
FREE QUANTUM GROUPS AND RELATED TOPICS

TEO BANICA

Abstract. The unitary group UN has a free analogue U+
N , and the study of the closed

subgroups G ⊂ U+
N is a problem of general interest. We review here the general theory

of U+
N and its subgroups, with all the needed preliminaries included. We discuss as well

a number of more advanced topics, selected for their beauty, and potential importance.
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Introduction

One important discovery, going back to the beginning of the 20th century, is that at the
subatomic level the “coordinates” of the various moving objects (particles) do not neces-
sarily commute. In fact, at this level, our ambient space R3 gets replaced with something
not commutative, and infinite dimensional - typically a space of infinite matrices.
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Understanding why is it so, and working out all the details, remains an open problem,
belonging of course to physics. However, mathematically speaking, the problem makes
sense as well. To be more precise, the challenge is that of developing a theory of “non-
commutative geometry”, as nice and beautiful as the classical geometry. With a bit of
luck, such a theory could be exactly what the physicists are looking for.

The quantum groups belong to this circle of ideas. They are meant to play the role of
“symmetry groups” in this hypothetical noncommutative geometry theory.

There is no simple way of introducing the quantum groups. Indeed, these objects are of
“quantum” nature, in the sense that, as for the elementary particles, their coordinates do
not necessarily commute. This is not much of an issue in the long run, after getting used
to the “think quantum” philosophy, but in order to get started, some sort of algebraic
geometry formalism is definitely needed. We will use here the operator algebra one.

As a basic, central example of a quantum group, we have the free analogue U+
N of the

unitary group UN . This quantum group appears as follows:

C(U+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

To be more precise, on the right we have a certain universal algebra, constructed with
generators and relations. Our claim is that if we call this algebra C(U+

N ), then U+
N is a

compact quantum group, which can be thought of as being a “free analogue” of UN .

Our first task is that of explaining the definition of the universal algebra on the right.
The details here are as follows:

(1) Consider an abstract square matrix u = (uij). Assuming that the entries uij live
in some complex algebra having an involution ∗, we can form the adjoint matrix,
according to the formula u∗ = (u∗ji). With this convention, our first condition,

u∗ = u−1, is a shorthand for the usual unitarity condition uu∗ = u∗u = 1.
(2) We recall that for the usual matrices U ∈ MN(C) the transpose of a unitary

matrix is unitary too, and we have U∗ = U−1 =⇒ U t = Ū−1. However, this
latter implication fails for the abstract matrices u = (uij) that we are interested
in, and this is why we have to impose the condition ut = ū−1 as well.

(3) With these observations in hand, we can consider the universal complex algebra
with involution generated by N2 abstract variables (uij)i,j=1,...,N , subject to the
4N2 relations coming from the matrix equalities uu∗ = u∗u = utū = ūut = 1,
which make our unitarity conditions u∗ = u−1, ut = ū−1 hold.

(4) Finally, we would like to have a norm on our algebra, having the C∗-algebra
property ||aa∗|| = ||a||2. In order to do so, we can simply consider the abstract
biggest C∗-norm on our algebra, and complete with respect to this norm. We
obtain in this way the universal C∗-algebra that we are interested in.
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Summarizing, we have constructed so far a certain universal C∗-algebra, say A. Now
observe that we have an obvious arrow A → C(UN), mapping the abstract variables uij
to the coordinates of the unitary matrices, U → Uij. With a bit more work, one can
prove that we have in fact Acomm = C(UN), where the quotient A → Acomm is obtained
by assuming that the variables uij, u

∗
ij commute. Thus, our algebra A appears as a

“liberation” of C(UN), so it is natural to denote it by C(U+
N ), with the abstract symbol

U+
N standing for some kind of “quantum space”, obtained by enlarging UN .

In order to further build now on this construction, observe that the algebra C(U+
N )

has a comultiplication, a counit and an antipode map, constructed by using the universal
property of C(U+

N ), according to the following formulae:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

There is an obvious similarity here with the group operations for the usual unitary
matrices, namely (UV )ij =

∑
k UikVkj, (1N)ij = δij, (U−1)ij = U∗ji. In fact, ∆, ε, S can

be thought of as coming from a multiplication map m : U+
N × U+

N → U+
N , a unit map

u : {.} → U+
N , and an inverse map i : U+

N → U+
N . Thus our quantum space U+

N is a
compact quantum group, which appears by definition as a free version of UN .

All this might seem of course a bit mysterious, but will be explained in great detail,
in what follows. We will first review the operator algebra theory, and the space/algebra
correspondence X ↔ C(X) coming from it. Then we will discuss the Hopf algebra
formalism, which amounts in replacing the structure maps m,u, i of a group or quantum
group G by the corresponding maps ∆, ε, S at the level of the associated function algebra
C(G). With these ingredients in hand, we will be able to talk then about compact
quantum groups in general, and about the above quantum group U+

N in particular.

More generally, we will be interested here in the closed quantum subgroups G ⊂ U+
N ,

the main examples of such quantum groups being:

(1) The compact Lie groups, G ⊂ UN .

(2) The duals G = Γ̂ of the finitely generated groups Γ =< g1, . . . , gN >.
(3) Deformations of the compact Lie groups, with parameter q = −1.
(4) Liberations, half-liberations, quantum permutation groups, and more.

Once again, all this remains to be explained. Let us mention, however, that the key
examples are the compact Lie groups, which appear first in the above list. It is known,
indeed, that any such group G appears as a subgroup of a unitary group, so we have
embeddings G ⊂ UN ⊂ U+

N , which make G a quantum group in our sense. Thus, by
getting back now to the general case, we can think of the closed quantum subgroups
G ⊂ U+

N that we are interested in as being the “compact quantum Lie groups”.
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We will present here the main tools for dealing with such objects, and we will discuss
as well a number of more advanced topics. The general idea is that such quantum groups
do not have a Lie algebra, or much differential geometric structure, but one can study
them via representation theory, with a mix of algebraic and probability techniques.

Regarding the possible applications of all this, the problem is open. The closed sub-
groups G ⊂ U+

N are potentially related to many things, and can normally be of help in
connection with a number of questions in quantum physics. This remains to be seen.

The present text is organized in four parts, as follows:

(1) Sections 1-3 are an introduction to the closed subgroups G ⊂ U+
N , with the main

examples (ON , O
∗
N , O

+
N , UN , U

∗
N , U

+
N ) explained in detail.

(2) Sections 4-6 contain basic theory, with the main examples, their bistochastic ver-
sions (BN , B

+
N , CN , C

+
N) and their twists (ŌN , Ō

∗
N , ŪN , Ū

∗
N) worked out.

(3) Sections 7-9 are concerned with quantum permutations (SN , S
+
N), quantum reflec-

tions (HN , H
∗
N , H

+
N , KN , K

∗
N , K

+
N), and other related quantum groups.

(4) Sections 10-12 deal with some further topics, which are in need of more develop-
ment: toral subgroups, homogeneous spaces, and modelling questions.

Acknowledgements.

My first thanks go to Professor S.L. Woronowicz, whose papers [98], [99] made all this
possible. Although explained here, these papers remain a must-read.

I would like to thank my friends and collaborators Julien Bichon, Alex Chirvasitu,
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1. Operator algebras

In order to introduce the quantum groups, we will use the space/algebra correspon-
dence coming from operator algebra theory. Here by “operator” we mean bounded linear
operator T : H → H on a Hilbert space, and our starting point will be:

Definition 1.1. A Hilbert space is a complex vector space H given with a scalar product
< x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x 6= 0.
(4) H is complete with respect to the norm ||x|| = √< x, x >.

Here the fact that ||.|| is indeed a norm comes from the Cauchy-Schwarz inequality,
| < x, y > | ≤ ||x|| · ||y||, which can be established by using the fact that the degree 2
polynomial f(t) = ||x+ ty||2 being positive, its discriminant must be negative.

As a basic example, we have H = CN , which scalar product < x, y >=
∑

i xiȳi.
Another example is H = l2(N), the space of sequences x = (xi) satisfying

∑
i |xi|2 < ∞,

with similar scalar product. In fact, given a measured space X, we have as example
H = L2(X), with < f, g >=

∫
X
f(x)g(x)dx. Observe that with X = {1, . . . , N} and

X = N, with the counting measure, we obtain the spaces H = CN and H = l2(N).
Given a Hilbert space H, any algebraic basis {fi}i∈I can be turned into an orthonormal

basis {ei}i∈I , by using the Gram-Schmidt procedure. Thus, we have H ' l2(I). When I
is countable, H is called separable. As a basic example, H = L2[0, 1] is separable, because
we can use the basis fi = xi with i ∈ N, coming from the Weierstrass theorem.

Let us get now into the study of operators. We first have:

Proposition 1.2. Let H be a Hilbert space, with orthonormal basis {ei}i∈I . The algebra
L(H) of linear operators T : H → H is then isomorphic to the matrix algebra MI(C),
with T corresponding to the matrix Mij =< Tej, ei >. In particular:

(1) In the finite dimensional case, where dim(H) = N < ∞, we obtain in this way a
usual matrix algebra, L(H) 'MN(C).

(2) In the separable infinite dimensional case, where I ' N, we obtain in this way the
usual algebra of infinite matrices, L(H) 'M∞(C).

Proof. The correspondence T →M is indeed linear, its kernel is {0}, and its image is the
whole MI(C). As for the last two assertions, these are clear as well. �

The above result is something quite theoretical, because for basic spaces like L2[0, 1],
which do not have a simple orthonormal basis, the isomorphism L(H) ' M∞(C) that
we obtain is not very useful. Thus, while the operators T : H → H are basically some
infinite matrices, it is better to think of these operators as being objects on their own.

In what follows we will be interested in the operators T : H → H which are bounded.
Regarding such operators, we have the following result:
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Theorem 1.3. Given a Hilbert space H, the linear operators T : H → H which are
bounded, in the sense that ||T || = sup||x||≤1 ||Tx|| is finite, form a complex algebra with
unit, denoted B(H). This algebra has the following properties:

(1) B(H) is complete with respect to ||.||, and so we have a Banach algebra.
(2) B(H) has an involution T → T ∗, given by < Tx, y >=< x, T ∗y >.

In addition, the norm and the involution are related by the formula ||TT ∗|| = ||T ||2.

Proof. The fact that we have indeed an algebra follows from:

||S + T || ≤ ||S||+ ||T || , ||λT || = |λ| · ||T || , ||ST || ≤ ||S|| · ||T ||

Regarding now (1), if {Tn} ⊂ B(H) is Cauchy then {Tnx} is Cauchy for any x ∈ H, so
we can define the limit T = limn→∞ Tn by setting Tx = limn→∞ Tnx.

As for (2), here the existence of T ∗ comes from the fact that ϕ(x) =< Tx, y > being
a linear map H → C, we must have ϕ(x) =< x, T ∗y >, for a certain vector T ∗y ∈ H.
Moreover, since this vector is unique, T ∗ is unique too, and we have as well:

(S + T )∗ = S∗ + T ∗ , (λT )∗ = λ̄T ∗ , (ST )∗ = T ∗S∗ , (T ∗)∗ = T

Observe also that we have indeed T ∗ ∈ B(H), because:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >= sup
||y||=1

sup
||x||=1

< x, T ∗y >= ||T ∗||

Regarding the last assertion, we have ||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2. Also, we have:

||T ||2 = sup
||x||=1

| < Tx, Tx > | = sup
||x||=1

| < x, T ∗Tx > | ≤ ||T ∗T ||

By replacing T → T ∗ we obtain from this ||T ||2 ≤ ||TT ∗||, and we are done. �

In view of Proposition 1.2 above we have an embedding B(H) ⊂ MI(C), with the
subalgebra B(H) consisting of the I × I complex matrices satisfying a certain technical
boundedness condition. Moreover, in this picture the adjoint operation T → T ∗ takes a
very simple form, namely (M∗)ij = M ji at the level of the associated matrices.

We will be interested here in the algebras of operators, rather than in the operators
themselves. The axioms here, coming from Theorem 1.3, are as follows:

Definition 1.4. A unital C∗-algebra is a complex algebra with unit A, having:

(1) A norm a→ ||a||, making it a Banach algebra (the Cauchy sequences converge).
(2) An involution a→ a∗, which satisfies ||aa∗|| = ||a||2, for any a ∈ A.

We know from Theorem 1.3 that the full operator algebra B(H) is a C∗-algebra, for any
Hilbert space H. In particular, any usual matrix algebra MN(C) is a C∗-algebra. Observe
that at N = 1 our C∗-algebra is A = C, with norm z → |z| and involution z → z̄, and
with the condition ||aa∗|| = ||a||2 corresponding to the formula |zz̄| = |z|2.



QUANTUM GROUPS 7

More generally, any closed ∗-subalgebra A ⊂ B(H) is a C∗-algebra. The celebrated
Gelfand-Naimark-Segal (GNS) theorem states that any C∗-algebra appears in fact in this
way. This is something non-trivial, and we will be back to it later on.

For the moment, we are interested in developing the theory of C∗-algebras, without
reference to operators, or Hilbert spaces. Our first task will be that of understanding the
structure of the commutative C∗-algebras. As a first observation, we have:

Proposition 1.5. If X is an abstract compact space, the algebra C(X) of continuous
functions f : X → C is a C∗-algebra, with structure as follows:

(1) The norm is the usual sup norm, ||f || = supx∈X |f(x)|.
(2) The involution is the usual involution, f ∗(x) = f(x).

This algebra is commutative, in the sense that fg = gf , for any f, g ∈ C(X).

Proof. Almost everything here is trivial. Observe also that we have indeed:

||ff ∗|| = sup
x∈X
|f(x)f(x)| = sup

x∈X
|f(x)|2 = ||f ||2

Finally, we have fg = gf , since f(x)g(x) = g(x)f(x) for any x ∈ X. �

Our claim now (the Gelfand theorem) is that any commutative C∗-algebra appears in
this way. This is a non-trivial result, which requires a number of preliminaries.

We will need some basic spectral theory. Let us begin with:

Definition 1.6. The spectrum of an element a ∈ A is the set

σ(a) =
{
λ ∈ C

∣∣a− λ 6∈ A−1
}

where A−1 ⊂ A is the set of invertible elements.

As a basic example, the spectrum of a usual matrix M ∈MN(C) is the collection of its
eigenvalues. Also, the spectrum of a continuous function f ∈ C(X) is its image. In the
case of the trivial algebra A = C, the spectrum of an element is the element itself.

As a first, basic result regarding spectra, we have:

Proposition 1.7. We have the following formula, valid for any a, b ∈ A:

σ(ab) ∪ {0} = σ(ba) ∪ {0}

Moreover, there are examples where σ(ab) 6= σ(ba).

Proof. We first prove that 1 /∈ σ(ab) =⇒ 1 /∈ σ(ba). Assume indeed that 1 − ab is
invertible, with inverse c = (1− ab)−1. We have abc = cab = c− 1, and we obtain:

(1 + bca)(1− ba) = 1 + bca− ba− bcaba
= 1 + bca− ba− bca+ ba

= 1
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A similar computation shows that we have (1− ba)(1 + bca) = 1, and we conclude that
1− ba is invertible, with inverse 1 + bca, which proves our claim.

By multiplying by scalars, we deduce from this that we have λ /∈ σ(ab) =⇒ λ /∈ σ(ba)
for any λ ∈ C− {0}, which leads to the conclusion σ(ab) ∪ {0} = σ(ba) ∪ {0}.

Regarding now the last claim, let us first recall that for usual matrices a, b ∈ MN(C)
we have 0 ∈ σ(ab) ⇐⇒ 0 ∈ σ(ba), because ab is invertible if any only if ba is.

However, this latter fact fails for general operators on Hilbert spaces. As a basic
example, we can take a, b to be the shift S(ei) = ei+1 on the space l2(N), and its adjoint.
Indeed, we have S∗S = 1, and SS∗ being the projection onto e⊥0 , it is not invertible. �

Given an element a ∈ A, and a rational function f = P/Q having poles outside σ(a),
we can construct the element f(a) = P (a)Q(a)−1. For simplicity, we write:

f(a) =
P (a)

Q(a)

With this convention, we have the following result:

Proposition 1.8. We have the “rational functional calculus” formula

σ(f(a)) = f(σ(a))

valid for any rational function f ∈ C(X) having poles outside σ(a).

Proof. In order to prove this result, we can proceed in two steps, as follows:
(1) Assume first that we are in the polynomial case, f ∈ C[X]. We pick λ ∈ C, and we

write f(X)− λ = c(X − r1) . . . (X − rn). We have then, as desired:

λ /∈ σ(f(a)) ⇐⇒ f(a)− λ ∈ A−1

⇐⇒ c(a− r1) . . . (a− rn) ∈ A−1

⇐⇒ a− r1, . . . , a− rn ∈ A−1

⇐⇒ r1, . . . , rn /∈ σ(a)

⇐⇒ λ /∈ f(σ(a))

(2) Assume now that we are in the general case, f ∈ C(X). We pick λ ∈ C, we write
f = P/Q, and we set F = P − λQ. By using (1), we obtain:

λ ∈ σ(f(a)) ⇐⇒ F (a) /∈ A−1

⇐⇒ 0 ∈ σ(F (a))

⇐⇒ 0 ∈ F (σ(a))

⇐⇒ ∃µ ∈ σ(a), F (µ) = 0

⇐⇒ λ ∈ f(σ(a))

Thus, we have obtained the formula in the statement. �
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Given an element a ∈ A, its spectral radius ρ(a) is the radius of the smallest disk
centered at 0 containing σ(a). We have the following key result:

Proposition 1.9. Let A be a C∗-algebra.

(1) The spectrum of a norm one element is in the unit disk.
(2) The spectrum of a unitary element (a∗ = a−1) is on the unit circle.
(3) The spectrum of a self-adjoint element (a = a∗) consists of real numbers.
(4) The spectral radius of a normal element (aa∗ = a∗a) is equal to its norm.

Proof. We use the various results established above.
(1) This comes from the following formula, valid when ||a|| < 1:

1

1− a
= 1 + a+ a2 + . . .

