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Abstract

The cosmic time dependencies of G, α, h and of SM parameters like the Higgs vev

and elementary particle masses are studied in the framework of a new dark energy

interpretation. Due to the associated time variation of rulers, many effects turn

out to be invisible. However, a rather large time dependence is claimed to arise in

association with dark energy measurements, and smaller ones in connection with

the SM.
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I. Introduction

Dirac was one of the first to suggest that fundamental physical constants may vary

in time due to the expansion of the universe[1]. Dirac concentrated on Newton’s

constant G, but since then a time dependence of c, α and so on has been considered

possible as well[2]. From the 21st century viewpoint it is clear that if fundamental

constants are time dependent in this way, the observed dark energy effect must have

to do with it, because dark energy dominates the present expansion of the universe.

We shall be working in the framework of the FLRW cosmology with a scale factor

a(t) and a spatial curvature k, the latter assumed to be tiny (in accordance with

observations). Furthermore, I will use the so-called ’cosmic coordinate system’, i.e.

cosmic time t and proper distances r as parameters. This will prove to be optimal

for the presentation.

We start with the fundamental spacetime constants c, h and G, or equivalently the

Planck length, time and mass L, T and M which describe the basic properties of

space[m], time[s] and matter[kg]

L(t) =

√
~(t)G(t)

c3
T (t) =

√
~(t)G(t)

c5
M(t) =

√
~(t)c
G(t)

(1)

One may invert these relations to obtain

c =
L(t)

T (t)
~(t) = E(t)T (t) κ(t) =

L(t)

E(t)
(2)

where E = Mc2 is the Planck energy and κ = G/c4 the Einstein constant.

I have anticipated a time dependence of these quantities here. t = 0 is taken to

be the present, so we have the present day values L0 = L(0) = Planck length,

T0 = T (0) = Planck time and E0 = E(0) = Planck energy. Numerical values are

L0 = 1.6× 10−35m M0 = 2.2× 10−8kg T0 = 5.4× 10−44s (3)

I have not indicated a time dependence of c, because in my model there is none - at

least if one uses the above mentioned cosmic coordinates t and r, in which case the

FLRW solution of the Einstein equations has the line element

ds2 = −c2dt2 + dr2/(1 + ...) (4)
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with a constant i.e. time-independent speed of light.

c being constant, one only needs to consider time dependencies of G and h.

Equivalently, since one has T(t)=L(t)/c one only needs to consider time dependen-

cies of the Planck length L(t) and Planck energy E(t).

I rewrite eq. (2) as

~(t)c = E(t)L(t) (5)

G(t) = c4L(t)/E(t) (6)

So we want to derive:

-L(t)=the time dependence of the fundamental measure of space

-E(t)=the time dependence of the ’physically active’ quantities - the ’quan-

tities of motion’, as Newton called them.

Remark: The time dependence of elementary particle couplings α, GF and so on is

a different story. It will be treated in section V and will boil down to determine the

time dependence of one other quantity

-J(t)=the time dependence of the ’internal exchange energy’ to be defined

in section V.

To determine L(t) and E(t) I introduce 2 equations:

II. Measure-of-Space Equation

L̈ = −4π

3
GρL− ω2(L− Ls) +

Λ

3
c2L (7)

The idea behind this is that the universe is an elastic medium which consists of ele-

mentary constituents called tetrons[3, 4], and the bond length of these constituents

is given by the Planck length L(t), while the Planck energy E(t) measures the bind-

ing energy of every 2 bound constituents. It is to be noted that the tetrons are

invisible to us. All (ordinary and dark) matter particles and radiation we know are

quasi-particles/wave-excitations of them and can propagate on the elastic medium.1

1In the tetron-model[3] our universe is embedded in a higher-dimensional space, and as an

elastic medium it can thus acquire the full 3+1 GR curvature within this space, including the

timely curvature related to expansion.
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Within such a picture it is rather clear, that in an expanding universe L and E will

vary with time (and so will h and G as well as all particle physics constants), and

we shall now be making the most straightforward ansätze for these variations.

