   

                                                                                  

where               
 , and        is a matrix for the translation and         is an 

orthogonal matrix for the rotation. If the matrix         is an orthogonal matrix then we 

have        
 
      

 
, therefore we obtain the following result 

  
           

  

   
    

 

 

     

 

 

   

          

 

   

 

 

     

  

   
    

     
                                              

We now show an important parabolic equation that also related to curved structure of the 

spacetime manifold. We have shown that quantum particles can be endowed with geometric 

and topological structures of differentiable manifolds and their motion should be described as 

isometric embeddings in higher Euclidean space that involve the diffusion equation. 

Fundamentally, we show that the three main dynamical descriptions of physical events in 

classical physics, namely Newton mechanics, Maxwell electromagnetism and Einstein 

gravitation, can be formulated in the same general covariant form and they can be represented 

by the general equation [8] [9] 

                                                                                                                                                         

where   is a mathematical object that represents the corresponding physical system and   is 

a covariant derivative. For Newton mechanics,   
 

 
            

      and    . For 

Maxwell electromagnetism,                , with the four-vector potential 

         and   can be identified with the electric and magnetic currents. And for Einstein 

gravitation,       and   can be defined in terms of a metric     and the Ricci scalar 

curvature using the Bianchi identities    
   

 

 
      , that is,   

 

 
      . If we use 

the Bianchi identities as field equations for the gravitational field then Einstein field 

equations           
 

 
          , as in the case of the electromagnetic field, should 



be regarded as a definition for the energy-momentum tensor     for the gravitational field. 

From the definition of the four-current           
 

 
       for the gravitational field, by 

comparing with the Poisson equation for a potential   in classical physics,        , we 

can identify the scalar potential   with the Ricci scalar curvature   and then obtain a 

diffusion equation 

  

  
   

   

   
 
   

   
 
   

   
                                                                                                                

whose solutions can be found to take the form 

            
 

       
       

        

   
                                                                         

which determines the probabilistic distribution of an amount of geometrical substance   

which is defined via the Ricci scalar curvature   and manifests as observable matter. We 

have also shown that the Ricci scalar curvature   associated with a differentiable manifold 

can be expressed in terms of the Schrödinger wavefunction    in quantum mechanics. Now, 

instead of deriving a diffusion equation for the Ricci scalar curvature from the four-current 

we can also derive a diffusion equation for the Ricci scalar curvature from the Ricci flow by 

considering the case in which   
 

 
        . Then we obtain the equation 

   
                                                                                                                                                     

Since    
     for a given metric tensor    , Equation (30) implies          which 

can be written in a covariant form as 

                                                                                                                                                       

where   is an undetermined constant. Using the identities     
     and     

    , we 

obtain      . Now, we show how the Ricci flow can be derived from the field equation 

given in Equation (30) [10] [11].  In differential geometry, the covariant derivative of a 

contravariant tensor of second rank     is given by 

   
      

      
        

                                                                                                      

The partial time derivative of Equation (32) is 

      
          

          
         

     
          

         
     

              

Under the coordinate transformation           , the tensor     is transformed as 

     
    

   
    

   
                                                                                                                                



If the coordinate transformation is time-independent then the partial time derivative of the 

tensor     is also a tensor which is transformed according to the rule  

     

  
 
    

   
    

   
    

  
                                                                                                                       

In this case, we have 

      
          

       
     

       
     

                                                                     

It is observed from Equations (33) and (36) that if we impose the following condition on 

Equation (33) 

      
            

                                                                                                                    

then we obtain the identity 

      
          

                                                                                                                          

In the case of a metric tensor     then we have       
          

     , and from the 

field equations    
     we arrive at  

   
                                                                                                                                               

where –   is a scaling factor. Equation (39) can also be written in a covariant form of the 

Ricci flow as 

    

  
                                                                                                                                                  

From Equation (40) we can obtain a diffusion equation for the Ricci scalar curvature as 

follows [12] [13] 

  

  
                                                                                                                                 

As a further remark, it should be mentioned here that it has been shown that parabolic 

equations have associated invariants that may be related to physical properties of physical 

objects. For example, consider a linear second order parabolic partial differential equation in 

two independent variables   and   

  

  
       

   

   
       

  

  
                                                                                          

It is shown that the form of the parabolic equation given in Equation (42) is invariant under 

the group of equivalence transformations which consists of the linear transformation of the 

dependent variable and the invertible transformations of the independent variables as follows 

                                                                                                                              



where       ,      and        are arbitrary functions [14] [15] [16]. The transformed 

equation of the equation given in Equation (43) then takes the form 

  

   
          

   

    
          

  

   
                                                                               

Then an invariant of the parabolic equation given in Equation (42) is a function of the form  

          
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
   

   
 