(2) This follows by using Proposition 1.8, with f(z) = z−1. Indeed, we have:

σ(a)−1 = σ(a−1) = σ(a∗) = σ(a)

Now since λ−1 = λ̄ characterizes the elements λ ∈ T, this gives the result.
(3) This follows by using (2), and Proposition 1.8, with f(z) = (z + it)/(z − it), with

t ∈ R. Indeed, for t >> 0 the element f(a) is well-defined, and we have:(
a+ it

a− it

)∗
=
a− it
a+ it

=

(
a+ it

a− it

)−1

Thus f(a) is a unitary, and by using (2) its spectrum is contained in T. We conclude
that we have f(σ(a)) = σ(f(a)) ⊂ T, and so σ(a) ⊂ f−1(T) = R, as desired.

(4) We already know from (1) that we have ρ(a) ≤ ||a||. For the converse, if we fix a
number ρ > ρ(a), we have the following computation:∫

|z|=ρ

zn

z − a
dz =

∞∑
k=0

(∫
|z|=ρ

zn−k−1dz

)
ak = an−1

By applying the norm and taking n-th roots we obtain from this:

ρ ≥ lim
n→∞

||an||1/n

In the case a = a∗ we have ||an|| = ||a||n for any exponent of the form n = 2k, and by
taking n-th roots we get ρ ≥ ||a||. This gives the missing inequality ρ(a) ≥ ||a||.

In the general case aa∗ = a∗a we have an(an)∗ = (aa∗)n, and we get ρ(a)2 = ρ(aa∗).
Now since aa∗ is self-adjoint, we get ρ(aa∗) = ||a||2, and we are done. �

Summarizing, we have so far a collection of results regarding the spectra of the elements
in C∗-algebras, which are similar to the results regarding the eigenvalues of the usual
matrices. We are now in position of proving a key result, from [61], namely:
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Theorem 1.10 (Gelfand). Any commutative C∗-algebra is the form C(X), with its “spec-
trum” X = Spec(A) appearing as the space of characters χ : A→ C.

Proof. Given a commutative C∗-algebra A, we can define indeed X to be the set of
characters χ : A → C, with the topology making continuous all the evaluation maps
eva : χ → χ(a). Then X is a compact space, and a → eva is a morphism of algebras
ev : A→ C(X). We first prove that ev is involutive. We use the following formula:

a =
a+ a∗

2
− i · i(a− a

∗)

2
Thus it is enough to prove the equality eva∗ = ev∗a for self-adjoint elements a. But this

is the same as proving that a = a∗ implies that eva is a real function, which is in turn
true, because eva(χ) = χ(a) is an element of σ(a), contained in R.

Since A is commutative, each element is normal, so ev is isometric:

||eva|| = ρ(a) = ||a||
It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass

theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. �

As a first consequence of the Gelfand theorem, we can extend Proposition 1.8 above in
the case of the normal elements (aa∗ = a∗a), in the following way:

Proposition 1.11. Assume that a ∈ A is normal, and let f ∈ C(σ(a)).

(1) We can define f(a) ∈ A, with f → f(a) being a morphism of C∗-algebras.
(2) We have the “continuous functional calculus” formula σ(f(a)) = f(σ(a)).

Proof. Since our element a is normal, the C∗-algebra B =< a > that is generates is
commutative, and the Gelfand theorem gives an identification B = C(X), with X =
Spec(B). The map X → σ(a) given by evaluation at a being bijective, we have an
identification X = σ(a). Thus we have B = C(σ(a)), and this gives all the assertions. �

The Gelfand theorem has as well some important philosophical consequences. Indeed,
in view of this theorem, we can formulate the following definition:

Definition 1.12. Given an arbitrary C∗-algebra A, we write A = C(X), and call X a
noncommutative compact space. Equivalently, the category of the noncommutative com-
pact spaces is the category of the C∗-algebras, with the arrows reversed.

When A is commutative, the space X considered above exists indeed, as a Gelfand
spectrum, X = Spec(A). In general, X is something rather abstract, and our philosophy
here will be that of studying of course A, but formulating our results in terms of X. For
instance whenever we have a morphism Φ : A→ B, we will write A = C(X), B = C(Y ),
and rather speak of the corresponding morphism φ : Y → X. And so on.

We will see later on, after developing some more theory, that this formalism has its
limitations, and needs a fix. For the moment, however, let us explore the possibilities
that it opens up. As basic examples of such noncommutative spaces, we have:
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Definition 1.13. We have noncommutative spaces, constructed as follows,

C(SN−1
R,+ ) = C∗

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2
i = 1

)

C(SN−1
C,+ ) = C∗

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
called respectively the free real sphere, and the free complex sphere.

Here the C∗ symbols on the right stand for “universal C∗-algebra generated by”. The
fact that such universal C∗-algebras exist indeed follows by considering the corresponding
universal ∗-algebras, and then completing with respect to the biggest C∗-norm. Observe
that this biggest C∗-norm exists indeed, because the quadratic conditions give:∑

i

||xi||2 =
∑
i

||xix∗i || ≤ ||
∑
i

xix
∗
i || = 1

Given a noncommutative space X, its classical version is the space Xclass obtained by
dividing C(X) by its commutator ideal, and then applying the Gelfand theorem:

C(Xclass) = C(X)/I , I =< [a, b] >

Observe that we have an embedding of noncommutative spaces Xclass ⊂ X. In this
situation, we also say that X appears as a “liberation” of X.

As a first result regarding the above free spheres, we have:

Proposition 1.14. We have embeddings of noncommutative spaces, as follows,

SN−1
C

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,+

OO

and the spaces on the right appear as liberations of the spaces of the left.

Proof. The first assertion is clear. For the second, we must establish the following iso-
morphisms, where C∗comm stands for “universal commutative C∗-algebra generated by”:

C(SN−1
R,+ ) = C∗comm

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2
i = 1

)

C(SN−1
C,+ ) = C∗comm

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
But these isomorphisms are both clear, by using the Gelfand theorem. �
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We can enlarge our class of basic manifolds by introducing tori, as follows:

Proposition 1.15. Given a closed subspace S ⊂ SN−1
C,+ , the subspace T ⊂ S given by

C(T ) = C(S)
/〈

xix
∗
i = x∗ixi =

1

N

〉
is called associated torus. In the real case, S ⊂ SN−1

R,+ , we also call T cube.

As a basic example here, for S = SN−1
C the corresponding submanifold T ⊂ S appears

by imposing the relations |xi| = 1√
N

to the coordinates, so we obtain a torus:

S = SN−1
R =⇒ T =

{
x ∈ CN

∣∣∣|xi| = 1√
N

}
As for the case of the real sphere, S = SN−1

R , here the submanifold T ⊂ S appears by
imposing the relations xi = ± 1√

N
to the coordinates, so we obtain a cube:

S = SN−1
R =⇒ T =

{
x ∈ RN

∣∣∣xi = ± 1√
N

}
Observe that we have a relation here with group theory, because the complex torus

computed above is the group TN , and the cube is the finite group ZN2 .
In general now, in order to compute T , we can use the following simple fact:

Proposition 1.16. When S ⊂ SN−1
C,+ is an algebraic manifold, in the sense that

C(S) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain noncommutative polynomials fi ∈ C < x1, . . . , xN >, we have

C(T ) = C∗
(
u1, . . . , uN

∣∣∣u∗i = u−1
i , gi(u1, . . . , uN) = 0

)
with the poynomials gi being given by gi(u1, . . . , uN) = fi(

√
Nu1, . . . ,

√
NuN).

Proof. According to our definition of the torus T ⊂ S, the following variables must be
unitaries, in the quotient algebra C(S)→ C(T ):

ui =
xi√
N

Now if we assume that these elements are unitaries, the quadratic conditions
∑

i xix
∗
i =∑

i x
∗
ixi = 1 are automatic. Thus, we obtain the space in the statement. �

Summarizing, we are led to the question of computing certain algebras generated by
unitaries. In order to deal with this latter problem, let us start with:
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Proposition 1.17. Let Γ be a discrete group, and consider the complex group algebra
C[Γ], with involution given by the fact that all group elements are unitaries:

g∗ = g−1 , ∀g ∈ Γ

The maximal C∗-seminorm on C[Γ] is then a C∗-norm, and the closure of C[Γ] with
respect to this norm is a C∗-algebra, denoted C∗(Γ).

Proof. In order to prove the result, we must find a ∗-algebra embedding C[Γ] ⊂ B(H),
with H being a Hilbert space. For this purpose, consider the space H = l2(Γ), having
{h}h∈Γ as orthonormal basis. Our claim is that we have an embedding, as follows:

π : C[Γ] ⊂ B(H) , π(g)(h) = gh

Indeed, since π(g) maps the basis {h}h∈Γ into itself, this operator is well-defined,
bounded, and is an isometry. It is also clear from the formula π(g)(h) = gh that g → π(g)
is a morphism of algebras, and since this morphism maps the unitaries g ∈ Γ into isome-
tries, this is a morphism of ∗-algebras. Finally, the faithfulness of π is clear. �

In the abelian group case, we have the following result:

Proposition 1.18. Given an abelian discrete group Γ, we have an isomorphism

C∗(Γ) ' C(G)

where G = Γ̂ is its Pontrjagin dual, formed by the characters χ : Γ→ T.

Proof. Since Γ is abelian, the corresponding group algebra A = C∗(Γ) is commutative.
Thus, we can apply the Gelfand theorem, and we obtain A = C(X), with X = Spec(A).
But the spectrum X = Spec(A), consisting of the characters χ : C∗(Γ) → C, can be

identified with the Pontrjagin dual G = Γ̂, and this gives the result. �

The above result suggests the following definition:

Definition 1.19. Given a discrete group Γ, the noncommutative space G given by

C(G) = C∗(Γ)

is called abstract dual of Γ, and is denoted G = Γ̂.

This notion should be taken in the general sense of Definition 1.12. The same warning
as there applies, because there is a functoriality problem here, which needs a fix.

To be more precise, in the context of Proposition 1.17, we can see that the closure
C∗red(Γ) of the group algebra C[Γ] in the regular representation is a C∗-algebra as well.
We have a quotient map C∗(Γ)→ C∗red(Γ), and if this map is not an isomorphism, which
is something that can happen, we are in trouble. We will be back to this, later on.

In short, our formalism so far is “mathematically correct, but physically wrong”. So,
taking now advantage of the freedom of thought offered by abstract mathematics, let us
just ignore this, and go ahead. By getting back to the spheres, we have:
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Theorem 1.20. The tori of the basic spheres are all group duals, as follows,

TN // F̂N

ZN2 //

OO

Ẑ∗N2

OO

where FN is the free group on N generators, and ∗ is a group-theoretical free product.

Proof. By using the presentation result in Proposition 1.16 above, we obtain that the
diagram formed by the algebras C(T ) is as follows:

C∗(ZN)

��

C∗(Z∗N)

��

oo

C∗(ZN2 ) C∗(Z∗N2 )oo

According to Definition 1.19, the corresponding noncommutative spaces are:

ẐN // Ẑ∗N

ẐN2 //

OO

Ẑ∗N2

OO

Together with the Fourier transform identifications from Proposition 1.18 above, and
with our free group convention FN = Z∗N , this gives the result. �

As a conclusion to these considerations, the Gelfand theorem alone produces out of
nothing, or at least out of some basic common sense, some potentially interesting math-
ematics. We will be back later on to these objects, on several occasions.

Let us review now the other fundamental result regarding the C∗-algebras, namely the
representation theorem of Gelfand, Naimark and Segal, which states that any C∗-algebra
appears as an algebra of operators, A ⊂ B(H), over some Hilbert space H.

In the commutative case, the precise statement is as follows:

Proposition 1.21. Let A be a commutative C∗-algebra, write A = C(X), with X being
a compact space, and let µ be a positive measure on X. We have then an embedding

A ⊂ B(H)

where H = L2(X), with f ∈ A corresponding to the operator g → fg.
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Proof. Given f ∈ C(X), consider the operator Tf (g) = fg, on the Hilbert space H =
L2(X). Observe that Tf is indeed well-defined, and bounded as well, because:

||fg||2 =

√∫
X

|f(x)|2|g(x)|2dµ(x) ≤ ||f ||∞||g||2

The application f → Tf being linear, involutive, continuous, and injective as well, we
obtain in this way a C∗-algebra embedding A ⊂ B(H), as claimed. �

In general, the idea will be that of extending the above construction. In order to do so,
we must first discuss the analogues of the positive functions and measures.

Regarding the “positive functions”, we have here the following result:

Proposition 1.22. For an element a ∈ A, the following are equivalent:

(1) a is positive, in the sense that σ(a) ⊂ [0,∞).
(2) a = b2, for some b ∈ A satisfying b = b∗.
(3) a = cc∗, for some c ∈ A.

Proof. Regarding (1) =⇒ (2), observe that σ(a) ⊂ R implies a = a∗. Thus the algebra
< a > is commutative, and by using the Gelfand theorem, we can set b =

√
a.

The implication (2) =⇒ (3) is trivial, because we can set c = b. Observe that
(2) =⇒ (1) is clear too, because we have σ(a) = σ(b2) = σ(b)2 ⊂ R2 = [0,∞).

For (3) =⇒ (1), we proceed by contradition. By multiplying c by a suitable element
of < cc∗ >, we are led to the existence of an element d 6= 0 satisfying −dd∗ ≥ 0. By
writing d = x+ iy with x = x∗, y = y∗ we have:

dd∗ + d∗d = 2(x2 + y2) ≥ 0

Thus d∗d ≥ 0. But this contradicts the elementary fact that σ(dd∗), σ(d∗d) must
coincide outside {0}, coming from Proposition 1.7 above. �

It remains to discuss the analogues of the positive measures. In order to do so, we
will use a functional analysis trick, coming from the Riesz theorem, which amounts in
replacing the positive measures µ with the corresponding integration functionals.

To be more precise, let us start with the following definition:

Definition 1.23. Consider a linear map ϕ : A→ C.

(1) ϕ is called positive when a ≥ 0 =⇒ ϕ(a) ≥ 0.
(2) ϕ is called faithful and positive when a ≥ 0, a 6= 0 =⇒ ϕ(a) > 0.

In the commutative case, A = C(X), the positive linear forms appear as follows, with
µ being positive, and strictly positive if we want ϕ to be faithful and positive:

ϕ(f) =

∫
X

f(x)dµ(x)
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In general, the positive linear forms can be thought of as being integration functionals
with respect to some underlying “positive measures”. We can use them as follows:

Proposition 1.24. Let ϕ : A→ C be a positive linear form.

(1) < a, b >= ϕ(ab∗) defines a generalized scalar product on A.
(2) By separating and completing we obtain a Hilbert space H.
(3) π(a) : b→ ab defines a representation π : A→ B(H).
(4) If ϕ is faithful in the above sense, then π is faithful.

Proof. Almost everything here is straightforward, as follows:
(1) This is clear from definitions, and from Proposition 1.22.
(2) This is a standard procedure, which works for any scalar product.
(3) All the verifications here are standard algebraic computations.
(4) This follows indeed from a 6= 0 =⇒ π(aa∗) 6= 0 =⇒ π(a) 6= 0. �

In order to establish the GNS theorem, it remains to prove that any C∗-algebra has a
faithful and positive linear form ϕ : A→ C. This is something more technical:

Proposition 1.25. Let A be a C∗-algebra.

(1) Any positive linear form ϕ : A→ C is continuous.
(2) A linear form ϕ is positive iff there is a norm one h ∈ A+ such that ||ϕ|| = ϕ(h).
(3) For any a ∈ A there exists a positive norm one form ϕ such that ϕ(aa∗) = ||a||2.
(4) If A is separable there is a faithful positive form ϕ : A→ C.

Proof. The proof here, which is quite technical, inspired from the existence proof of the
probability measures on abstract compact spaces, goes as follows:

(1) This follows from Proposition 1.24, via the following inequality:

|ϕ(a)| ≤ ||π(a)||ϕ(1) ≤ ||a||ϕ(1)

(2) In one sense we can take h = 1. Conversely, let a ∈ A+, ||a|| ≤ 1. We have:

|ϕ(h)− ϕ(a)| ≤ ||ϕ|| · ||h− a|| ≤ ϕ(h)1 = ϕ(h)

Thus we have Re(ϕ(a)) ≥ 0, and it remains to prove that the following holds:

a = a∗ =⇒ ϕ(a) ∈ R

By using 1−h ≥ 0 we can apply the above to a = 1−h and we obtain Re(ϕ(1−h)) ≥ 0.
We conclude that Re(ϕ(1)) ≥ Re(ϕ(h)) = ||ϕ||, and so ϕ(1) = ||ϕ||.

Summing up, we can assume h = 1. Now observe that for any self-adjoint element a,
and any t ∈ R we have the following inequality:

|ϕ(1 + ita)|2 ≤ ||ϕ||2 · ||1 + ita||2

= ϕ(1)2||1 + t2a2||
≤ ϕ(1)2(1 + t2||a||2)
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On the other hand with ϕ(a) = x+ iy we have:

|ϕ(1 + ita)| = |ϕ(1)− ty + itx|
≥ (ϕ(1)− ty)2

We therefore obtain that for any t ∈ R we have:

ϕ(1)2(1 + t2||a||2) ≥ (ϕ(1)− ty)2

Thus we have y = 0, and this finishes the proof of our remaining claim.
(3) Consider the linear subspace of A spanned by the element aa∗. We can define here

a linear form by the formula ϕ(λaa∗) = λ||a||2. This has norm one, and by Hahn-Banach
we get a norm one extension to the whole A. The positivity of ϕ follows from (2).

(4) Let (an) be a dense sequence inside A. For any n we can construct as in (3) a
positive form satisfying ϕn(ana

∗
n) = ||an||2, and then define ϕ in the following way:

ϕ =
∞∑
n=1

ϕn
2n

Let a ∈ A be a nonzero element. Pick an close to a and consider the pair (H, π)
associated to the pair (A,ϕn), as in Proposition 1.24. We have then:

ϕn(aa∗) = ||π(a)1||
≥ ||π(an)1|| − ||a− an||
= ||an|| − ||a− an||
> 0

Thus ϕn(aa∗) > 0. It follows that we have ϕ(aa∗) > 0, and we are done. �

With these ingredients in hand, we can now state and prove:

Theorem 1.26 (GNS theorem). Let A be a C∗-algebra.