First of all, when the universe (=the elastic medium) expands, the variation of the

Planck or bond length L(t) must reflect the general expansion as described by the

FLRW expansion parameter a(t). Eq. (7) relies on the simple assumption that on

the average the bond length between 2 tetrons is always proportional to the scale

parameter, i.e. a ∼ L or equivalently

a(t)

a0
=

L(t)

L0

(8)

Thus, the first term in (7) arises from the general relativistic deceleration of the

universe through its matter content ρ, while the second term accounts for the dark

energy phenomenon, however, not quite in the usual form of a cosmological constant

(indicated in green), but of a harmonic force −ω2(L−Ls), that expands the elastic

medium towards an equilibrium value Ls of the bond length L.

Eq. (7) tells us that linear forces are acting, one induced by (ordinary and dark)

matter and driving the system towards L = 0, the other induced by the (’dark

energy’) tetron binding and driving it towards the equilibrium binding distance Ls.

Presently we are in the region L0 < Ls, so that −ω2(L− Ls) really is an expanding

force. The value of ω can and will be determined from the fit to dark energy

measurements.

In the course of time, i.e. with increasing L, the matter force becomes smaller

because the matter density dilutes according to ρ = ρ0L
3
0/L

3. This is a well known

effect and makes the first term on the RHS of (7) behave like ∼ 1/L instead of ∼ L.

The differential equation (7) can easily be solved using initial values

L(0) = L0 L̇(0) = H0L0 (9)

where L0 is the (present day) value of the Planck length and H0 the Hubble constant

(=present day value of the Hubble parameter H(t) = ȧ/a = L̇/L). The solution

will be given later in (20).

From the initial conditions it is immediately clear that ω is naturally of the order of

H0, In section IV this will be confirmed by fitting with observations. ω and H(t) are
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extremely small frequencies corresponding to an approximately harmonic movement

of the universe as a whole and a priori have little to do with the Planck frequency

1/TP which is the local response frequency of a single tetron in the elastic medium.

H0 TP ≈ 1.18 10−61 (10)

So seemingly, there are 2 very different fundamental scales in the universe: one is

the single tetron binding energy/Planck energy E and the other is the collective

dark energy of the universe as a whole, which drives it to its equilibrium value.

However, this drive is just a reflection of the tetron binding energy having

a minimum at bond length Ls. Therefore, although E(t) and H(t) are vastly

different, their time behavior is related. See eq. (18) later.

In other words, I will argue that, due to the homogeneity of the elastic medium,

the time behavior of the microsopic tetron energy E(t) and that of the cosmological

frequencies ω and H(t) are related.

III. Quantities-of-Motion Equation

If one thinks it over, a time dependent L(t) has long been observed, namely in the

form of the cosmolgical redshift. Usually this time dependence is not put into L,

G or h, as in eqs. (5) and (6), but into the redshifted photon frequency f and the

expansion paramter a. This is possible, because these quantities always appear in

products h*f and G*a, respectively. So one can choose whether to absorb the time

dependence of L in h and G or in f and a. The conventional choice is to keep G and h

constant. We shall follow this choice - as far as the variation of the Measure-of-Space

equation is concerned.

From this point of view, a varying L(t) is not so much new [apart from the modified

cosmological constant approach to dark energy with −ω2(L − Ls) instead of a Λ-

term].

As for the time dependence of the Planck energy E, the situation is different, i.e.

there is something new.

E can be interpreted as the binding energy among the constituents of the elastic

medium which is our universe. Not too far away from the equilibrium L = Ls it has
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a quadratic dependence on L

E(L) = C +D(L− Ls)2 +O(L− Ls)4 (11)

The constants C and D can be determined from the conditions that E(L0) = E0

and E(Ls) = Es. One obtains

E(L) = Es − (Es − E0)(
L− Ls

L0 − Ls

)2 = Es[1− (1− E0

Es

)(
1− L/Ls

1− L0/Ls

)2] (12)

As will turn out, the energy difference E0 − Es triggers the harmonic dark energy

term ∼ ω2 in eq.(7).