   

    
 
   

   
                                                            

 

4. Simultaneous relativities 

We have shown in previous sections that the mathematical structure of the spacetime 

manifold can be classified in accord with the classification of second order partial differential 

equations into hyperbolic, elliptic or parabolic relativistic space. On the other hand, normally 

a complex physical system such as an atom has various physical properties that involve 

different physical processes described by different types of second order partial differential 

equations in different relativities. If the physical properties associated with the physical 

system remain invariant then we can assume that they can be described independently by 

different second order partial differential equations, and hence their corresponding relativistic 

spaces should also exist independently from each other. As we have discussed in the 

introduction, these relativistic spaces may be considered as independent fibres of the 

spacetime fibre bundle. Then in order to describe independent physical properties we simply 

express all corresponding physical equations in all relativistic spaces simultaneously. For 

example, we assume that a physical system that possesses physical properties that can be 

described in the parabolic relativity and elliptic relativity respectively. If the parabolic 

property is massive and the elliptic property is massless then we have a simultaneous system 

of two equations that take the forms similar to the massive Schrödinger equation and 

massless Klein-Gordon equation as follows 

    

   
 
    

   
 
    

   
   

  

 

   

  
                                                                                                  

    
      

 
    
   

  
    
   

  
    
   

                                                                                                        

where    and    are wavefunctions in the parabolic and elliptic relativistic space 

respectively. We have also written    to indicate that, unlike the universal speed   in the 

hyperbolic relativity, the speed    may be very large according to the elliptic relativity. In an 

 -dimensional space, solutions to Laplace equation can be expressed by the Green function 

as       
    

      
  

   

  , hence for the Laplace equation given in Equation (47) 

with    , we obtain the solution 



   
 

              
                                                                                                                    

It is seen that if    is very large then while other parabolic relativistic properties of a quantum 

particle remain the same the elliptic properties vanish quickly with time, and in particular this 

result may be invoked to explain the EPR paradox in quantum mechanics. However, if 

different physical properties belong to the same type of relativity then we can express the 

total equation as a sum of different equations in the same relativistic space, as in the case we 

have shown in our work on spin dynamics that a total Schrödinger equation can be written as 

a sum of two separate Schrödinger equations in two different coordinate systems, one of them 

can be considered as intrinsic. This can be outlined as follows. Instead of introducing a spin 

operator, we introduce a differential operator that depends on an intrinsic coordinate system 

and can be used to formulate a spin dynamics. Since spin angular momentum and orbital 

angular momentum are similar in nature therefore it is possible to suggest that the spin 

operator in the intrinsic coordinate system should also have similar form to that of the orbital 

angular momentum operator. From this perspective we can write a Schrödinger wave 

equation that is used to describe both the orbital and spin dynamics as follows [17] 

 
  

  
                      

  

   
  
                                                    

The quantity   can be identified with a reduced mass. However, since we are treating spin 

angular momentum as a particular case of angular momentum therefore we retain the Planck 

constant and the quantity    also retains the dimension of mass. We call the quantity    an 

intrinsic mass and it could be related to the curvature that determines the differential 

geometric and topological structure of a quantum particle, as in the case of Bohr model, or 

charge. On the other hand, the quantity      can be identified with normal potential, such as 

Coulomb potential but the quantity        represents an intrinsic potential that depends on 

physical intrinsic properties associated with the spin angular momentum of a quantum 

particle. Since the two dynamics are independent, the wave equation given in Equation (49) is 

separable and the total wavefunction         can be written as a product of two 

wavefunctions as                  . Then Equation (49) is separated into two equations 

as follows 

 
  

  
                                                                                                                         

 
  

   
  
                                                                                                                       

where        . For the case of the hydrogen atom then the total energy spectrum can be 

found as the sum of two energy spectra as 

             
 

   
 
   

    
 

 
 

  
 

    

          
 
 
 
                                                             



It is seen that the total energy spectrum has a fine structure depending on the intrinsic 

quantum numbers    and   . Furthermore, the total energy spectrum also depends on the 

undetermined physical quantities    and    that define the intrinsic properties of a quantum 

particle, which is the electron in this case. Without restriction, the quantity    can take zero, 

positive or negative values. Similarly, it is also possible to explain the wave-particle duality 

by writing simultaneous equations for a quantum particle in the parabolic and hyperbolic 

relativistic space respectively. If an experiment is designed to detect an invariance associated 

with a quantum particle which is invariant in the parabolic relativity then it appears as a 

particle, but if it is invariant in the hyperbolic relativity then it appears as a wave. The 

formulation of dual properties of particle and wave in two coexisting relativistic spaces may 

be viewed as a representation of the hidden variable theory and de Broglie theory of double 

solution in wave mechanics [18] [19]. 
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