(1) A appears as a closed ∗-subalgebra A ⊂ B(H), for some Hilbert space H.
(2) When A is separable (usually the case), H can be chosen to be separable.
(3) When A is finite dimensional, H can be chosen to be finite dimensional.

Proof. This result, from [62], follows indeed by combining the construction from Propo-
sition 1.24 with the existence result from Proposition 1.25 above. �

The GNS theorem is something powerful and concrete, which perfectly complements the
Gelfand theorem, and the resulting noncommutative compact space formalism. The idea
indeed is that “once you are lost into noncommutative geometry considerations, coming
from abstract C∗-algebras, you can always get back to good old Hilbert spaces”.

We actually already got lost, a few pages ago, in connection with the wrong functoriality
of the Gelfand correspondence, which is something especially visible for the group duals.
So, time to fix this, by using the GNS theorem. Let us formulate:
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Definition 1.27. The category of compact measured spaces (X,µ) is the category of the
C∗-algebras with faithful traces (A,ϕ), with the arrows reversed. In the case where we
have a C∗-algebra A with a non-faithful trace ϕ, we can still talk about the corresponding
compact measured space (X,µ), by performing the GNS construction.

Observe that this definition fixes the functoriality problem with Gelfand duality, at
least for the group algebras. Indeed, in the context of the comments following Definition
1.19, consider an arbitrary intermediate C∗-algebra, as follows:

C∗(Γ)→ A→ C∗red(Γ)

If we perform the GNS construction with respect to the canonical trace, we obtain
the reduced group algebra C∗red(Γ). Thus, all these algebras A correspond to a unique

noncommutative space in the above sense, which is the abstract group dual Γ̂.
Let us record a statement about this finding, as follows:

Proposition 1.28. The category of group duals Γ̂ is a well-defined subcategory of the

category of compact measured spaces, with each individual Γ̂ corresponding to the full
group algebra C∗(Γ), or the reduced group algebra C∗red(Γ), or any algebra in between.

Proof. This is indeed more of an empty statement, coming from the above discussion. �

With this in hand, it is tempting to go even further, namely forgetting about the C∗-
algebras, and trying to axiomatize instead the operator algebras of type L∞(X). Such
an axiomatization is possible, and the resulting class of operator algebras consists of a
certain very special type of C∗-algebras, called “finite von Neumann algebras”.

However, and here comes our point, doing so would be bad, and would lead to a weak
theory, because many spaces such as the compact groups, or the compact homogeneous
spaces, do not come with a measure by definition, but rather by theorem.

In short, our “fix” is not a very good fix, and if we want a really strong theory, we must
invent something else. In order to do so, our idea will be that of restricting the attention
to certain special classes of noncommutative algebraic manifolds, as follows:

Definition 1.29. A real algebraic submanifold X ⊂ SN−1
C,+ is a closed noncommutative

space defined, at the level of the corresponding C∗-algebra, by a formula of type

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain noncommutative polynomials fi ∈ C < x1, . . . , xN >. We denote by C(X) the
∗-subalgebra of C(X) generated by the coordinate functions x1, . . . , xN .

Observe that any family of noncommutative polynomials fi ∈ C < x1, . . . , xN > pro-
duces such a manifold X, simply by defining an algebra C(X) as above. Observe also that
the use of the free complex sphere is essential in all this, because the quadratic condition∑

i xix
∗
i =

∑
i x
∗
ixi = 1 guarantees the fact that the universal C∗-norm is bounded.
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We have already met such manifolds, in the context of the free spheres, free tori, and
more generally in Proposition 1.16 above. Here is a list of examples:

Proposition 1.30. The following are algebraic submanifolds X ⊂ SN−1
C,+ :

(1) The spheres SN−1
R ⊂ SN−1

C , SN−1
R,+ ⊂ SN−1

C,+ .

(2) Any compact Lie group, G ⊂ Un, when N = n2.

(3) The duals Γ̂ of finitely generated groups, Γ =< g1, . . . , gN >.

Proof. These facts are all well-known, the proof being as follows:
(1) This is true by definition of our various spheres.
(2) Given a closed subgroup G ⊂ Un, we have indeed an embedding G ⊂ SN−1

C , with
N = n2, given in double indices by xij =

uij√
n
, that we can further compose with the

standard embedding SN−1
C ⊂ SN−1

C,+ . As for the fact that we obtain indeed a real algebraic
manifold, this is well-known, coming either from Lie theory or from Tannakian duality.
We will be back to this fact later on, in a more general context.

(3) This follows from the fact that the variables xi = gi√
N

satisfy the quadratic relations∑
i xix

∗
i =

∑
i x
∗
ixi = 1, with the algebricity claim of the manifold being clear. �

At the level of the general theory, we have the following version of the Gelfand theorem,
which is something very useful, and that we will use many times in what follows:

Theorem 1.31. When X ⊂ SN−1
C,+ is an algebraic manifold, given by

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain noncommutative polynomials fi ∈ C < x1, . . . , xN >, we have

Xclass =
{
x ∈ SN−1

C

∣∣∣fi(x1, . . . , xN) = 0
}

and X appears as a liberation of Xclass.

Proof. This is something that already met, in the context of the free spheres. In general,
the proof is similar, by using the Gelfand theorem. Indeed, if we denote by X ′class the
manifold constructed in the statement, then we have a quotient map of C∗-algebras as
follows, mapping standard coordinates to standard coordinates:

C(Xclass)→ C(X ′class)

Conversely now, from X ⊂ SN−1
C,+ we obtain Xclass ⊂ SN−1

C , and since the relations
defining X ′class are satisfied by Xclass, we obtain an inclusion of subspaces Xclass ⊂ X ′class.
Thus, at the level of algebras of continuous functions, we have a quotient map of C∗-
algebras as follows, mapping standard coordinates to standard coordinates:

C(X ′class)→ C(Xclass)

Thus, we have constructed a pair of inverse morphisms, and we are done. �
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With these results in hand, we are now ready for formulating our second “fix” for the
functoriality issues of the Gelfand correspondence, as follows:

Definition 1.32. The category of the real algebraic submanifolds X ⊂ SN−1
C,+ is the cate-

gory of the universal C∗-algebras of type

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
with fi ∈ C < x1, . . . , xN > being noncommutative polynomials, with the arrows X → Y
being the ∗-algebra morphisms C(Y )→ C(X), mapping coordinates to coordinates.

In other words, such algebraic manifolds are those from Definition 1.29 above, with
the convention that we identify X ' Y in the case where we have an isomorphism of
∗-algebras C(Y )→ C(X), mapping coordinates to coordinates.

This fix works indeed for the group algebras, because we have:

Theorem 1.33. The category of finitely generated groups Γ =< g1, . . . , gN >, with the
morphisms being the group morphisms mapping generators to generators, embeds covari-

antly via Γ→ Γ̂ into the category of real algebraic submanifolds X ⊂ SN−1
C,+ .

Proof. We know from Proposition 1.30 that, given a group Γ =< g1, . . . , gN >, we have

an embedding Γ̂ ⊂ SN−1
C,+ given by xi = gi√

N
. Now since a morphism C[Γ]→ C[Λ] mapping

coordinates to coordinates means a morphism of groups Γ → Λ mapping generators to
generators, our notion of isomorphism is indeed the correct one, as claimed. �

We will see later on that Theorem 1.33 has various extensions to the quantum groups
and quantum homogeneous spaces that we will be interested in, in what follows.

So, this will be our formalism, and operator algebra knowledge required. We should
mention that our approach heavily relies on Woronowicz’s philosophy in [98]. Also, part
of the above has been folklore for a long time, with the details worked out in [14].

Getting back now to the main examples, namely the free analogues SN−1
R,+ , SN−1

C,+ of the

spheres SN−1
R , SN−1

C , in order to further understand their structure, we would need to have
as well free analogues O+

N , U
+
N of the orthogonal and unitary groups ON , UN . Constructing

these free analogues will be our next purpose, in what follows.
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2. Quantum groups

In order to construct liberations of ON , UN , and other “quantum groups”, the idea is
very simple, coming from the usual multiplicative formulae for unitary matrices:

(UV )ij =
∑
k

UikVkj , (1N)ij = δij , (U−1)ij = U∗ji

A bit of Gelfand duality thinking, to be explained in detail in the proof of Proposition
2.2 below, leads from this to the following definition, due to Woronowicz [98]:

Definition 2.1. A Woronowicz algebra is a C∗-algebra A, given with a unitary matrix
u ∈MN(A) whose coefficients generate A, such that:

(1) ∆(uij) =
∑

k uik ⊗ ukj defines a morphism of C∗-algebras A→ A⊗ A.
(2) ε(uij) = δij defines a morphism of C∗-algebras A→ C.
(3) S(uij) = u∗ji defines a morphism of C∗-algebras A→ Aopp.

In this case, we write A = C(G), and call G a compact matrix quantum group.

In this definition A⊗A is the universal C∗-algebraic completion of the usual algebraic
tensor product of A with itself, and Aopp is the opposite C∗-algebra, with multiplication
a · b = ba. The reasons for using Aopp instead of A itself will become clear later on.

The above morphisms ∆, ε, S are called comultiplication, counit and antipode. Observe
that if these morphisms exist, they are unique. This phenomenon is analogous to the fact
that a closed set of unitary matrices G ⊂ UN is either a compact group, or not.

The motivating examples of Woronowicz algebras are as follows:

Proposition 2.2. Given a closed subgroup G ⊂ UN , the algebra A = C(G), with the
matrix formed by the standard coordinates uij(g) = gij, is a Woronowicz algebra, and:

(1) For this algebra, the morphisms ∆, ε, S appear as functional analytic transposes of
the multiplication, unit and inverse maps m,u, i of the group G.

(2) This Woronowicz algebra is commutative, and conversely, any Woronowicz algebra
which is commutative appears in this way.

Proof. Since we have G ⊂ UN , the matrix u = (uij) is unitary. Also, since the coordinate
functions uij separate the points of G, by the Stone-Weierstrass theorem we obtain that
the ∗-subalgebra A ⊂ C(G) generated by them is dense. Finally, the fact that we have
morphisms ∆, ε, S as in Definition 2.1 follows from the proof of (1) below.

(1) We use the above formulae for unitary matrices. The fact that mT satisfies the
condition in Definition 2.1 (1) follows from the following computation, with U, V ∈ G:

mT (uij)(U ⊗ V ) = (UV )ij =
∑
k

UikVkj =
∑
k

(uik ⊗ ukj)(U ⊗ V )
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Regarding now the morphism uT , the verification of the condition in Definition 2.1 (2)
is trivial, coming from the following equalities:

uT (uij) = 1ij = δij

Finally, the morphism iT verifies the condition in Definition 2.1 (3) as well, because we
have the following computation, valid for any U ∈ G:

iT (uij)(U) = (U−1)ij = Ūji = u∗ji(U)

(2) This folllows from the Gelfand theorem. Indeed, we can write A = C(G), with G
being a certain compact space. By using the matrix of coordinates u = (uij) we obtain
an embedding G ⊂ UN , and then by using ∆, ε, S, it follows that the subspace G ⊂ UN
that we have obtained is in fact a closed subgroup, and we are done. �

Let us go back now to the general setting of Definition 2.1. According to Proposition
2.2, and to the general C∗-algebra philosophy, the morphisms ∆, ε, S can be thought of
as coming from a multiplication, unit map and inverse map, as follows:

m : G×G→ G , u : {.} → G , i : G→ G

Of course, since G does not exist as a concrete object, nor do m,u, i exist. However,
we can use some inpiration from group theory in order to study ∆, ε, S, and G itself.

Here is a first result of this type, expressing in terms of ∆, ε, S the fact that the
underlying maps m,u, i should satisfy the usual group theory axioms:

Proposition 2.3. The comultiplication, counit and antipode have the following properties,
on the dense ∗-subalgebra A ⊂ A generated by the variables uij:

(1) Coassociativity: (∆⊗ id)∆ = (id⊗∆)∆.
(2) Counitality: (id⊗ ε)∆ = (ε⊗ id)∆ = id.
(3) Coinversality: m(id⊗ S)∆ = m(S ⊗ id)∆ = ε(.)1.

In addition, the square of the antipode is the identity, S2 = id.

Proof. Observe first that the result holds in the case where A is commutative. Indeed, by
using Proposition 2.2 we can write ∆ = mt, ε = ut, S = iT , and the above 3 conditions
come by transposition from the basic 3 conditions satisfied by m,u, i, namely:

m(m× id) = m(id×m)

m(id× u) = m(u× id) = id

m(id⊗ i)δ = m(i⊗ id)δ = 1

Here δ(g) = (g, g). Observe also that the last condition, S2 = id, is satisfied as well,
coming from the identity i2 = id, which is a consequence of the group axioms.

In the general case now, the proof goes as follows:
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(1) This follows from the following computations:

(∆⊗ id)∆(uij) =
∑
l

∆(uil)⊗ ulj =
∑
kl

uik ⊗ ukl ⊗ ulj

(id⊗∆)∆(uij) =
∑
k

uik ⊗∆(ukj) =
∑
kl

uik ⊗ ukl ⊗ ulj

(2) The proof here is quite similar, as follows:

(id⊗ ε)∆(uij) =
∑
k

uik ⊗ ε(ukj) = uij

(ε⊗ id)∆(uij) =
∑
k

ε(uik)⊗ ukj = uij

(3) By using the fact that the matrix u = (uij) is unitary, we obtain:

m(id⊗ S)∆(uij) =
∑
k

uikS(ukj) =
∑
k

uiku
∗
jk = (uu∗)ij = δij

m(S ⊗ id)∆(uij) =
∑
k

S(uik)ukj =
∑
k

u∗kiukj = (u∗u)ij = δij

Finally, the formula S2 = id holds as well on the generators, and we are done. �

Observe that, by continuity, the formulae (1) and (2) above hold on the whole algebra
A. However, regarding the formula (3), the maps appearing there do not have an obvious
extension to A, and this is why we have to formulate Proposition 2.3 as it is.

By getting back now to Proposition 2.2, this statement becomes even more interesting
when coupled with the well-known fact that the closed subgroups G ⊂ UN are exactly the
compact Lie groups. This is something non-trivial, but we can nevertheless formulate:

Definition 2.4. Let A = C(G) be a Woronowicz algebra, with coordinates uij.

(1) The dense ∗-subalgebra A =< uij > is denoted C∞(G).
(2) We also call G a compact quantum Lie group.

This definition is of course something quite philosophical, because we have not discussed
here the above-mentioned result about the compact Lie groups, G ⊂ UN , nor looked for
quantum extensions of it. In addition, all this might seem to suggest that the compact
matrix quantum groups have some kind of Lie type differential geometry structure, and
this is not the case. For instance, we will see later on that certain noncommutative tori,

such as the free group dual F̂N , which is a well-known space in mathematics, notoriously
having no interesting differential geometry, are compact matrix quantum groups.

As a last general comment, Definition 2.1 as formulated is not exactly the one used by
Woronowicz in [98]. The formalism there is more general, negating the condition S2 = id,
in order to cover some extra examples, which were of interest at the time of [98].
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Let us discuss now another class of basic examples, namely the group duals. The result
here, which among others clarifies the use of Aopp instead of A, is as follows:

Proposition 2.5. Given a finitely generated discrete group Γ =< g1, . . . , gN >, the group
algebra A = C∗(Γ), together with the diagonal matrix formed by the standard generators,
u = diag(g1, . . . , gN), is a Woronowicz algebra. Moreover:

(1) For this algebra, the maps ∆, ε, S are given by the formulae ∆(g) = g⊗g, ε(g) = 1
and S(g) = g−1, for any group element g ∈ Γ.

(2) This Woronowicz algebra is cocommutative, in the sense that we have Σ∆ = ∆,
where Σ(a⊗ b) = b⊗ a is the flip map.

Proof. Since the involution on C∗(Γ) is by definition given by g∗ = g−1 for any group ele-
ment g ∈ Γ, all these group elements are unitaries. In particular the standard generators
g1, . . . , gN are unitaries, and so must be the diagonal matrix formed by them:

u =

g1

. . .
gN


Also, since g1, . . . , gN generate Γ, these elements generate the group algebra C∗(Γ) as

well, in the algebraic sense. Finally, the fact that we have indeed maps ∆, ε, S as in
Definition 2.1 follows from the explicit formulae in the proof of (1) below.

(1) This is clear from definitions, because the maps ∆, ε, S can be defined by the
formulae in the statement, by using the universality property of C∗(Γ). To be more
precise, consider the following map, which is a unitary representation:

Γ→ C∗(Γ)⊗ C∗(Γ) , g → g ⊗ g

By the universal property of C∗(Γ) this representation extends then into a morphism
∆ : C∗(Γ)→ C∗(Γ)⊗ C∗(Γ), given by the same formula, ∆(g) = g ⊗ g.

The situation for ε is similar, because this comes from the trivial representation:

Γ→ {1} , g → 1

Finally, the antipode S comes from the following unitary representation:

Γ→ C∗(Γ)opp , g → g−1

Observe that we have to use the opposite algebra, for this map to be multiplicative.
(2) This property is clear from the formula ∆(g) = g ⊗ g, and from the fact that the

group elements g ∈ Γ span the whole group algebra C∗(Γ). �

We will see later on that any cocommutative Woronowicz algebra appears in fact as
above, up to some standard equivalence relation for such algebras.

In the abelian group case we have a more precise result, as follows:
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Proposition 2.6. Assume that Γ as above is abelian, and let G = Γ̂ be its Pontrjagin
dual, formed by the characters χ : Γ→ T. The canonical isomorphism

C∗(Γ) ' C(G)

transforms then the comultiplication, counit and antipode of C∗(Γ), given by

∆(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1

into the comultiplication, counit and antipode of C(G), given by:

∆ϕ(g, h) = ϕ(gh) , ε(ϕ) = ϕ(1) , Sϕ(g) = ϕ(g−1)

Thus, the identification G = Γ̂ is a compact quantum group isomorphism.