The qualitative behavior of E(L) is that of a parabola and together with the solution

L(t) to (7) one deduces the time dependence E(t) as needed in eqs. (5) and (6). Since

we have absorbed the factors L(t) in eqs. (5) and (6) into the redshift description,

we only have to consider time dependencies according to

h(t) ∼ E(t) G(t) ∼ 1/E(t) (13)

or equivalently

h(t) = h0
E(L)

E(L0)
G(t) = G0

E(L0)

E(L)
(14)

with E(L) to be taken from (12).

Considered as a binding energy, E(t) is actually negative, so one should write

h(t) ∼ |E(t)| and G(t) ∼ 1/|E(t)|. Since E(t) is negative and presently becomes

more negative as it approaches its minimum value Es, one concludes that Plancks

constant presently goes up with time, whereas the gravitational coupling

is decreasing.

At this point one may worry, whether a varying E has a problem with energy con-

servation. Actually, this question also arises in connection with the redshift, and

is usually answered by saying that energy ’goes into the metric’. Interpreting the

universe as an elastic medium one can reformulate this by stating that energy goes

into the total binding energy of the universe.

Nevertheless, the ω-term in (7) can be attributed to an ’energy’

W (L) =
ω2
s

2
− ω2

2
(
L− Ls

L0

)2 =
ω2
s

2
[1− (1− ω2

0

ω2
s

)(
1− L/Ls

1− L0/Ls

)2] (15)
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with

ω2 =
ω2
s − ω2

0

(1− Ls/L0)2
(16)

Note the similarity between (12) and (15). Since the dark energy phenomenon is a

smooth collective effect of all tetron binding energies E having a minimum at bond

length Ls, E and W are proportional. E(L) ∼ W (L) holds in a similar way as

L(t) ∼ a(t) for the cosmic scale factor a and the bond/Planck length L, cf. (8):

W (L)

W (L0)
=

E(L)

E(L0)
(17)

Therefore we can write

ω2
0

ω2
s

=
E0

Es

(18)

The physical difference between W and E is that

-E is the microscopic tetron binding energy and remains roughly of the order of the

present day Planck energy to be measured in Joule.

-the ω’s are frequencies of the universe as a whole and measured in Hertz, and they

are of the order of the Hubble parameter.

However, since the appearance of W is only a reflection of the tetron bond length

driving towards its equilibrium value Ls (where the tetron binding energy E is having

a minimum), the time evolution of W and E is absolutely parallel, in a similar way

as the time evolution of a(t) is parallel to that of L(t).

IV. Comparison with Astrophysical Data

In the laboratory it is more or less impossible to observe time variations of G and

h, because via (1) these quantities define our rulers for mass and energy. While the

universe expands, the rulers will expand, too.

In case of the redshift, astronomers were able to obtain relevant information on L(t)

from observations of distant galaxies. In contrast, it seems difficult to measure the

time variation (12) of energy from such observations, because any process, which

took place in the past in some distant galaxy, will do so with the energy/rulers

relations valid at that time, and when the produced particles arrive on earth they
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will interact with the detectors with the energy/rulers relations valid now; so that

the observer will see no difference between processes now and then.

Furthermore note that for considering time variations of h and G in the early uni-

verse, an approximation of the form (12) will not be sufficient, because at small bond

length L a typical binding energy is known to be governed by a power behavior of

the form E(L) ∼ L−n.

Not testable in particle processes, it turns out, however, that E(t) from eq. (12)

can be directly observed in dark energy measurements. Dark energy observations

do not usually concern the very early universe, so that the parabolic approximation

(12) should be good enough. They are in effect testing eq. (7), and E(t) in (12) not

only governs the ω-term but according to (14) and (13) also enters the G-term on

the RHS of (7).

In order to check our ideas with astrophysical data, we go over from L(t) to the

redshift z defined by

z(t) =
L

L0

− 1 (19)

The most precise measurement of the dark energy effect comes from the study of

type-Ia supernovae in distant galaxies. I shall compare my redshift prediction to

those data in a small-t approximation. This is justified because on cosmic scales the

times involved are not too large.

Under this condition, up to O(t4), the solution to (7) can be written as

z = tH0 +
t2H2

0

2
[−Ω0

M

2
+

ω2
0

H2
0

Es

EP
− 1

Ls

L0
− 1

+
Λc2

3H2
0

]

+
t3H3

0

6
[Ω0

M(1 +
Es

EP
− 1

Ls

L0
− 1

)− ω2
0

H2
0

Es

EP
− 1

(Ls

L0
− 1)2

+
Λc2

3H2
0

] (20)

The term indicated in red is the contribution from the time dependent Newton

constant, the terms in blue come from the harmonic dark energy ω contribution,

and the terms in green from a cosmological constant (the latter to be ignored in the

present model).

Ω0
M =

4π

3

G0ρ0
H2

0

(21)
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is the present day density parameter of matter in the universe, frequently used in

this type of analysis. In the dark energy interpretation with a cosmological constant

it comes out as roughly 0.3, which is usually considered a reasonable value.

As for any parabola, hidden in the parabolic dark energy (12) and (15) are 3 pa-

rameters, which need to be determined from observations. One can choose them as

(i) Es

E0
= ω2

s

ω2
0
> 1 = the ratio of the Planck energies resp dark energies at cosmic

equilibrium and at present

(ii) Ls

L0
> 1 = the ratio of the tetron binding lengths at cosmic equilibrium and at

present

(iii)
ω2
0

H2
0
= the ratio of the present dark energy over the present value of the Hubble

constant.

Since we have more parameters here than in the case of a cosmological constant,

the observations will only give relations between i, ii and iii. Furthermore, we have

to take an estimate for Ω0
M from other sources. Nevertheless, our next aim is to see

what the observations allow to say.

A fit to the redshifts of supernovae yields[6]

z = tH0 +
t2H2

0

2
(1.00± 0.05) +

t3H3
0

6
(0.54± 0.05) (22)

Comparing with (21) one deduces that it is easy to fit i, ii and iii to the data. For

example, choosing Ω0
M = 0.3 and

-Ls = 10L0 one obtains Es = 1.34E0 and ω2
0 = 3.4H2

0

-Ls = 2L0 one obtains Es = 5.6E0 and ω2
0 = 0.25H2

0

At first sight, the fact that data can be fitted this way so easily, seems to be a big

surprise. After all, we are fitting numbers which usually are explained with an ex-

pontential increase due to a cosmological constant. The essential feature here is the

contribution from the time variation of Newton’s constant (red) which in combina-

tion with the harmonic dark energy contribution (blue) leads to an agreement with

observations. The point is that since G(t) is going down with time, the retarding

effect of (ordinary and dark) matter becomes smaller, and no exponential increase

of the dark energy term as in the cosmological constant approach is needed.

In other words, although the harmonic force ansatz corresponds to a more moderate

re-acceleration of the universe than the cosmological constant term, this is compen-
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sated by the time variation of energy as a whole which affects Newton’s constant.

V. Cosmic Time Dependence of Particle Physics Parameters

Now we want to extend our analysis to the ’constants’, which describe the particle

physics interactions. We shall discuss all parameters of the Standard Model (SM)

of particle physics, i.e.

-the 3 dimensionless gauge couplings: here we shall consider the weak and electro-

magnetic fine structure constants αweak and α together with the QCD scale param-

eter ΛQCD.

-the 2 parameters of the Higgs potential: here we shall consider the Higgs mass mH

and the vacuum expectation value v of the Higgs field. Note that using v is equiva-

lent to using the Fermi coupling GF = 1/[
√
2v2], and the quartic Higgs coupling is

given by λ = m2
H/v

2.

-the Yukawa couplings, which are all proportional to v.