Proof. Assume indeed that Γ =< g1, . . . , gN > is abelian. Our claim is that with G = Γ̂
we have a group embedding G ⊂ UN , constructed as follows:

χ→

χ(g1)
. . .

χ(gN)


Indeed, this formula defines a unitary group representation, whose kernel is {1}.
Summarizing, we have two Woronowicz algebras to be compared, namely C(G), con-

structed as in Proposition 2.2, and C∗(Γ), constructed as in Proposition 2.5.
We already know from Proposition 1.18 above that the underlying C∗-algebras are

isomorphic. Now since the morphisms ∆, ε, S agree on the standard generators g1, . . . , gN ,
they agree everywhere, and we are led to the conclusions in the statement. �

As a conclusion to all this, we can supplement Definitions 2.1 and 2.4 with:

Definition 2.7. Given a Woronowicz algebra A = C(G), we write as well

A = C∗(Γ)

and call Γ = Ĝ a finitely generated discrete quantum group.

We should mention that there is a slight problem with the functoriality here, because
for certain groups like the free group Γ = FN , the group ∗-algebra C[Γ] is known to have
several C∗-algebraic completions, which are all Woronowicz algebras. In order to fix this
problem, we will use the general philosophy from section 1 above. Let us start with:

Proposition 2.8. Given a Woronowicz algebra A = C(G), we have an embedding

G ⊂ SN
2−1

C,+

given in double indices by xij =
uij√
N

, where uij are the standard coordinates of G.
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Proof. This is something that we already know for the classical groups, and for the group
duals as well, from Proposition 1.30 above. In general, the proof is similar, coming from
the fact that the matrices u, ū are both unitaries, with the unitarity of ū coming from the
unitarity of u, by applying the antipode. We will be back later on to this latter fact, with
full details, in the context of representation theory, in section 3 below. �

As explained in the proof of Proposition 1.30, in the classical group case we obtain in
this way an algebraic manifold, but this is not trivial. The situation in general is similar,
and we will discuss this after developing some appropriate tools, in section 4 below.

However, in waiting for all this to be complete, we can nevertheless take some inspiration
from Definition 1.32 above, and formulate the following definition:

Definition 2.9. Given two Woronowicz algebras (A, u) and (B, v), we write A ' B, and
indentify as well the corresponding compact and discrete quantum groups, when we have an
isomorphism of ∗-algebras A ' B mapping standard coordinates to standard coordinates.

In view of the various results and comments from section 1, the functoriality problem
for the compact and discrete quantum groups is therefore fixed. All this needs of course
a bit more discussion, and we will do this later on, once we will have more tools.

Let us get now into a much more interesting question, namely the construction of
examples. We can construct examples by using various operations. First, we have:

Proposition 2.10. Given two compact quantum groups G,H, so is their product G×H,
constructed according to the following formula:

C(G×H) = C(G)⊗ C(H)

Equivalently, at the level of the associated discrete duals Γ,Λ, we can set

C∗(Γ× Λ) = C∗(Γ)⊗ C∗(Λ)

and we obtain the same equality of Woronowicz algebras as above.

Proof. Assume indeed that we have two Woronowicz algebras, (A, u) and (B, v). Our
claim is that the following construction produces a Woronowicz algebra:

C = A⊗B , w = diag(u, v)

Indeed, the matrix w is unitary, and its coefficients generate C. As for the existence
of the maps ∆, ε, S, this follows from the functoriality properties of ⊗, which is here, as
usual, the universal C∗-algebraic completion of the algebraic tensor product.

With this claim in hand, the first assertion is clear. As for the second assertion, let us
recall that when G,H are classical and abelian, we have the following formula:

Ĝ×H = Ĝ× Ĥ
Thus, our second assertion is simply a reformulation of the first assertion, with the ×

symbol used there being justified by this well-known group theory formula. �
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As a consequence of the above result, we can make products of groups and group duals,
and we obtain in this way quantum groups which are not groups, nor group duals.

Here is now a more subtle construction, due to Wang [91]:

Proposition 2.11. Given two compact quantum groups G,H, so is their dual free product
G ∗̂H, constructed according to the following formula:

C(G ∗̂H) = C(G) ∗ C(H)

Equivalently, at the level of the associated discrete duals Γ,Λ, we can set

C∗(Γ ∗ Λ) = C∗(Γ) ∗ C∗(Λ)

and we obtain the same equality of Woronowicz algebras as above.

Proof. The proof here is identical with the proof of Proposition 2.10, by replacing every-
where the tensor product ⊗ with the free product ∗, with this latter product being by
definition the universal C∗-algebraic completion of the algebraic free product. �

Here is another construction, which once again, has no classical counterpart:

Proposition 2.12. Given a compact quantum group G, so is its free complexification G̃,
constructed according to the following formula, where z = id ∈ C(T):

C(G̃) ⊂ C(T) ∗ C(G) , ũ = zu

Equivalently, at the level of the associated discrete dual Γ, we can set

C∗(Γ̃) ⊂ C∗(Z) ∗ C∗(Γ) , ũ = zu

where z = 1 ∈ Z, and we obtain the same Woronowicz algebra as above.

Proof. This follows from Proposition 2.11. Indeed, we know from there that C(T) ∗C(G)
is a Woronowicz algebra, with matrix of coordinates w = diag(z, u). Now, let us try to
replace this matrix with the matrix ũ = zu. This matrix is unitary, and we have:

∆(ũij) = (z ⊗ z)
∑
k

uik ⊗ ukj =
∑
k

ũik ⊗ ũkj

Similarly, in what regards the counit, we have the following formula:

ε(ũij) = 1 · δij = δij

Finally, recalling that S takes values in the opposite algebra, we have as well:

S(ũij) = u∗ji · z̄ = ũ∗ji

Summarizing, the conditions in Definition 2.1 are satisfied, except for the fact that the
entries of ũ = zu do not generate the whole algebra C(T) ∗C(G). We conclude that if we

let C(G̃) ⊂ C(T) ∗ C(G) be the subalgebra generated by the entries of ũ = zu, as in the
statement, then the conditions in Definition 2.1 are satisfied, as desired. �

Another standard operation is that of taking subgroups:
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Proposition 2.13. Let G be compact quantum group, and let I ⊂ C(G) be a closed
∗-ideal satisfying the following condition:

∆(I) ⊂ C(G)⊗ I + I ⊗ C(G)

We have then a closed quantum subgroup H ⊂ G, constructed as follows:

C(H) = C(G)/I

At the dual level we obtain a quotient of discrete quantum groups, Γ̂→ Λ̂.

Proof. This follows indeed from the above conditions on I, which are designed precisely
as for ∆, ε, S to factorize through the quotient. As for the last assertion, this is just a
reformulation, coming from the functoriality properties of the Pontrjagin duality. �

In order to discuss now the quotient operation, let us agree to call “corepresentation”
of a Woronowicz algebra A any unitary matrix w ∈Mn(A) satisfying:

∆(wij) =
∑
k

wik ⊗ wkj , ε(wij) = δij , S(wij) = w∗ji

We will study in detail such corepresentations in section 3 below. For the moment, we
just need their definition, in order to formulate the following result:

Proposition 2.14. Let G be a compact quantum group, and w = (wij) be a corepresen-
tation of C(G). We have then a quotient quantum group G→ H, given by:

C(H) =< wij >

At the dual level we obtain a discrete quantum subgroup, Λ̂ ⊂ Γ̂.

Proof. Here the first assertion follows from definitions, and the second assertion is just a
reformulation, coming from the functoriality properties of the Pontrjagin duality. �

Finally, here is one more construction, which appears as a particular case of the quotient
construction in Proposition 2.14, and which will be of importance in what follows:

Theorem 2.15. Given a compact quantum group G, with fundamental corepresentation
denoted u = (uij), the N2 ×N2 matrix given in double index notation by

wia,jb = uiju
∗
ab

is a corepresentation in the above sense, and we have the following results:

(1) The corresponding quotient G→ PG is a compact quantum group.

(2) Via the standard embedding G ⊂ SN
2−1

C,+ , this is the projective version.

(3) In the classical group case, G ⊂ UN , we have PG = G/(G ∩ TN).

(4) In the group dual case, with Γ =< gi >, we have P̂Γ =< gig
−1
j >.
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Proof. The fact that w is indeed a corepresentation is routine, and follows as well from
the general properties of such corepresentations, to be discussed in section 3 below.

(1) This follows from Proposition 2.14 above.
(2) Observe first that, since the matrix u = (uij) is biunitary, we have indeed an

embedding G ⊂ SN
2−1

C,+ as in the statement, given in double index notation by:

xij =
uij√
N

Now with this formula in hand, the assertion is clear from definitions.
(3) This follows from the elementary fact that, via Gelfand duality, w is the matrix

of coefficients of the adjoint representation of G, whose kernel is the subgroup G ∩ TN ,
where TN ⊂ UN denotes the subgroup formed by the diagonal matrices.

(4) This is something trivial, which follows from definitions. �

At the level of the really “new” examples now, we first have, following [91]:

Proposition 2.16. The following universal algebras are Woronowicz algebras,

C(O+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(U+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

so the underlying noncommutative spaces O+
N , U

+
N are compact quantum groups.

Proof. This follows from the elementary fact that if a matrix u is orthogonal or biunitary,
then so must be the following matrices:

u∆
ij =

∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Consider indeed the matrix U = u∆. This matrix is unitary, because:

(UU∗)ij =
∑
k

UikU
∗
jk =

∑
klm

uilu
∗
jm ⊗ ulku∗mk =

∑
lm

uilu
∗
jm ⊗ δlm = δij

(U∗U)ij =
∑
k

U∗kiUkj =
∑
klm

u∗klukm ⊗ u∗liumj =
∑
lm

δlm ⊗ u∗liumj = δij

The verification of the unitarity of Ū is similar, as follows:

(ŪU t)ij =
∑
k

U∗ikUjk =
∑
klm

u∗ilujm ⊗ u∗lkumk =
∑
lm

u∗ilujm ⊗ δlm = δij

(U tŪ)ij =
∑
k

UkiU
∗
kj =

∑
klm

uklu
∗
km ⊗ uliu∗mj =

∑
lm

δlm ⊗ uliu∗mj = δij

Regarding now the matrix uε = 1N , this is clearly biunitary. Finally, regarding the
matrix uS, there is nothing to prove here either, because its unitarity its clear too.

Finally, observe that if u is real, then so are the above matrices u∆, uε, uS.
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Thus, we can indeed define morphisms ∆, ε, S as in Definition 2.1, by using the universal
properties of C(O+

N), C(U+
N ), and this gives the result. �

Let us study now the above quantum groups, with the techniques that we have. As a
first observation, we have embeddings of compact quantum groups, as follows:

UN // U+
N

ON
//

OO

O+
N

OO

The basic properties of O+
N , U

+
N can be summarized as follows:

Theorem 2.17. The quantum groups O+
N , U

+
N have the following properties:

(1) The closed subgroups G ⊂ U+
N are exactly the N ×N compact quantum groups. As

for the closed subgroups G ⊂ O+
N , these are those satisfying u = ū.

(2) We have liberation embeddings ON ⊂ O+
N and UN ⊂ U+

N , obtained by dividing the
algebras C(O+

N), C(U+
N ) by their respective commutator ideals.

(3) We have as well embeddings L̂N ⊂ O+
N and F̂N ⊂ U+

N , where LN is the free product
of N copies of Z2, and where FN is the free group on N generators.

Proof. All these assertions are elementary, as follows:
(1) This is clear from definitions, with the remark that, in the context of Definition 2.1

above, the formula S(uij) = u∗ji shows that the matrix ū must be unitary too.
(2) This follows from the Gelfand theorem. To be more precise, this shows that we have

presentation results for C(ON), C(UN), similar to those in Proposition 2.16, but with the
commutativity between the standard coordinates and their adjoints added:

C(ON) = C∗comm

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(UN) = C∗comm

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

Thus, we are led to the conclusion in the statement.
(3) This follows from (1) and from Proposition 2.5 above, with the remark that with

u = diag(g1, . . . , gN), the condition u = ū is equivalent to g2
i = 1, for any i. �

As an interesting philosophical conclusion, if we denote by L+
N , F

+
N the discrete quantum

groups which are dual to O+
N , U

+
N , then we have embeddings as follows:

LN ⊂ L+
N , FN ⊂ F+

N

Thus F+
N is a kind of “free free group”, and L+

N is its real counterpart.
The last assertion in Theorem 2.17, making a connection with the noncommutative

geometry considerations from section 1 above, suggests the following construction:
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Proposition 2.18. Given a closed subgroup G ⊂ U+
N , consider its “diagonal torus”, which

is the closed subgroup T ⊂ G constructed as follows:

C(T ) = C(G)
/〈

uij = 0
∣∣∣∀i 6= j

〉
This torus is then a group dual, T = Λ̂, where Λ =< g1, . . . , gN > is the discrete group
generated by the elements gi = uii, which are unitaries inside C(T ).

Proof. Since u is unitary, its diagonal entries gi = uii are unitaries inside C(T ). Moreover,
from ∆(uij) =

∑
k uik ⊗ ukj we obtain, when passing inside the quotient:

∆(gi) = gi ⊗ gi

It follows that we have C(T ) = C∗(Λ), modulo identifying as usual the C∗-completions

of the various group algebras, and so that we have T = Λ̂, as claimed. �

With this notion in hand, Theorem 2.17 (3) tells us that the diagonal tori of O+
N , U

+
N

are the group duals L̂N , F̂N . There is an obvious relation here with the noncommutative
geometry considerations from section 1 above, that we will analyse later on.

Here is now a more subtle result on O+
N , U

+
N , having no classical counterpart:

Proposition 2.19. Consider the quantum groups O+
N , U

+
N , with the corresponding funda-

mental corepresentations denoted v, u, and let z = id ∈ C(T).

(1) We have a morphism C(U+
N )→ C(T) ∗ C(O+

N), given by u = zv.

(2) In other words, we have a quantum group embedding Õ+
N ⊂ U+

N .
(3) This embedding is an isomorphism at the level of the diagonal tori.

Proof. The first two assertions follow from Proposition 2.12 above, or simply from the
fact that u = zv is biunitary. As for the third assertion, the idea here is that we have a
similar model for the free group FN , which is well-known to be faithful, FN ⊂ Z∗LN . �

We will be back to the above morphism later on, with a proof of its faithfulness, after
performing a suitable GNS construction, with respect to the Haar functionals.

As a conclusion here, modulo some results which are still to be worked out, the relation
between O+

N , U
+
N is in fact simpler than the one between ON , UN , which appears by com-

plexification at the Lie algebra level. We will see later on that, from many other points
of view, the quantum groups O+

N , U
+
N are in fact “simpler” than ON , UN .

Let us construct now some more examples of compact quantum groups. As a simple
construction here, we can introduce some intermediate liberations, as follows:
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Proposition 2.20. We have intermediate quantum groups as follows,

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

with ∗ standing for the fact that uij, u
∗
ij must satisfy the relations abc = cba.

Proof. This is elementary, by using the fact that if the entries of u = (uij) half-commute,
then so do the entries of the following matrices:

u∆
ij =

∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Thus, we have indeed morphisms ∆, ε, S, as in Definition 2.1. See [35], [37]. �

In the same spirit, we have as well intermediate spheres as follows, with the symbol ∗
standing for the fact that xi, x

∗
i must satisfy the relations abc = cba:

SN−1
C

// SN−1
C,∗

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,∗

//

OO

SN−1
R,+

OO

These constructions might seem quite anecdotical, but they are not. We will see later on
that, under very strong combinatorial axioms, the half-commutation relations abc = cba
are the only possible relaxations of the commutation relations ab = ba.

At the level of the diagonal tori, we have the following result:

Theorem 2.21. The tori of the basic spheres and quantum groups are as follows,

ẐN // Ẑ◦N // Ẑ∗N

ẐN2 //

OO

Ẑ◦N2 //

OO

Ẑ∗N2

OO

with ◦ standing for the half-classical product operation for groups.

Proof. The result on the left is well-known, the result on the right follows from Theorem
2.17 (3), and the middle result follows as well, by imposing the relations abc = cba. �
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Let us discuss now the relation with the noncommutative spheres. Having the things
started here is a bit tricky, and as a main source of inspiration, we have:

Proposition 2.22. Given an algebraic manifold X ⊂ SN−1
C , the formula

G(X) =
{
U ∈ UN

∣∣∣U(X) = X
}

defines a compact group of unitary matrices (a.k.a. isometries), called affine isometry
group of X. For the spheres SN−1

R , SN−1
C we obtain in this way the groups ON , UN .

Proof. The fact that G(X) as defined above is indeed a group is clear, its compactness is
clear as well, and finally the last assertion is clear as well. In fact, all this works for any
closed subset X ⊂ CN , but we are not interested here in such general spaces. �

In the case of the spheres, G(X) leaves invariant as well the Riemannian metric, simply
because this metric is equivalent to the one inherited from CN , which is preserved by our
isometries U ∈ UN . Thus, we could have constructed as well G(X) as being the group
of metric isometries of X, with of course some extra care in relation with the complex
structure, as for X = SN−1

C to obtain G(X) = UN instead of G(X) = O2N . However, in
the noncommutative setting, all this becomes considerably more complicated.

We have the following quantum analogue of this construction:

Proposition 2.23. Given an algebraic manifold X ⊂ SN−1
C,+ , the category of the closed

subgroups G ⊂ U+
N acting affinely on X, in the sense that the formula

Φ(xi) =
∑
a

uia ⊗ xa

defines a morphism of C∗-algebras Φ : C(X) → C(G) ⊗ C(X), has a universal object,
denoted G+(X), and called affine quantum isometry group of X.

Proof. Observe first that in the case where the above morphism Φ exists, this morphism
is automatically a coaction, in the sense that it satisfies the following conditions:

(id⊗ Φ)Φ = (∆⊗ id)Φ , (ε⊗ id)Φ = id

In order to prove now the result, assume that X ⊂ SN−1
C,+ comes as follows:

C(X) = C(SN−1
C,+ )

/〈
fα(x1, . . . , xN) = 0

〉
Our claim is that the universal quantum group G = G+(X) in the statement appears

as follows, where Xi =
∑

a uia ⊗ xa ∈ C(U+
N )⊗ C(X):

C(G) = C(U+
N )
/〈

fα(X1, . . . , XN) = 0
〉

In order to prove this claim, we have to clarify how the relations fα(X1, . . . , XN) = 0
are interpreted inside C(U+

N ), and then show that G is indeed a quantum group.
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So, pick one of the defining polynomials, f = fα, and write it as follows:

f(x1, . . . , xN) =
∑
r

∑
ir1...i

r
sr

λr · xir1 . . . xirsr

With Xi =
∑

a uia ⊗ xa as above, we have the following formula:

f(X1, . . . , XN) =
∑
r

∑
ir1...i

r
sr

λr
∑

ar1...a
r
sr

uir1ar1 . . . uirsrarsr ⊗ xar1 . . . xarsr

Since the variables on the right span a certain finite dimensional space, the relations
f(X1, . . . , XN) = 0 correspond to certain relations between the variables uij. Thus, we
have indeed a subspace G ⊂ U+

N , with a universal map Φ : C(X)→ C(G)⊗ C(X).
In order to show now that G is a quantum group, consider the following elements:

u∆
ij =

∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

If we consider the associated elements Xγ
i =

∑
a u

γ
ia⊗xa, with γ ∈ {∆, ε, S}, then from

the relations f(X1, . . . , XN) = 0 we deduce that we have:

f(Xγ
1 , . . . , X

γ
N) = (γ ⊗ id)f(X1, . . . , XN) = 0

Thus we can map uij → uγij for any γ ∈ {∆, ε, S}, and we are done. �

We can formulate a quantum isometry group result, from [4], as follows:

Theorem 2.24. The quantum isometry groups of the basic spheres, namely

SN−1
C

// SN−1
C,∗

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,∗

//

OO

SN−1
R,+

OO

are the basic orthogonal and unitary quantum groups, namely

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

modulo identifying, as usual, the various C∗-algebraic completions.
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Proof. Let us first construct an action U+
N y SN−1

C,+ . We must prove here that the variables

Xi =
∑

a uia ⊗ xa satisfy the defining relations for SN−1
C,+ , namely

∑
i xix

∗
i =

∑
i x
∗
ixi = 1.

But this follows from the biunitarity of u, via the following computations:∑
i

XiX
∗
i =

∑
iab

uiau
∗
ib ⊗ xax∗b =

∑
a

1⊗ xax∗a = 1⊗ 1

∑
i

X∗iXi =
∑
iab

u∗iauib ⊗ x∗axb =
∑
a

1⊗ x∗axa = 1⊗ 1

Regarding now O+
N y SN−1

R,+ , here we must check the extra relations Xi = X∗i , and these
are clear from uia = u∗ia. Finally, regarding the remaining actions, the verifications are
clear as well, because if the coordinates uia and xa are subject to commutation relations
of type ab = ba, or of type abc = cba, then so are the variables Xi =

∑
a uia ⊗ xa.

We must prove now that all these actions are universal:
SN−1
R,+ , SN−1

C,+ . The universality of U+
N y SN−1

C,+ is trivial by definition. As for the univer-

sality of O+
N y SN−1

R,+ , this comes from the fact that Xi = X∗i , with Xi =
∑

a uia ⊗ xa as

above, gives uia = u∗ia. Thus Gy SN−1
R,+ implies G ⊂ O+

N , as desired.

SN−1
R , SN−1

C . We use here a trick from [40]. Assuming first that we have an action

G y SN−1
C , in terms of the projective coordinates wij,ab = uiau

∗
jb and pij = xix

∗
j , the

projective coaction map is given by Φ(pij) =
∑

abwij,ab ⊗ pab, and we have:

Φ(pij) =
∑
a<b

(wij,ab + wij,ba)⊗ pab +
∑
a

wij,aa ⊗ paa

Φ(pji) =
∑
a<b

(wji,ab + wji,ba)⊗ pab +
∑
a

wji,aa ⊗ paa

By comparing these two formulae, and then by using the linear independence of the
variables pab = xax

∗
b for a ≤ b, we conclude that we must have:

wij,ab + wij,ba = wji,ab + wji,ba

Let us apply now the antipode to this formula. For this purpose, observe first that
we have S(wij,ab) = S(uiau

∗
jb) = S(u∗jb)S(uia) = ubju

∗
ai = wba,ji. Thus by applying the

antipode we obtain wba,ji + wab,ji = wba,ij + wab,ij, and by relabelling, we obtain:

wji,ba + wij,ba = wji,ab + wij,ab

Now by comparing with the original relation, we obtain wij,ab = wji,ba. But, with
wij,ab = uiau

∗
jb, this formula reads uiau

∗
jb = u∗jbuia. Thus G ⊂ UN , as claimed.

Finally, the result for ON y SN−1
R follows from UN y SN−1

C and O+
N y SN−1

R,+ .
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SN−1
R,∗ , S

N−1
C,∗ . Assume that we have an action Gy SN−1

C,∗ . From Φ(xi) =
∑

a uia⊗ xa we

obtain then that we have Φ(pij) =
∑

ab uiau
∗
jb ⊗ pab, with pab = zaz̄b. We have:

Φ(pijpkl) =
∑
abcd

uiau
∗
jbukcu

∗
ld ⊗ pabpcd

Φ(pilpkj) =
∑
abcd

uiau
∗
ldukcu

∗
jb ⊗ padpcb

The left terms being equal, and the last terms on the right being equal too, we deduce
that, with [a, b, c] = abc− cba, we must have the following equality:∑

abcd

uia[u
∗
jb, ukc, u

∗
ld]⊗ pabpcd = 0

Since the variables pabpcd = zaz̄bzcz̄d depend only on |{a, c}|, |{b, d}| ∈ {1, 2}, and this
dependence produces the only relations between them, we are led to 4 equations:

(1) uia[u
∗
jb, uka, u

∗
lb] = 0, ∀a, b.

(2) uia[u
∗
jb, uka, u

∗
ld] + uia[u

∗
jd, uka, u

∗
lb] = 0, ∀a, ∀b 6= d.

(3) uia[u
∗
jb, ukc, u

∗
lb] + uic[u

∗
jb, uka, u

∗
lb] = 0, ∀a 6= c, ∀b.

(4) uia([u
∗
jb, ukc, u

∗
ld]+[u∗jd, ukc, u

∗
lb])+uic([u

∗
jb, uka, u

∗
ld]+[u∗jd, uka, u

∗
lb]) = 0,∀a 6= c,∀b 6= d.

From (1,2) we conclude that (2) holds with no restriction on the indices. By multiplying
now this formula to the left by u∗ia, and then summing over i, we obtain:

[u∗jb, uka, u
∗
ld] + [u∗jd, uka, u

∗
lb] = 0

By applying now the antipode, then the involution, and finally by suitably relabelling
all the indices, we successively obtain from this formula:

[udl, u
∗
ak, ubj] + [ubl, u

∗
ak, udj] = 0

=⇒ [u∗dl, uak, u
∗
bj] + [u∗bl, uak, u

∗
dj] = 0

=⇒ [u∗ld, uka, u
∗
jb] + [u∗jd, uka, u

∗
lb] = 0

Now by comparing with the original relation, above, we conclude that we have:

[u∗jb, uka, u
∗
ld] = [u∗jd, uka, u

∗
lb] = 0

Thus we have reached to the formulae defining U∗N , and we are done.
Finally, in what regards the universality of O∗N y SN−1

R,∗ , this follows from the univer-

sality of U∗N y SN−1
C,∗ and of O+

N y SN−1
R,+ , and from U∗N ∩O+

N = O∗N . �

Summarizing, in respect to the noncommutative geometry questions raised in section 1
above, we have some advances. In order to further advance, we would need representation
theory results, in the spirit of [95], for our quantum isometry groups.
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3. Representation theory

In order to reach to some more advanced insight into the structure of the compact
quantum groups, we can use representation theory. We will be interested here in the
finite dimensional unitary smooth representations, which provide a good picture.

In algebraic terms, the definition that we need is as follows:

Definition 3.1. A corepresentation of a Woronowicz algebra A, with dense ∗-subalgebra
of smooth elements A ⊂ A, is a unitary matrix v ∈Mn(A) satisfying:

(1) ∆(vij) =
∑

k vik ⊗ vkj.
(2) ε(vij) = δij.
(3) S(vij) = v∗ji.

Observe that this is precisely the notion that we used in section 2, at various places.
As basic examples of such corepresentations we have the fundamental one u = (uij),

its complex conjugate ū = (u∗ij), as well as the trivial corepresentation 1 = (1).
It is possible to combine these examples via various product constructions, as to obtain

a whole family of corepresentations, and we will discuss this in a moment.
In the classical case, we recover in this way the usual representations of G:

Proposition 3.2. Given a closed subgroup G ⊂ UN , the corepresentations of the associ-
ated Woronowicz algebra C(G) are in one-to-one correspondence, given by

π(g) =

v11(g) . . . v1n(g)
...

...
vn1(g) . . . vnn(g)


with the finite dimensional unitary smooth representations of G.

Proof. We first recall, from section 2 above, that any closed subgroup G ⊂ UN is a Lie
group, and that with A = C(G) we have A = C∞(G). Thus, the corepresentations that
we are interested in are certain square matrices of the following type:

v ∈Mn(C∞(G))

With this observation in hand, the fact that we have a correspondence v ↔ π as in
the statement is clear, by using the computations from the proof of Proposition 2.2.
Alternatively, we can apply first Proposition 2.14, and then use Proposition 2.2. �

In general now, we have the following operations on the corepresentations:

Proposition 3.3. The corepresentations are subject to the following operations:

(1) Making sums, v + w = diag(v, w).
(2) Making tensor products, (v ⊗ w)ia,jb = vijwab.
(3) Taking conjugates, (v̄)ij = v∗ij.
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Proof. Observe that the result holds in the commutative case, where we obtain the usual
operations on the representations of the corresponding group. In general now:

(1) Everything here is clear, as already mentioned in the proof of Proposition 2.10.
(2) First of all, the matrix v ⊗ w is unitary, because we have:∑

jb

(v ⊗ w)ia,jb(v ⊗ w)∗kc,jb =
∑
jb

vijwabw
∗
cbv
∗
kj = δac

∑
j

vijv
∗
kj = δikδac

∑
jb

(v ⊗ w)∗jb,ia(v ⊗ w)jb,kc =
∑
jb

w∗bav
∗
jivjkwbc = δik

∑
b

w∗bawbc = δikδac

The comultiplicativity condition follows from the following computation:

∆((v ⊗ w)ia,jb) =
∑
kc

vikwac ⊗ vkjwcb =
∑
kc

(v ⊗ w)ia,kc ⊗ (v ⊗ w)kc,jb

The proof of the counitality condition is similar, as follows:

ε((v ⊗ w)ia,jb) = δijδab = δia,jb

As for the condition involving the antipode, this can be checked as follows:

S((v ⊗ w)ia,jb) = w∗bav
∗
ji = (v ⊗ w)∗jb,ia

(3) In order to check that v̄ is unitary, we can use the antipode. Indeed, by regarding
the antipode as an antimultiplicative map S : A→ A, we have:

(v̄vt)ij =
∑
k

v∗ikvjk =
∑
k

S(v∗kjvki) = S((v∗v)ji) = δij

(vtv̄)ij =
∑
k

vkiv
∗
kj =

∑
k

S(vjkv
∗
ik) = S((vv∗)ji) = δij

As for the comultiplicativity axioms, these are all clear. �

We have as well the following supplementary operation:

Proposition 3.4. Given a corepresentation v ∈Mn(A), its spinned version

w = UvU∗

is a corepresentation as well, for any unitary matrix U ∈ Un.

Proof. The matrix w is unitary, and its comultiplicativity properties can be checked by
doing some computations. Here is however another proof of this fact, using a useful trick.
In the context of Definition 3.1, if we write v ∈Mn(C)⊗ A, the axioms read:

(id⊗∆)v = v12v13 , (id⊗ ε)v = 1 , (id⊗ S)v = v∗

Here we use standard tensor calculus conventions. Now when spinning by a unitary the
matrix that we obtain, with these conventions, is w = U1vU

∗
1 , and we have:

(id⊗∆)w = U1v12v13U
∗
1 = U1v12U

∗
1 · U1v13U

∗
1 = w12w13
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The proof of the counitality condition is similar, as follows:

(id⊗ ε)w = U · 1 · U = 1

Finally, the last condition, involving the antipode, can be checked as follows:

(id⊗ S)w = U1v
∗U∗1 = w∗

Thus, with usual notations, w = UvU∗ is a corepresentation, as claimed. �

As a philosophical comment, the above proof might suggest that the more abstract our
notations and formalism, the easier our problems will become. This is wrong. Bases and
indices are a blessing: they can be understood by undergraduate students, computers,
fellow scientists, engineers, and of course also by yourself, when you’re tired or so.

In addition, in the quantum group context, we will see later on, starting from section 5
below, that bases and indices can be turned into something very beautiful and powerful,
allowing us to do some serious theory, well beyond the level of abstractions.

Back to work now, in the group dual case, we have the following result:

Proposition 3.5. Assume A = C∗(Γ), with Γ =< g1, . . . , gN > being a discrete group.

(1) Any group element h ∈ Γ is a 1-dimensional corepresentation of A, and the oper-
ations on corepresentations are the usual ones on group elements.

(2) Any diagonal matrix of type v = diag(h1, . . . , hn), with n ∈ N arbitrary, and with
h1, . . . , hn ∈ Γ, is a corepresentation of A.

(3) More generally, any matrix of type w = Udiag(h1, . . . , hn)U∗ with h1, . . . , hn ∈ Γ
and with U ∈ Un, is a corepresentation of A.

Proof. These assertions are all elementary, as follows:
(1) The first assertion is clear from definitions and from the comultiplication, counit

and antipode formulae for the discrete group algebras, namely:

∆(h) = h⊗ h , ε(h) = 1 , S(h) = h−1

The assertion on the operations is clear too, because we have:

(g)⊗ (h) = (gh) , (g) = (g−1)

(2) This follows from (1) by performing sums, as in Proposition 3.3 above.
(3) This follows from (2) and from the fact that we can conjugate any corepresentation

by a unitary matrix, as explained in Proposition 3.4 above. �

Observe that the class of corepresentations in (3) is stable under all the operations
from Propositions 3.3 and 3.4. When Γ is abelian we can apply Proposition 3.2 with

G = Γ̂, and after performing a number of identifications, we conclude that these are all
the corepresentations of C∗(Γ). We will see later on that this holds in fact for any Γ.

Let us go back now to the general case. Our next definition is:
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Definition 3.6. Given two corepresentations v ∈Mn(A), w ∈Mm(A), we set

Hom(v, w) =
{
T ∈Mm×n(C)

∣∣∣Tv = wT
}

and we use the following conventions:

(1) We use the notations Fix(v) = Hom(1, v), and End(v) = Hom(v, v).
(2) We write v ∼ w when Hom(v, w) contains an invertible element.
(3) We say that v is irreducible, and write v ∈ Irr(G), when End(v) = C1.

In the classical case A = C(G) we obtain the usual notions concerning the represen-
tations. Observe also that in the group dual case we have g ∼ h when g = h. Finally,
observe that v ∼ w means that v, w are conjugated by an invertible matrix.

Here are a few basic results, regarding the Hom spaces:

Proposition 3.7. We have the following results:

(1) T ∈ Hom(u, v), S ∈ Hom(v, w) =⇒ ST ∈ Hom(u,w).
(2) S ∈ Hom(p, q), T ∈ Hom(v, w) =⇒ S ⊗ T ∈ Hom(p⊗ v, q ⊗ w).
(3) T ∈ Hom(v, w) =⇒ T ∗ ∈ Hom(w, v).

In other words, the Hom spaces form a tensor ∗-category.

Proof. The proofs are all elementary, as follows:
(1) By using our assumptions Tu = vT and Sv = Ws we obtain, as desired:

STu = SvT = wST

(2) Assume indeed that we have Sp = qS and Tv = wT . With tensor product notations,
as in the proof of Proposition 3.4 above, we have:

(S ⊗ T )(p⊗ v) = S1T2p13v23 = (Sp)13(Tv)23

(q ⊗ w)(S ⊗ T ) = q13w23S1T2 = (qS)13(wT )23

The quantities on the right being equal, this gives the result.
(3) By conjugating, and then using the unitarity of v, w, we obtain, as desired:

Tv = wT =⇒ v∗T ∗ = T ∗w∗

=⇒ vv∗T ∗w = vT ∗w∗w

=⇒ T ∗w = vT ∗

Finally, the last assertion follows from definitions, and from the obvious fact that, in
addition to (1,2,3) above, the Hom spaces are linear spaces, and contain the units. In
short, this is just a theoretical remark, that will be used only later on. �

As a main consequence of the above result, the spaces End(v) ⊂ Mn(C) are unital
subalgebras stable under the involution ∗, and so are C∗-algebras.

In order to exploit this fact, we will need a basic result, complementing the operator
algebra theory presented in section 1 above, namely:
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Proposition 3.8. Let B ⊂Mn(C) be a C∗-algebra.

(1) The unit decomposes as 1 = p1 + . . .+ pk, with pi ∈ B minimal projections.
(2) Each of the linear spaces Bi = piBpi is a non-unital ∗-subalgebra of B.
(3) We have a non-unital ∗-algebra sum decomposition B = B1 ⊕ . . .⊕Bk.
(4) We have unital ∗-algebra isomorphisms Bi 'Mri(C), where ri = rank(pi).
(5) Thus, we have a C∗-algebra isomorphism B 'Mr1(C)⊕ . . .⊕Mrk(C).

In addition, the final conclusion holds for any finite dimensional C∗-algebra.

Proof. This is something well-known, with the proof of the assertions (1,2,3,4) in the
statement being something elementary, and routine.

With these ingredients in hand, the final conclusion (5) follows.
As for the last assertion, this follows from (5) by using the GNS representation theorem,

which provides us with an embedding B ⊂Mn(C), for some n ∈ N. �

We can now formulate our first Peter-Weyl type theorem, from [98], as follows:

Theorem 3.9. Let v ∈ Mn(A) be a corepresentation, consider the C∗-algebra B =
End(v), and write its unit as 1 = p1 + . . .+ pk, as above. We have then

v = v1 + . . .+ vk

with each vi being an irreducible corepresentation, obtained by restricting v to Im(pi).