Except for αweak and α, all these parameters have dimension of energy. If one looks

at the definition of the fine structure constant

α =
e2

4πϵ0~c
(23)

it is the only dimensionless combination which can be built from the quantities e2/ϵ0,

h and c. As dimensionless, it is independent of the choice of rulers for time, length

and energy. This is good news, because in looking for a cosmic time dependence of

α one circumvents all the problems which one usually has in determining the time

dependence of dimensionful quantities like E(t). The bad news in considering ratios

like α is that most effects tend to drop out between numerator and denominator

(see later).

An interesting point is that although α itself is not an energy, it can be written as

a ratio of forces or energies. Namely we can rewrite (23) as

α =
e2

4πϵ0r(2)
/
G0M

2
0

r(2)
(24)

i.e. as the ratio of the electrostatic Coulomb (force) energy and the gravitational

(force) energy of 2 point particles with elementary charge e and Planck mass M0 at

an arbitrary distance r.
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From this point of view the gravitational force is by no means small as compared to

the electric force, but - for such tetron-like test particles - is 137 times stronger!

The key relation here is that from (2) one has

~c = G0M
2
0 = L0E0 (25)

Defining Q2 = e2/[4πϵ0] and introducing possible time dependencies, we have

α(t) =
Q2(t)/L(t)

E(t)
(26)

whereQ2 comprises the electromagnetic effect in a measurement-system independent

way. Obviously, Q2 has the dimension of length×energy. Since measurements and

astrophysical observations show almost no time variation of α, the time dependence

of Q2/L must be the same as that of E(t) to a very good approximation.

Referring once again to the tetron model, this has to do with the fact, that the time

dependence of Q2 is determined by that of the binding energy E(t)[3], so that any

time dependence of α drops out between numerator and denominator.

To understand this point in detail, one should note that the tetron model is more

than a microscopic theory for the cosmic elastic medium. The tetrons actually

appear in the form of tetrahedrons which extend into a 3-dimensional internal space

and whose excitations can be shown to represent the complete 3-family elementary

particle spectrum[3, 4].

The internal interactions among tetrons are typical quantum interactions in the

sense that one always has ’exchange’ energies in addition to ’direct’ energies, simply

because for 2 (or more) identical particles - tetrons in this case - with single wave

functions f1 and f2 their total wave functions are either symmetric or antisymmetric

of the form f1(x1)f2(x2)± f1(x2)f2(x1). Correspondingly, the relevant 2-point func-

tion of the tetron Hamiltonian can be described as the sum of E(t) and a function

J(t) usually called the exchange energy. In the present case it may be called ’inter-

nal exchange energy’ because it arises as an integral including the internal space, in

which the tetrahedrons are living.

E =

∫
d6x1

∫
d6x2f1(x1)f2(x2)V (1− 2)f1(x1)f2(x2) (27)

J =

∫
d6x1

∫
d6x2f1(x1)f2(x2)V (1− 2)f1(x2)f2(x1) (28)
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where the integrals are actually 6-dimensional, because they extend over both in-

ternal and physical space. V(1-2) is the potential between 2 tetrons, and f1 and f2

are their wave functions.2

In a 6-dimensional environment the Green’s function of the Laplace operator is r−4,

instead of r−1 in the 3-dimensional case. Therefore, the most promising choice seems

to be

V (1− 2) =
N

|x1 − x2|4
(29)

with some coupling constant N. A rough estimate of N can be obtained by equating

V(1-2) at the Planck length to the Planck energy. This gives an estimate of the

fundamental tetron coupling N:

N

L4
0

≈ E0 =⇒ N ≈ 10−130m
6kg

s2
(30)

When trying to calculate E and J according to (27) and (28), one naturally runs into

the so-called hierarchy problem of physics. Namely the question, why the relevant

energy scales of gravity (E0 ≈ 1019GeV) and of particle physics (J0 = 1− 100GeV)

are so much different. In the framework of the tetron model, the question can be

reformulated: why is the exchange energy J so much smaller than the direct energy

E?

Looking at (27) and (28), one sees that J ≪ E can happen, if the tetron wave

functions are strongly localized. In the extreme case of delta functions one even finds,

that the exchange integral vanishes, while the direct integral attains the value (30).

Such an extreme localization is of course unnatural. In order to get J ≈ 10−17E,

it is enough to demand that f(x) drops from its maximum value at x = 0 by about

2If one looks into the details of the tetron model[3], the situation is a bit more complicated than

described here. First of all, f1 and f2 are the wave functions of tetron-antitetron pairs, and V(1-2)

is the potential between these 2 pairs. Secondly, to really calculate E and J from the 6-dimensional

integrals one has to take the configuration of 2 adjacent tetrahedrons with at least 8 tetrons into

account. Furthermore, there are actually 2 types of exchange integrals, one corresponding to the

inter-tetrahedral interactions, which gives rise to the Fermi scale and is responsible for the large

masses mt, mW and mH of order 100 GeV, and another one corresponding to the inner-tetrahedral

interactions, which gives rise to the lighter fermion masses and the QCD scale.
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a factor of 10 at x = L0. This is because J is a multidimensional integral and

to integrate the product dx2f2(x2)V (1 − 2)f1(x2) will give a suppression factor of

roughly ∼ 0.1 for each of the 6 dimensions. Similarly for the x1-integration.

Except for α, which is constant, I will argue that J(t) gives a universal time

dependence for all internal/particle interactions in a similar way as the

Planck energy E(t) for the spacetime quantities of motion. In other words,

while the time-dependence of all dimensionful spacetime quantities is dictated by

E(t), the time dependencies of dimensionful SM particle properties like v, mH , mW

and all quark and lepton masses can be described in terms J(t).

To see how this works in detail, one should relate J to the electroweak symmetry

breaking scale. This was already done in [3], where it was shown that the critical

energy of the electroweak phase transition is given by an exchange integral J of the

form (28). This is because in the tetron model the electroweak phase transition

corresponds to an alignment of the tetrahedrons in the internal spaces, and the

Curie energy of this phase transition is given by J. Since the critical energy of the

electroweak phase transition is approximately given by the Higgs vev v, one has

v = J or, equivalently

GF (t) =
1√

2J2(t)
(31)

It is well known that all particle masses in the SM are proportional to v. Therefore,

J enters all dimensionful parameters of the electroweak SM - the fermion masses,

the Higgs vev and the masses of the weak gauge bosons - in a linear way. All these

quantities are ∼ J(t).

Just as for E, the time-dependence of J arises through the time variation of the

bond length L(t). If one would calculate the integrals J and E (27) and (28) as

a function of L, then knowing L(t) according to (7), one could deduce from that

the time-dependence of the Fermi constant (31) and compare it to present upper

limits[7].

Unfortunately, the situation is not that simple. First of all, as mentioned in footnote

2, the integrals are difficult to calculate. Secondly, in everything we do, in every

experiment we undertake, we encounter the Planck energy E(t) as a ruler, whose

time dependence influences our perception of dimensionful quantities like GF , mW
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and so on. To say it plainly, the time dependence we can perceive is not that of J(t)

but that of the ratio J(t)/E(t).

If, for example, J and E would have an identical time dependence, the time depen-

dence of dimensionful SM parameters like (31) could never be measured.

By analyzing the structure of the direct and the exchange integrals E and J in some

detail, one can indeed show, that their dependence on the bond length L is quite

similar, both with an extremum at nearly the same value Ls. Making a similar

ansatz for J(L) as for E(L) in (12)

J(L) = Js − (Js − J0)(
L− Ls

L0 − Ls

)2 = Js[1− (1− J0
Js

)(
1− L/Ls

1− L0/Ls

)2] (32)

one sees that the crucial part is the ratio J0/Js. To the extent that the equality

Js
J0

=
Es

E0

(33)

holds, a time dependence of SM parameters cannot be measured.3 Conversely, any

observed time dependence in a SM parameter can be traced back to a deviation

from (33).