Proof. This can be deduced from Proposition 3.8 above, as follows:
(1) We first associate to our corepresentation v ∈ Mn(A) the corresponding coaction

map Φ : Cn → A ⊗ Cn, given by Φ(ei) =
∑

j vij ⊗ ej. We say that a linear subspace

V ⊂ Cn is invariant if Φ(V ) ⊂ A⊗ V . In this case, the restriction map Φ|V : V → A⊗ V
is a coaction map too, which must come from a subcorepresentation w ⊂ v.

(2) Consider now a projection p ∈ End(v). From pv = vp we obtain that the linear
space V = Im(p) is invariant under v, and so this space must come from a subcorepre-
sentation w ⊂ v. It is routine to check that the operation p→ w maps subprojections to
subcorepresentations, and minimal projections to irreducible corepresentations.

(3) With these preliminaries in hand, let us decompose the algebra End(v) as in Propo-
sition 3.8 above, by using the decomposition 1 = p1 + . . .+pk into minimal projections. If
we denote by vi ⊂ v the subcorepresentation coming from the vector space Vi = Im(pi),
then we obtain in this way a decomposition v = v1 + . . .+ vk, as in the statement. �

In order to formulate our second Peter-Weyl type theorem, we will need:

Definition 3.10. We denote by u⊗k, with k = ◦ • • ◦ . . . being a colored integer, the
various tensor products between u, ū, indexed according to the rules

u⊗∅ = 1 , u⊗◦ = u , u⊗• = ū

and multiplicativity, u⊗kl = u⊗k ⊗ u⊗l, and call them Peter-Weyl corepresentations.
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Here are a few examples of such corepresentations, namely those coming from the
colored integers of length 2, to be often used in what follows:

u⊗◦◦ = u⊗ u , u⊗•• = ū⊗ ū
u⊗◦• = u⊗ ū , u⊗•◦ = ū⊗ u

There are some particular cases of interest, where simplifications appear:

Proposition 3.11. The Peter-Weyl corepresentations u⊗k are as follows:

(1) In the real case, u = ū, we can assume k ∈ N.
(2) In the classical case, we can assume, up to equivalence, k ∈ N× N.

Proof. These assertions are both elementary, as follows:
(1) Here we have indeed the following formula, where |k| ∈ N is the length:

u⊗k = u⊗|k|

Thus the Peter-Weyl corepresentations are indexed by N, as claimed.
(2) In the classical case, our claim is that we have equivalences v ⊗ w ∼ w ⊗ v, imple-

mented by the flip operator Σ(a⊗ b) = b⊗ a. Indeed, we have:

v ⊗ w = v13w23 = w23v13 = Σw13v23Σ = Σ(w ⊗ v)Σ

In particular we have an equivalence u⊗ ū ∼ ū⊗ u, and so the Peter-Weyl corepresen-
tations follow to be the corepresentations of type u⊗k ⊗ ū⊗l, with k, l ∈ N. �

Observe that, modulo equivalence, the conclusion in (1) extends to the case where we
have u ∼ ū. A similar discussion applies to (2), in the case u⊗ ū ∼ ū⊗ u.

Here is the second Peter-Weyl theorem, also from [98], complementing Theorem 3.9:

Theorem 3.12. Each irreducible corepresentation of a Woronowicz algebra A appears
inside a tensor product of the fundamental corepresentation u and its adjoint ū.

Proof. Given an arbitrary corepresentation v ∈ Mn(A), consider its space of coefficients,
C(v) = span(vij). It is routine to check that the construction v → C(v) is functorial, in
the sense that it maps subcorepresentations into subspaces.

By definition of the Peter-Weyl corepresentations, we have:

A =
∑
k∈N∗N

C(u⊗k)

Now given a corepresentation v ∈Mn(A), the corresponding coefficient space is a finite
dimensional subspace C(v) ⊂ A, and so we must have, for certain k1, . . . , kp:

C(v) ⊂ C(u⊗k1 ⊕ . . .⊕ u⊗kp)
We deduce from this that we have an inclusion of corepresentations, as follows:

v ⊂ u⊗k1 ⊕ . . .⊕ u⊗kp

Together with Theorem 3.9, this leads to the conclusion in the statement. �
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In order to further advance, with some finer results, we need to integrate over G. In
the classical case the existence of such an integration is well-known, as follows:

Proposition 3.13. Any commutative Woronowicz algebra, A = C(G) with G ⊂ UN , has
a unique faithful positive unital linear form

∫
G

: A→ C satisfying∫
G

f(xy)dx =

∫
G

f(yx)dx =

∫
G

f(x)dx

called Haar integration. This Haar integration functional can be constructed by starting
with any faithful positive unital form ϕ ∈ A∗, and taking the Cesàro limit∫

G

= lim
n→∞

1

n

n∑
k=1

ϕ∗k

where the convolution operation for linear forms is given by φ ∗ ψ = (φ⊗ ψ)∆.

Proof. This is the existence theorem for the Haar measure of G, in functional analytic
formulation. Observe first that the invariance conditions in the statement read:

d(xy) = d(yx) = dx , ∀y ∈ G
Thus, we are looking indeed for the integration with respect to the Haar measure on G.

Now recall that this Haar measure exists, is unique, and can be constructed by starting
with any probability measure µ, and performing the following Cesàro limit:

dx = lim
n→∞

1

n

n∑
k=1

dµ∗k(x)

In functional analysis terms, this corresponds precisely to the second assertion. �

The above statement and proof are of course more of a reminder, with all the details
missing. However, we will reprove all this later on, as a particular case of a general Haar
integration existence result, in the general Woronowicz algebra setting.

In general now, let us start with a definition, as follows:

Definition 3.14. Given an arbitrary Woronowicz algebra A = C(G), any positive unital
tracial state

∫
G

: A→ C subject to the invariance conditions(∫
G

⊗id
)

∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

is called Haar integration over G.

As a first observation, in the commutative case, this notion agrees with the one in
Proposition 3.13. To be more precise, Proposition 3.13 tells us that any commutative
Woronowicz algebra has a Haar integration in the above sense, which is unique, and
which can be constructed by performing the Cesàro limiting procedure there.

Let us discuss now the group dual case. We have here the following result:
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Proposition 3.15. Given a discrete group Γ =< g1, . . . , gN >, the Woronowicz algebra
A = C∗(Γ) has a Haar functional, given on the standard generators g ∈ Γ by:∫

Γ̂

g = δg,1

This functional is faithful on the image on C∗(Γ) in the regular representation. Also, in

the abelian case, we obtain in this way the counit of C(Γ̂).

Proof. Consider indeed the left regular representation π : C∗(Γ) → B(l2(Γ)), given by
π(g)(h) = gh, that we have already met, in the proof of Proposition 1.17 above.

By composing this representation with the linear functional T →< T1, 1 >, the func-
tional

∫
Γ̂

that we obtain is given by the following formula:∫
Γ̂

g =< g1, 1 >= δg,1

But this gives all the assertions in the statement, namely the existence, traciality, left
and right invariance properties, and faithfulness on the reduced algebra.

As for the last assertion, this is clear from the Pontrjagin duality isomorphism. �

With a bit of functional analysis knowledge, one can improve the above result, with a
proof of the fact that the Haar integration is unique, and appears via a Cesàro limiting
procedure, as in Proposition 3.13. We will do this directly, in the general case.

In order to discuss now the general case, let us define the convolution operation for
linear forms by φ ∗ ψ = (φ⊗ ψ)∆. We have then the following result, from [98]:

Proposition 3.16. Given an arbitrary unital linear form ϕ ∈ A∗, the limit∫
ϕ

a = lim
n→∞

1

n

n∑
k=1

ϕ∗k(a)

exists, and for a coefficient of a corepresentation a = (τ ⊗ id)v, we have∫
ϕ

a = τ(P )

where P is the orthogonal projection onto the 1-eigenspace of (id⊗ ϕ)v.

Proof. By linearity and continuity, it is enough to prove the first assertion for elements
of type a = (τ ⊗ id)v, where v is one of the Peter-Weyl corepresentations, and τ is a
linear form. Thus we are led into the second assertion, and more precisely we can have
the whole result proved if we can establish the following formula, with a = (τ ⊗ id)v:

lim
n→∞

1

n

n∑
k=1

ϕ∗k(a) = τ(P )
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In order to prove this latter formula, observe that we have:

ϕ∗k(a) = (τ ⊗ ϕ∗k)v = τ((id⊗ ϕ∗k)v)

Also, in terms of the matrix M = (id⊗ ϕ)v, we have the following formula:

((id⊗ ϕ∗k)v)i0ik+1
=
∑
i1...ik

Mi0i1 . . .Mikik+1
= (Mk)i0ik+1

Thus (id⊗ ϕ∗k)v = Mk for any k ∈ N, and our Cesàro limit is given by:

lim
n→∞

1

n

n∑
k=1

ϕ∗k(a) = lim
n→∞

1

n

n∑
k=1

τ(Mk) = τ

(
lim
n→∞

1

n

n∑
k=1

Mk

)
Now since v is unitary we have ||v|| = 1, and so ||M || ≤ 1, and the Cesàro limit on the

right exists, and equals the orthogonal projection onto the 1-eigenspace of M :

lim
n→∞

1

n

n∑
k=1

Mk = P

Thus our initial Cesàro limit converges as well, to τ(P ), as desired. �

When ϕ is chosen faithful, we have the following finer result, also from [98]:

Proposition 3.17. Given a faithful unital linear form ϕ ∈ A∗, the limit∫
ϕ

a = lim
n→∞

1

n

n∑
k=1

ϕ∗k(a)

exists, and is independent of ϕ, given on coefficients of corepresentations by(
id⊗

∫
ϕ

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Proof. In view of Proposition 3.16, it remains to prove that when ϕ is faithful, the 1-
eigenspace of M = (id⊗ ϕ)v equals the fixed point space Fix(v) = {ξ ∈ Cn|vξ = ξ}.

“⊃” This is clear, and for any ϕ, because vξ = ξ implies Mξ = ξ.
“⊂” Here we must prove that, when ϕ is faithful, Mξ = ξ implies vξ = ξ. For this

purpose, assume that we have Mξ = ξ, and consider the following element:

a =
∑
i

(∑
j

vijξj − ξi

)(∑
k

vikξk − ξi

)∗
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We must prove that we have a = 0. Since v is biunitary, we have:

a =
∑
i

(∑
j

(
vijξj −

1

N
ξi

))(∑
k

(
v∗ikξ̄k −

1

N
ξ̄i

))

=
∑
ijk

vijv
∗
ikξj ξ̄k −

1

N
vijξj ξ̄i −

1

N
v∗ikξiξ̄k +

1

N2
ξiξ̄i

=
∑
j

|ξj|2 −
∑
ij

vijξj ξ̄i −
∑
ik

v∗ikξiξ̄k +
∑
i

|ξi|2

= ||ξ||2− < vξ, ξ > −< vξ, ξ >+ ||ξ||2

= 2(||ξ||2 −Re(< vξ, ξ >))

By using now our assumption Mξ = ξ, we obtain from this:

ϕ(a) = 2ϕ(||ξ||2 −Re(< vξ, ξ >))

= 2(||ξ||2 −Re(< Mξ, ξ >))

= 2(||ξ||2 − ||ξ||2)

= 0

Now since ϕ is faithful, this gives a = 0, and so vξ = ξ, as claimed. �

We can now formulate a main result, due to Woronowicz [98], is as follows:

Theorem 3.18. Any Woronowicz algebra has a unique Haar integration functional, which
can be constructed by starting with any faithful positive unital state ϕ ∈ A∗, and setting∫

G

= lim
n→∞

1

n

n∑
k=1

ϕ∗k

where φ ∗ ψ = (φ⊗ ψ)∆. Moreover, for any corepresentation v we have(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Proof. Let us first go back to the general context of Proposition 3.16 above. Since convolv-
ing one more time with ϕ will not change the Cesàro limit appearing there, the functional∫
ϕ
∈ A∗ constructed there has the following invariance property:∫

ϕ

∗ϕ = ϕ ∗
∫
ϕ

=

∫
ϕ
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In the case where ϕ is assumed to be faithful, as in Proposition 3.17 above, our claim
is that we have the following formula, valid this time for any ψ ∈ A∗:∫

ϕ

∗ψ = ψ ∗
∫
ϕ

= ψ(1)

∫
ϕ

It is enough to prove this formula on a coefficient of a corepresentation, a = (τ ⊗ id)v.
In order to do so, observe that with P = (id⊗

∫
ϕ
)v and Q = (id⊗ ψ)v we have:(∫

ϕ

∗ψ
)
a =

(
τ ⊗

∫
ϕ

⊗ψ
)

(v12v13) = τ(PQ)

Similarly, we have the following computation:(
ψ ∗

∫
ϕ

)
a =

(
τ ⊗ ψ ⊗

∫
ϕ

)
(v12v13) = τ(QP )

Finally, regarding the term on the right, this is given by:

ψ(1)

∫
ϕ

a = ψ(1)τ(P )

Thus, our claim is equivalent to the following equality:

PQ = QP = ψ(1)P

But this latter equality follows from the fact, coming from Proposition 3.17 above, that
P = (id⊗

∫
ϕ
)v equals the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Thus, we have proved our claim. Now observe that our formula can be written as:

ψ

(∫
ϕ

⊗id
)

∆ = ψ

(
id⊗

∫
ϕ

)
∆ = ψ

∫
ϕ

(.)1

This formula being true for any ψ ∈ A∗, we can simply delete ψ, and we conclude that
the invariance formula in Definition 3.14 holds indeed, with

∫
G

=
∫
ϕ
.

Finally, assuming that we have two invariant integrals
∫
G
,
∫ ′
G

, we have:(∫
G

⊗
∫ ′
G

)
∆ =

(∫ ′
G

⊗
∫
G

)
∆ =

∫
G

(.)1 =

∫ ′
G

(.)1

Thus we have
∫
G

=
∫ ′
G

, and this finishes the proof. See [98]. �

As a first illustration, for the basic product operations, we have:

Proposition 3.19. We have the following results:

(1) For a product G×H, we have
∫
G×H =

∫
G
⊗
∫
H

.

(2) For a dual free product G ∗̂H, we have
∫
G ∗̂H =

∫
G
∗
∫
H

.

(3) For a quotient G→ H, we have
∫
H

=
(∫

G

)
|C(H)

.

(4) For a projective version G→ PG, we have
∫
PG

=
(∫

G

)
|C(PG)

.
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Proof. These formulae all follow from the invariance property, as follows:
(1) Here the tensor product form

∫
G
⊗
∫
H

satisfies the left and right invariance properties
of the Haar functional

∫
G×H , and so by uniqueness, it is equal to it.

(2) Here the situation is similar, with the free product of linear forms being defined
with some inspiration from the discrete group case, where

∫
Γ̂
g = δg,1.

(3) Here the restriction
(∫

G

)
|C(H)

satisfies by definition the required left and right

invariance properties, so once again we can conclude by uniqueness.
(4) Here we simply have a particular case of (3) above. �

We will need the following result, which is of independent interest:

Proposition 3.20. We have a Frobenius type isomorphism

Hom(v, w) ' Fix(v ⊗ w̄)

valid for any two corepresentations v, w.

Proof. According to the definitions, we have the following equivalences:

T ∈ Hom(v, w) ⇐⇒ Tv = wT ⇐⇒
∑
j

Tajvji =
∑
b

wabTbi,∀a, i

T ∈ Fix(v ⊗ w̄) ⇐⇒ (v ⊗ w̄)T = ξ ⇐⇒
∑
jb

vijw
∗
abTbj = Tai∀a, i

With these formulae in hand, both inclusions follow from the biunitarity of v, w. �

We can now formulate our third Peter-Weyl theorem, from [98], as follows:

Theorem 3.21. The dense subalgebra A ⊂ A decomposes as a direct sum

A =
⊕

v∈Irr(A)

Mdim(v)(C)

with this being an isomorphism of ∗-coalgebras, and with the summands being pairwise
orthogonal with respect to the scalar product given by

< a, b >=

∫
G

ab∗

where
∫
G

is the Haar integration over G.

Proof. By combining the previous Peter-Weyl results, from Theorem 3.9 and Theorem
3.12 above, we deduce that we have a linear space decomposition as follows:

A =
∑

v∈Irr(A)

C(v) =
∑

v∈Irr(A)

Mdim(v)(C)
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Thus, in order to conclude, it is enough to prove that for any two irreducible corepre-
sentations v, w ∈ Irr(A), the corresponding spaces of coefficients are orthogonal:

v 6∼ w =⇒ C(v) ⊥ C(w)

But this follows from Theorem 3.18, via Proposition 3.20. Let us set indeed:

Pia,jb =

∫
G

vijw
∗
ab

Then P is the orthogonal projection onto the following vector space:

Fix(v ⊗ w̄) ' Hom(v, w) = {0}
Thus we have P = 0, and this gives the result. �

We can obtain further results by using characters, which are defined as follows:

Proposition 3.22. The characters of the corepresentations, given by

χv =
∑
i

vii

behave as follows, in respect to the various operations:

χv+w = χv + χw , χv⊗w = χvχw , χv̄ = χ∗v

In addition, given two equivalent corepresentations, v ∼ w, we have χv = χw.

Proof. The three formulae in the statement are all clear from definitions. Regarding now
the last assertion, assuming that we have v = T−1wT , we obtain:

χv = Tr(v) = Tr(T−1wT ) = Tr(w) = χw

We conclude that v ∼ w implies χv = χw, as claimed. �

We have the following result, also from [98], completing the Peter-Weyl theory:

Theorem 3.23. The characters of irreducible corepresentations belong to the algebra

Acentral =
{
a ∈ A

∣∣∣Σ∆(a) = ∆(a)
}

of “smooth central functions” on G, and form an orthonormal basis of it.