Actually, there is no reason, why (33) should be an exact relation. First of all, the

integrals (27) and (28) are definitely distinct. Secondly, particle physics interactions

have to do with inner symmetries not contained in the energetic analysis of the elastic

universe [governed by E(t)], and their cosmic time dependence should therefore

follow its own rule [given by J(t)].

VI. Discussion

In this study a theory concerning the time dependence of all known fundamental

physical parameters has been developed. It rests on the idea that dark energy is

a harmonic rather than an exponential effect, which is furthermore related to the

binding energy of the underlying constituents of the universe. As has been shown,

one is led to a time-dependence of Newton’s and Planck’s constant.

3Such a statement would be in accord with the present status of observations, which only give

upper limits on time dependencies of SM parameters.
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Furthermore

-microsopic (L) und cosmic (a) length scales are connected in a simple linear kind

of way (’the universe expands in the same manner as the tetron bonds expand’), cf.

(8).

-In an analogous fashion, Planck energies E(t) and dark energies ω are linearly

related (’the total dark energy of the universe increases linearly with the tetron

binding energy’) via (17).

Since the universe is rather cool by now and apparently expands in a rather homoge-

neous way, these assumptions appear to be very good approximations. In particular,

it was proven that they lead to agreement with present day dark energy observations.

Thereby it has turned out that there is a significant contribution to the observed

dark energy effect from the time variation of Newton’s constant. Since G(t) is go-

ing down with time, the retarding effect of ordinary matter becomes smaller, and

no exponential increase of the dark energy effect as in the cosmological constant

approach is needed.

The Planck energy E0 and its time-dependent generalization E(t) play a central role

in the considerations presented here, see (5), (6) and (12). Actually, E0 has been

used in this paper with 2 meanings:

-it represents the gravitational energy of the interaction of 2 matter particles with

Planck mass M0 at Planck distance L0, i.e. E0 = G0M
2
0/L0.

-it describes the binding energy of 2 tetrons bound at distance L0.

Concerning the fundamental parameters of particle physics, we have seen that they

depend on cosmic time via the internal exchange function J, whose dependence on

L is similar but not exactly the same as that of E.

A remaining problem is the calculation of E (Planck energy) and J (internal exchange

energy) from first principles, i.e. from fundamental tetron interactions.

Another problem is the question of energy conservation in a theory with a varying

G(t). Energy conservation is an uneasy business in GR anyhow[5], but assuming a

time varying G makes the set of the ordinary FLRW equations

1

2
ȧ2 − 4π

3
Gρa2 = 0 (34)

aä+
1

2
ȧ2 = 0 (35)
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which comprises a ’force’ equation for ä and an ’energy’ equation for ȧ2/2, incon-

sistent. [The FLRW equations have been written down here taking Λ = 0, p = 0

and k = 0]. (34) and (35) are 2 differential equations for one function a(t) and are

only consistent, as long as the product Gρ behaves like ∼ a−3 corresponding to a

uniformly diluting mass density and no variation of the Newton constant at all.

The underlying reason is that Einstein’s theory itself relies on a constant, time-

independent G. This has to do with the fact that it is a theory for an elastic medium

whose basic properties and couplings do not change when the medium expands. For

the large expansion factors, however, which we encounter on the cosmic scale, such

an assumption seems unrealistic.

In order to solve the conflict between (34) and (35) in case of a varying G I am

therefore retreating to the point of view that a Hooke-type of force

ä = −4π

3
G(a)ρ(a)a (36)

is induced by matter, with non-constant coefficients ρ(a) ∼ a−3 and G(a) ∼ 1/E(a),

and use this as the basic starting point for (7).

In a similar way as it does not allow a time-dependent G, general relativity does not

include an ω-term like in (7). In other words, the harmonic expansion describing

the behavior of the elastic medium for L → Ls is not part of Einstein’s theory.

This is not a big surprise, because GR is a theory of local curvature induced by

energy-momentum and does not know about the equilibrium of the unterlying elastic

medium.
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