Proof. As a first remark, the linear space Acentral defined above is indeed an algebra. In
the classical case, we obtain the usual algebra of smooth central functions. Also, in the
group dual case, where we have Σ∆ = ∆, we obtain the whole convolution algebra.

Observe also that Acentral contains all the characters, because we have:

∆(χv) = ∆

(∑
i

vii

)
=
∑
ij

vij ⊗ vji
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Conversely, for an element a ∈ A, written a =
∑

v∈Irr(A) av, the condition a ∈ Acentral
is equivalent to av ∈ Acentral for any v ∈ Irr(A). But av ∈ Acentral means that av must
be a scalar multiple of χv, and so the characters form a basis of Acentral, as stated.

Finally, the fact that we have an orthogonal basis follows from Theorem 3.21. As for
the fact that the characters have norm 1, this follows from:∫

G

χvχ
∗
v =

∑
ij

∫
G

viiv
∗
jj =

∑
i

1

N
= 1

Here we have used the fact that the integrals
∫
G
vijv

∗
kl form the orthogonal projection

onto the vector space Fix(v ⊗ v̄) ' End(v) = C1, coming from Proposition 3.20. �

As a first application of the Peter-Weyl theory, we have:

Proposition 3.24. Let Γ =< g1, . . . , gN > be a finitely generated discrete group.

(1) The 1-dimensional corepresentations of C∗(Γ) are the group elements g ∈ Γ.
(2) The corepresentations of C∗(Γ) are the direct sums of such group elements.

Proof. This follows from the Peter-Weyl theory. Indeed, the tensor products between u, ū
are the matrices of type u⊗k = diag(gi1 . . . gik), and so we are done. �

We can solve as well now a problem that we left open in section 2, namely:

Proposition 3.25. The cocommutative Woronowicz algebras appear as the quotients

C∗(Γ)→ A→ C∗red(Γ)

given by A = C∗π(Γ) with π ⊗ π ⊂ π, with Γ being a discrete group.

Proof. This follows as well from the Peter-Weyl theory. Observe that the assumption
π⊗π ⊂ π, which should be taken in a weak containment sense, is satisfied for the regular
representation, as well as the universal representation. �

At the level of the examples coming from operations, we have:

Proposition 3.26. We have the following results:

(1) The irreducible corepresentations of C(G×H) are the tensor products of the form
v ⊗ w, with v, w being irreducible corepresentations of C(G), C(H).

(2) The irreducible corepresentations of C(G ∗̂H) appear as alternating tensor prod-
ucts of irreducible corepresentations of C(G) and of C(H).

(3) The irreducible corepresentations of C(H) ⊂ C(G) are the irreducible corepresen-
tations of C(G) whose coefficients belong to C(H).

(4) The irreducible corepresentations of C(PG) ⊂ C(G) are the irreducible corepre-
sentations of C(G) which appear by decomposing the tensor powers of u⊗ ū.
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Proof. This is routine, the idea being as follows:
(1) Here we can integrate characters, by using Proposition 3.19 (1), and we conclude

that if v, w are irreducible corepresentations of C(G), C(H), then v ⊗ w is an irreducible
corepresentation of C(G×H). Now since the coefficients of these latter corepresentations
span C(G×H), by Peter-Weyl these are all the irreducible corepresentations.

(2) Here we can use a similar method. By using Proposition 3.19 (2) we conclude
that if v1, v2, . . . are irreducible corepresentations of C(G) and w1, w2, . . . are irreducible
corepresentations of C(H), then v1⊗w1⊗ v2⊗w2⊗ . . . is an irreducible corepresentation
of C(G ∗̂H), and then we can conclude by using the Peter-Weyl theory.

(3) This is clear from definitions, and from the Peter-Weyl theory.
(4) This is a particular case of the result (3) above. �

Let us discuss now the notion of amenability. We have the following result:

Theorem 3.27. Let Afull be the enveloping C∗-algebra of A, and let Ared be the quotient
of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Afull is faithful.
(2) The projection map Afull → Ared is an isomorphism.
(3) The counit map ε : Afull → C factorizes through Ared.
(4) We have N ∈ σ(Re(χu)), the spectrum being taken inside Ared.

If this is the case, we say that the underlying discrete quantum group Γ is amenable.

Proof. This is well-known in the group dual case, A = C∗(Γ), with Γ being a usual discrete
group. In general, the result follows by adapting the group dual case proof:

(1) ⇐⇒ (2) This follows from the fact that the GNS construction for the algebra Afull
with respect to the Haar functional produces the algebra Ared.

(2) ⇐⇒ (3) The implication =⇒ is trivial. Conversely, assume that we have a
counit map ε : Ared → C. We use the standard fact that the comultiplication of A can
be extended, via a formula of type Φ(a) = W (a⊗ 1)W ∗, into a map as follows:

Φ : Ared → Ared ⊗ Afull
The composition (ε⊗ id)Φ is then our desired isomorphism.
(3) ⇐⇒ (4) The implication =⇒ is clear, because from ε(uii) = 1 for any i, we

obtain the following formula:
ε(N −Re(χ(u))) = 0

Thus the element N −Re(χ(u)) is not invertible in Ared, as claimed.
Conversely, with v = u⊕ ū, our assumption reads dim v ∈ σ(χv). By functional calculus

the same holds for w = v + 1, and then again by functional calculus, the same holds for
any tensor power wk = w⊗k. Now choose for each k ∈ N a state εk ∈ A∗red having the
property εk(wk) = dimwk. By Peter-Weyl we must have εk(v) = dim v, for any v ≤ wk,
and since, again by Peter-Weyl, each irreducible corepresentation of A appears in this
way, the sequence εk converges to a counit map ε : Ared → C, as desired. See [75]. �
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Here are some basic applications of the above result:

Proposition 3.28. We have the following results:

(1) The compact Lie groups G ⊂ UN are all coamenable.

(2) A group dual G = Γ̂ is coamenable precisely when Γ is amenable.
(3) A product G×H of coamenable compact quantum groups is coamenable.

Proof. This follows indeed from the results that we have:
(1) This is clear by using any of the criteria in Theorem 3.27 above, because for an

algebra of type A = C(G), we have Afull = Ared.
(2) Here the various criteria in Theorem 3.27 above correspond to the various equivalent

definitions of the amenability of a discrete group.
(3) This follows from the description of the Haar functional of C(G×H), from Propo-

sition 3.19 (1) above. Indeed, if
∫
G
,
∫
H

are both faithful, then so is
∫
G
×
∫
H

. �

Summarizing, we have a fully satisfactory generalized Peter-Weyl theory, which can be
used for various purposes, including the study of amenability.
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4. Tannakian duality

In order to have more insight into the structure of the compact quantum groups, and
to effectively compute their representations, we can use algebraic geometry methods, and
more precisely Tannakian duality. We will present here Woronowicz’s Tannakian duality
result from [99], in its “soft” form, worked out by Malacarne in [70].

Let us start with the following definition:

Definition 4.1. The Tannakian category associated to a Woronowicz algebra (A, u) is
the collection C = (C(k, l)) of vector spaces

C(k, l) = Hom(u⊗k, u⊗l)

where u⊗k with k = ◦ • • ◦ . . . colored integer are the Peter-Weyl corepresentations.

We know from Proposition 3.7 above that C is a tensor ∗-category. To be more precise,
if we denote by H ' CN the Hilbert space where u ∈ MN(A) coacts, then C is a tensor
∗-subcategory of the tensor ∗-category formed by the following linear spaces:

E(k, l) = L(H⊗k, H⊗l)

Here the tensor powers H⊗k with k = ◦ • • ◦ . . . colored integer are those where the
corepresentations u⊗k act, defined by the following formulae, and multiplicativity:

H⊗∅ = C , H⊗◦ = H , H⊗• = H̄ ' H

Our purpose in what follows will be that of reconstructing (A, u) in terms of the category
C = (C(k, l)). As a first, elementary result on the subject, we have:

Proposition 4.2. Given a morphism π : (A, u)→ (B, v) we have inclusions

Hom(u⊗k, u⊗l) ⊂ Hom(v⊗k, v⊗l)

for any k, l, and if these inclusions are all equalities, π is an isomorphism.

Proof. The fact that we have indeed inclusions as in the statement is clear from definitions.
As for the last assertion, this follows from the Peter-Weyl theory. Indeed, if we assume
that π is not an isomorphism, then one of the irreducible corepresentations of A must
become reducible as a corepresentation of B. But the irreducible corepresentations being
subrepresentations of the Peter-Weyl corepresentations u⊗k, one of the spaces End(u⊗k)
must therefore increase strictly, and this gives the desired contradiction. �

The Tannakian duality result that we want to prove states, in a simplified form, that
in what concerns the last conclusion in the above statement, the assumption that we
have a morphism π : (A, u) → (B, v) is not needed. In other words, if we know that the
Tannakian categories of A,B are different, then A,B themselves must be different.

In order to get started now, our first goal will be that of gaining some familiarity with
the notion of Tannakian category. And, as a starting point here, we have to use the only
general fact that we know about u, namely that this matrix is biunitary.
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The biunitarity condition translates as follows:

Proposition 4.3. An abstract matrix u ∈MN(A) is biunitary if and only if

R ∈ Hom(1, u⊗ ū) , R ∈ Hom(1, ū⊗ u)

R∗ ∈ Hom(u⊗ ū, 1) , R∗ ∈ Hom(ū⊗ u, 1)

where R : C→ CN ⊗ CN is the linear operator given by R(1) =
∑

i ei ⊗ ei.

Proof. With R being as in the statement, we have the following computation:

(u⊗ ū)(R(1)⊗ 1) =
∑
ijk

ei ⊗ ek ⊗ uiju∗kj =
∑
ik

ei ⊗ ek ⊗ (uu∗)ik

We conclude from this that we have:

R ∈ Hom(1, u⊗ ū) ⇐⇒ uu∗ = 1

Consider now the adjoint operator R∗ : CN ⊗ CN → C, which is given by:

R∗(ei ⊗ ej) = δij

We have then the following computation:

(R∗ ⊗ id)(u⊗ ū)(ej ⊗ el ⊗ 1) =
∑
i

uiju
∗
il = (utū)jl

We conclude from this that we have:

R∗ ∈ Hom(u⊗ ū, 1) ⇐⇒ utū = 1

Similarly, or simply by replacing u in the above two conclusions with its conjugate ū,
which is a corepresentation too, we have as well the following two equivalences:

R ∈ Hom(1, ū⊗ u) ⇐⇒ ūut = 1

R∗ ∈ Hom(ū⊗ u, 1) ⇐⇒ u∗u = 1

Thus, we are led to the biunitarity conditions, and we are done. �

As a consequence of this computation, we have the following result:

Proposition 4.4. The Tannakian category C = (C(k, l)) associated to a Woronowicz
algebra (A, u) must contain the operators

R : 1→
∑
i

ei ⊗ ei , R∗(ei ⊗ ej) = δij

in the sense that we must have:

R ∈ C(∅, ◦•) , R ∈ C(∅, •◦) , R∗ ∈ C(◦•, ∅) , R∗ ∈ C(•◦, ∅)
In fact, C must contain the whole tensor category < R,R∗ > generated by R,R∗.

Proof. The first assertion is clear from the above result. As for the second assertion, this
is clear from definitions, because C = (C(k, l)) is indeed a tensor category. �
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Let us formulate now the following key definition:

Definition 4.5. Let H be a finite dimensional Hilbert space. A tensor category over H
is a collection C = (C(k, l)) of subspaces C(k, l) ⊂ L(H⊗k, H⊗l) satisfying:

(1) S, T ∈ C implies S ⊗ T ∈ C.
(2) If S, T ∈ C are composable, then ST ∈ C.
(3) T ∈ C implies T ∗ ∈ C.
(4) Each C(k, k) contains the identity operator.
(5) C(∅, ◦•) and C(∅, •◦) contain the operator R : 1→

∑
i ei ⊗ ei.

As a first observation, this formalism generalizes the Tannakian category formalism
from Definition 4.1 above, because we have:

Proposition 4.6. Let (A, u) be a Woronowicz algebra, with fundamental corepresentation
u ∈MN(A). The associated Tannakian category C = (C(k, l)), given by

C(k, l) = Hom(u⊗k, u⊗l)

is then a tensor category over the Hilbert space H = CN .

Proof. The fact that the above axioms (1-4) are indeed satisfied is clear, and the validity
of the axiom (5) follows from Proposition 4.4 above. �

Our main purpose in what follows will be that of proving that the converse of the above
statement holds. In other words, we would like to prove that any tensor category in the
sense of Definition 4.5 must appear as a Tannakian category.

As a first result on this subject, we have:

Proposition 4.7. Given a tensor category C = (C(k, l)), the following algebra, with u
being the fundamental corepresentation of C(U+

N ), is a Woronowicz algebra:

AC = C(U+
N )
/〈

T ∈ Hom(u⊗k, u⊗l)
∣∣∣∀k, l, ∀T ∈ C(k, l)

〉
In the case where C comes from a Woronowicz algebra (A, v), we have a quotient map
AC → A. Moreover, this map is an isomorphism in the discrete group algebra case.

Proof. Given colored integers k, l and an arbitrary linear operator T ∈ L(H⊗k, H⊗l),
consider the following ∗-ideal of the algebra C(U+

N ):

I =
〈
T ∈ Hom(u⊗k, u⊗l)

〉
Our claim is that I is a Hopf ideal. Indeed, with U =

∑
k uik ⊗ ukj, it is elementary to

check that we have the following implication, which proves our claim:

T ∈ Hom(u⊗k, u⊗l) =⇒ T ∈ Hom(U⊗k, U⊗l)

With this claim in hand, AC appears from C(U+
N ) by dividing by a collection of Hopf

ideals, and is therefore a Woronowicz algebra. It is also clear that we have a quotient
map AC → A, simply because the relations defining AC are satisfied in A.
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Regarding now the last assertion, assume that we are in the case A = C∗(Γ), with
Γ =< g1, . . . , gN > being a finitely generated discrete group. If we write Γ = FN/R, with
R being the complete collection of relations between the generators, then we have:

AC = C∗
(
FN

/〈
R
〉)

Thus the quotient map AC → A is indeed an isomorphism, as claimed. �

With the above construction in hand, the Tannakian duality theorem that we want to
prove states that the operations A→ AC and C → CA are inverse to each other.

We have the following result, which simplifies our work:

Proposition 4.8. Consider the following conditions:

(1) C = CAC , for any Tannakian category C.
(2) A = ACA, for any Woronowicz algebra (A, u).

We have then (1) =⇒ (2). Also, C ⊂ CAC is automatic.

Proof. Given a Woronowicz algebra (A, u), let us set C = CA. By using (1) we have then
CA = CACA . On the other hand, by Proposition 4.7 above we have an arrow ACA → A.
Thus, we are in the general situation from Proposition 4.2 above, with a surjective arrow
of Woronowicz algebras, which becomes an isomorphism at the level of the associated
Tannakian categories. We conclude that Proposition 4.2 can be applied, and this gives
the isomorphism of the associated Woronowicz algebras, ACA = A, as desired.

Finally, the fact that we have an inclusion C ⊂ CAC is clear from definitions. �

Summarizing, we would like to prove that we have CAC ⊂ C, for any Tannakian category
C. Let us begin with some abstract constructions. Following [70], let us formulate:

Proposition 4.9. Given a tensor category C = C((k, l)) over a Hilbert space H,

E
(s)
C =

⊕
|k|,|l|≤s

C(k, l) ⊂
⊕
|k|,|l|≤s

B(H⊗k, H⊗l) = B

⊕
|k|≤s

H⊗k


is a finite dimensional C∗-subalgebra. Also,

EC =
⊕
k,l

C(k, l) ⊂
⊕
k,l

B(H⊗k, H⊗l) ⊂ B

(⊕
k

H⊗k

)
is a closed ∗-subalgebra.

Proof. This is clear indeed from the categorical axioms from Definition 4.5. �

Now back to our reconstruction question, given a tensor category C = (C(k, l)), we want
to prove that we have C = CAC , which is the same as proving that we have EC = ECAC .
Equivalently, we want to prove that we have isomorphisms as follows, for any s ∈ N:

E
(s)
C = E

(s)
CAC
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We will use a standard commutant trick, as follows:

Proposition 4.10. For any C∗-algebra B ⊂Mn(C) we have

B = B′′

where prime denotes the commutant, X ′ = {T ∈Mn(C)|Tx = xT,∀x ∈ X}.

Proof. This is a particular case of von Neumann’s bicommutant theorem [73], which fol-
lows as well from the explicit description of B given in Proposition 3.8 above. To be more
precise, let us decompose B as there, as a direct sum of matrix algebras:

B = Mr1(C)⊕ . . .⊕Mrk(C)

The center of each matrix algebra being reduced to the scalars, the commutant of this
algebra is then as follows, with each copy of C corresponding to a matrix block:

B′ = C⊕ . . .⊕ C
By taking once again the commutant we obtain B itself, and we are done. �

We recall that we want to prove that we have C = CAC , for any Tannakian category
C. By using the above notions, and the bicommutant theorem, we have:

Proposition 4.11. Given a Tannakian category C, the following are equivalent:

(1) C = CAC .
(2) EC = ECAC .

(3) E
(s)
C = E

(s)
CAC

, for any s ∈ N.

(4) E
(s)′

C = E
(s)′

CAC
, for any s ∈ N.

In addition, the inclusions ⊂, ⊂, ⊂, ⊃ are automatically satisfied.

Proof. Here (1) ⇐⇒ (2) is clear from definitions, (2) ⇐⇒ (3) is clear from definitions
as well, and (3) ⇐⇒ (4) comes from the bicommutant theorem. As for the last assertion,
we have indeed C ⊂ CAC from Proposition 4.8, and this shows that we have as well EC ⊂
ECAC , and then E

(s)
C ⊂ E

(s)
CAC

, and finally E
(s)
C ⊃ E

(s)
CAC

, by taking the commutants. �

Summarizing, in order to finish, given a tensor category C = (C(k, l)), we would like

to prove that we have inclusions E
(s)′

C ⊂ E
(s)′

CAC
, for any s ∈ N.

Let us first study the commutant on the right. As a first observation, we have:

Proposition 4.12. Given a Woronowicz algebra (A, u), we have

E
(s)
CA

= End

⊕
|k|≤s

u⊗k


as subalgebras of B(⊕|k|≤sH⊗k).
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Proof. The category CA is given by CA(k, l) = Hom(u⊗k, u⊗l), so according to Proposition

4.9 above, the corresponding algebra E
(s)
CA

appears as follows:

E
(s)
CA

=
⊕
|k|,|l|≤s

Hom(u⊗k, u⊗l) ⊂
⊕
|k|,|l|≤s

B(H⊗k, H⊗l) = B

⊕
|k|≤s

H⊗k


On the other hand, the algebra of intertwiners of

⊕
|k|≤s u

⊗k is given by:

End

⊕
|k|≤s

u⊗k

 =
⊕
|k|,|l|≤s

Hom(u⊗k, u⊗l) ⊂
⊕
|k|,|l|≤s

B(H⊗k, H⊗l) = B

⊕
|k|≤s

H⊗k


Thus we have indeed the same algebra, and we are done. �

We have to compute the commutant of the above algebra. For this purpose, we can
use the following general result, valid for any corepresentation:

Proposition 4.13. Given a corepresentation v ∈Mn(A), we have a representation

πv : A∗ →Mn(C) , ϕ→ (ϕ(vij))ij

whose image is given by Im(πv) = End(v)′.

Proof. The first assertion is clear, with the multiplicativity claim coming from:

(πv(ϕ ∗ ψ))ij = (ϕ⊗ ψ)∆(vij)

=
∑
k

ϕ(vik)ψ(vkj)

=
∑
k

(πv(ϕ))ik(πv(ψ))kj

= (πv(ϕ)πv(ψ))ij

Let us first prove the inclusion ⊂. Given ϕ ∈ A∗ and T ∈ End(v), we have:

[πv(ϕ), T ] = 0 ⇐⇒
∑
k

ϕ(vik)Tkj =
∑
k

Tikϕ(vkj),∀i, j

⇐⇒ ϕ

(∑
k

vikTkj

)
= ϕ

(∑
k

Tikvkj

)
,∀i, j

⇐⇒ ϕ((vT )ij) = ϕ((Tv)ij),∀i, j

But this latter formula is true, because T ∈ End(v) means that we have vT = Tv.
As for the converse inclusion ⊃, the proof is quite similar. Indeed, by using the bicom-

mutant theorem, this is the same as proving that we have Im(πv)
′ ⊂ End(v). But, by
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using the above equivalences, we have the following computation:

T ∈ Im(πv)
′ ⇐⇒ [πv(ϕ), T ] = 0, ∀ϕ
⇐⇒ ϕ((vT )ij) = ϕ((Tv)ij),∀ϕ, i, j
⇐⇒ vT = Tv

Thus, we have obtained the desired inclusion, and we are done. �

By combining the above results, we obtain:

Proposition 4.14. Given a Woronowicz algebra (A, u), we have

E
(s)′

CA
= Im(πv)

as subalgebras of B(⊕|k|≤sH⊗k), where the corepresentation v is the sum

v =
⊕
|k|≤s

u⊗k

and where πv : A∗ →Mn(C) is given by ϕ→ (ϕ(vij))ij.

Proof. This follows indeed from Proposition 4.12 and Proposition 4.13. �

We recall that we want to prove that we have E
(s)′

C ⊂ E
(s)′

CAC
, for any s ∈ N. For this

purpose, we must first refine Proposition 4.14, in the case A = AC .
Generally speaking, in order to prove anything about AC , we are in need of an explicit

model for this algebra. In order to construct such a model, let < uij > be the free
∗-algebra over dim(H)2 variables, with comultiplication and counit as follows:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij

Following [70], we can model this ∗-bialgebra, in the following way:

Proposition 4.15. Consider the following pair of dual vector spaces,

F =
⊕
k

B
(
H⊗k

)
, F ∗ =

⊕
k

B
(
H⊗k

)∗
and let fij, f

∗
ij ∈ F ∗ be the standard generators of B(H)∗, B(H̄)∗.

(1) F ∗ is a ∗-algebra, with multiplication ⊗ and involution fij ↔ f ∗ij.
(2) F ∗ is a ∗-bialgebra, with ∆(fij) =

∑
k fik ⊗ fkj and ε(fij) = δij.

(3) We have a ∗-bialgebra isomorphism < uij >' F ∗, given by uij → fij.

Proof. Since F ∗ is spanned by the various tensor products between the variables fij, f
∗
ij,

we have a vector space isomorphism < uij >' F ∗ given by uij → fij, u
∗
ij → f ∗ij, and the

corresponding ∗-bialgebra structure induced on F ∗ is the one in the statement. �

Now back to our algebra AC , we have the following modelling result for it:
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Proposition 4.16. The smooth part of the algebra AC is given by

AC ' F ∗/J

where J ⊂ F ∗ is the ideal coming from the following relations,∑
p1,...,pk

Ti1...il,p1...pkfp1j1 ⊗ . . .⊗ fpkjk =
∑
q1,...,ql

Tq1...ql,j1...jkfi1q1 ⊗ . . .⊗ filql , ∀i, j

one for each pair of colored integers k, l, and each T ∈ C(k, l).

Proof. Our first claim is that AC appears as enveloping C∗-algebra of the following uni-
versal ∗-algebra, where u = (uij) is regarded as a formal corepresentation:

AC =
〈

(uij)i,j=1,...,N

∣∣∣T ∈ Hom(u⊗k, u⊗l),∀k, l, ∀T ∈ C(k, l)
〉

Indeed, this follows from Proposition 4.3 above, because according to the result there,
the relations defining C(U+

N ) are included into those that we impose.
With this claim in hand, the conclusion is that we have a formula as follows, where I

is the ideal coming from the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ C(k, l):

AC =< uij > /I

Now if we denote by J ⊂ F ∗ the image of the ideal I via the ∗-algebra isomorphism
< uij >' F ∗ from Proposition 4.15, we obtain an identification as follows:

AC ' F ∗/J

In order to compute J , let us go back to I. With standard multi-index notations,
and by assuming that k, l ∈ N are usual integers, for simplifying, a relation of type
T ∈ Hom(u⊗k, u⊗l) inside < uij > is equivalent to the following conditions:∑

p1,...,pk

Ti1...il,p1...pkup1j1 . . . upkjk =
∑
q1,...,ql

Tq1...ql,j1...jkui1q1 . . . uilql , ∀i, j

Now by recalling that the isomorphism of ∗-algebras < uij >→ F ∗ is given by uij → fij,
and that the multiplication operation of F ∗ corresponds to the tensor product operation
⊗, we conclude that J ⊂ F ∗ is the ideal from the statement. �

With the above result in hand, let us go back to Proposition 4.14. We have:

Proposition 4.17. The linear space A∗C is given by the formula

A∗C =
{
a ∈ F

∣∣∣Tak = alT,∀T ∈ C(k, l)
}

and πv : A∗C → B(⊕|k|≤sH⊗k) appears diagonally, by truncating, πv : a→ (ak)kk.
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Proof. We know from Proposition 4.16 that we have AC ' F ∗/J , and this gives a quotient
map F ∗ → AC , and so an inclusion A∗C ⊂ F . To be more precise, we have:

A∗C =
{
a ∈ F

∣∣∣f(a) = 0, ∀f ∈ J
}

Now since J =< fT >, where fT are the relations in Proposition 4.16, we obtain:

A∗C =
{
a ∈ F

∣∣∣fT (a) = 0,∀T ∈ C
}

Given T ∈ C(k, l), for an arbitrary element a = (ak), we have:

fT (a) = 0

⇐⇒
∑

p1,...,pk

Ti1...il,p1...pk(ak)p1...pk,j1...jk =
∑
q1,...,ql

Tq1...ql,j1...jk(al)i1...il,q1...ql ,∀i, j

⇐⇒ (Tak)i1...il,j1...jk = (alT )i1...il,j1...jk ,∀i, j
⇐⇒ Tak = alT

Thus, the dual space A∗C is given by the formula in the statement.
It remains to compute the representation πv, which appears as follows:

πv : A∗C → B

⊕
|k|≤s

H⊗k


With a = (ak), we have the following computation:

πv(a)i1...ik,j1...jk = a(vi1...ik,j1...jk)

= (fi1j1 ⊗ . . .⊗ fikjk)(a)

= (ak)i1...ik,j1...jk

Thus, our representation πv appears diagonally, by truncating, as claimed. �

In order to further advance, consider the following vector spaces:

Fs =
⊕
|k|≤s

B
(
H⊗k

)
, F ∗s =

⊕
|k|≤s

B
(
H⊗k

)∗
We denote by a→ as the truncation operation F → Fs. We have then:

Proposition 4.18. The following hold:

(1) E
(s)′

C ⊂ Fs.
(2) E ′C ⊂ F .
(3) A∗C = E ′C.
(4) Im(πv) = (E ′C)s.
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Proof. These results basically follow from what we have, as follows:

(1) Since Fs ⊂ B
(⊕

|k|≤sH
⊗k
)

is the diagonal subalgebra, its commutant is:

F ′s =
{
b ∈ Fs

∣∣∣b = (bk), bk ∈ C,∀k
}

On the other hand, we know from the identity axiom for C that this algebra is contained

inside E
(s)
C . Thus, our result follows from the bicommutant theorem, as follows:

F ′s ⊂ E
(s)
C =⇒ Fs ⊃ E

(s)′

C

(2) This follows from (1), by taking inductive limits.
(3) With the present notations, the formula of A∗C from Proposition 4.17 reads:

A∗C = F ∩ E ′C
Now since by (2) we have E ′C ⊂ F , we obtain from this A∗C = E ′C .
(4) This follows from (3), and from the formula of πv in Proposition 4.17. �

Following [70], we can now state and prove our main result, as follows:

Theorem 4.19. The Tannakian duality constructions

C → AC , A→ CA

are inverse to each other, modulo identifying full and reduced versions.

Proof. According to Proposition 4.8, Proposition 4.11, Proposition 4.14 and Proposition
4.18, we have to prove that, for any Tannakian category C, and any s ∈ N:

E
(s)′

C ⊂ (E ′C)s

By taking duals, this is the same as proving that we have:{
f ∈ F ∗s

∣∣∣f|(E′C)s = 0
}
⊂
{
f ∈ F ∗s

∣∣∣f|E(s)′
C

= 0
}

In order to establish these inclusions, we use the formula A∗C = E ′C , from Proposition
4.18. Since we have AC = F ∗/J , we conclude that the ideal J is given by:

J =
{
f ∈ F ∗

∣∣∣f|E′C = 0
}

Our claim is that we have the following formula, for any s ∈ N:

J ∩ F ∗s =
{
f ∈ F ∗s

∣∣∣f|E(s)′
C

= 0
}

Indeed, let us denote by Xs the spaces on the right. The categorical axioms for C
show that these spaces are increasing, that their union X = ∪sXs is an ideal, and that
Xs = X ∩ F ∗s . We must prove that we have J = X, and this can be done as follows:

“⊂” This follows from the following fact, for any T ∈ C(k, l) with |k|, |l| ≤ s:

(fT )|{T}′ = 0 =⇒ (fT )|E(s)′
C

= 0 =⇒ fT ∈ Xs
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“⊃” This follows from our description of J , because from E
(s)
C ⊂ EC we obtain:

f|E(s)′
C

= 0 =⇒ f|E′C = 0

Summarizing, we have proved our claim. On the other hand, we have:

J ∩ F ∗s =
{
f ∈ F ∗

∣∣∣f|E′C = 0
}
∩ F ∗s

=
{
f ∈ F ∗s

∣∣∣f|E′C = 0
}

=
{
f ∈ F ∗s

∣∣∣f|(E′C)s = 0
}

Thus, our claim is exactly the inclusion that we wanted to prove, and we are done. �

As a first application, let us record the following theoretical fact, from [14]:

Proposition 4.20. Each closed subgroup G ⊂ U+
N appears as an algebraic manifold of

the free complex sphere, G ⊂ SN
2−1

C,+ , the embedding being given by xij =
uij√
N

.

Proof. This follows from Theorem 4.19, by using the inclusions G ⊂ U+
N ⊂ SN

2−1
C,+ . Indeed,

both these inclusions are algebraic, and this gives the result. �

As a second application of the above results, let us study the quantum groups O+
N , U

+
N .

In order to get started, let us get back to the operators R,R∗. We have:

Proposition 4.21. The tensor category < R,R∗ > generated by the operators

R : 1→
∑
i

ei ⊗ ei , R∗(ei ⊗ ej) = δij

produces via Tannakian duality the algebra C(U+
N ).

Proof. By Proposition 4.4 the intertwining relations coming from R,R∗, and so from any
element of the tensor category < R,R∗ >, hold automatically, so the quotient operation
in Proposition 4.7 is trivial, and we obtain the algebra C(U+

N ) itself, as stated. �

Our goal now will be that of reaching to a better understanding of R,R∗. In order to
do so, we use a diagrammatic formalism, as follows:

Definition 4.22. Let k, l be two colored integers, having lengths |k|, |l| ∈ N.

(1) P2(k, l) is the set of pairings between an upper row of |k| points, and a lower row
of |l| points, with these two rows of points colored by k, l.

(2) P2(k, l) ⊂ P2(k, l) is the set of matching pairings, whose horizontal strings connect
◦ − ◦ or • − •, and whose vertical strings connect ◦ − •.

(3) NC2(k, l) ⊂ P2(k, l) is the set of pairings which are noncrossing, in the sense that
we can draw the pairing as for the strings to be noncrossing.

(4) NC2(k, l) ⊂ P2(k, l) is the subset of noncrossing matching pairings, obtained as
an intersection, NC2(k, l) = NC2(k, l) ∩ P2(k, l).
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The relation with the Tannakian categories of linear maps comes from the fact that we
can associate linear maps to the pairings, as in [35], as follows:

Definition 4.23. Associated to any pairing π ∈ P2(k, l) and any N ∈ N is the linear map
Tπ : (CN)⊗k → (CN)⊗l given by

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

with the Kronecker type symbols δπ ∈ {0, 1} depending on whether the indices fit or not.

To be more precise here, in the definition of the Kronecker symbols, we agree to put
the two multi-indices on the two rows of points of the pairing, in the obvious way. The
Kronecker symbols are then defined by δπ = 1 when all the strings of π join equal indices,
and by δπ = 0 otherwise. Observe that all this is independent of the coloring.

Here are a few basic examples of such linear maps:

Proposition 4.24. The correspondence π → Tπ has the following properties:

(1) T∩ = R.
(2) T∪ = R∗.
(3) T||...|| = id.
(4) T/\ = Σ.

Proof. We can assume if we want that all the upper and lower legs of π are colored ◦.
With this assumption made, the proof goes as follows:

(1) We have ∩ ∈ P2(∅, ◦◦), and so the corresponding operator is a certain linear map
T∩ : C→ CN ⊗ CN . The formula of this map is as follows:

T∩(1) =
∑
ij

δ∩(i j)ei ⊗ ej =
∑
ij

δijei ⊗ ej =
∑
i

ei ⊗ ei

We recognize here the formula of R(1), and so we have T∩ = R, as claimed.
(2) Here we have ∪ ∈ P2(◦◦, ∅), and so the corresponding operator is a certain linear

form T∩ : CN ⊗ CN → C. The formula of this linear form is as follows:

T∩(ei ⊗ ej) = δ∩(i j) = δij

Since this is the same as R∗(ei ⊗ ej), we have T∪ = R∗, as claimed.
(3) Consider indeed the “identity” pairing || . . . || ∈ P2(k, k), with k = ◦ ◦ . . . ◦ ◦. The

corresponding linear map is then the identity, because we have:

T||...||(ei1 ⊗ . . .⊗ eik) =
∑
j1...jk

δ||...||

(
i1 . . . ik
j1 . . . jk

)
ej1 ⊗ . . .⊗ ejk

=
∑
j1...jk

δi1j1 . . . δikjkej1 ⊗ . . .⊗ ejk

= ei1 ⊗ . . .⊗ eik
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(4) In the case of the basic crossing /\ ∈ P2(◦◦, ◦◦), the corresponding linear map
T/\ : CN ⊗ CN → CN ⊗ CN can be computed as follows:

T/\(ei ⊗ ej) =
∑
kl

δ/\

(
i j
k l

)
ek ⊗ el =

∑
kl

δilδjkek ⊗ el = ej ⊗ ei

Thus we obtain the flip operator Σ(a⊗ b) = b⊗ a, as claimed. �

Summarizing, the correspondence π → Tπ provides simple formulae for the operators
R,R∗ that we are interested in, and has as well some interesting categorical properties.
Let us further explore these properties. We have the following result, from [35]:

Proposition 4.25. The assignement π → Tπ is categorical, in the sense that we have

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.

Proof. The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

The composition axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)
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Finally, the involution axiom follows from the following computation:

T ∗π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)
Summarizing, our correspondence is indeed categorical. �

We can now formulate a first result regarding O+
N , U

+
N , as follows:

Theorem 4.26. For the quantum groups O+
N , U

+
N we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

with D = NC2,NC2 respectively, with π → Tπ being constructed as above.

Proof. We know from Proposition 4.21 that U+
N corresponds via Tannakian duality to the

category < R,R∗ >. On the other hand, it follows from the above categorical considera-
tions that this latter category is given by the following formula:

< R,R∗ >= span
(
Tπ

∣∣∣π ∈ NC2

)
As for the result from O+

N , this follows by adding to the picture the self-adjointness
condition u = ū, which corresponds, at the level of pairings, to removing the colors. �

As a first application, regarding O+
N , we have the following result, from [1]:

Theorem 4.27. The irreducible corepresentations of O+
N are labelled by positive integers,

and their fusion rules are the Clebsch-Gordan ones, namely

rk ⊗ rl = r|k−l| + r|k−l|+2 + . . .+ rk+l

as for the group SU2. The dimensions of these corepresentations are given by

dim rk =
qk+1 − q−k−1

q − q−1

where q, q−1 are the solutions of X2 −NX + 1 = 0.

Proof. Let {χk}k∈N be the characters of the irreducible representations of SU2. These
characters span a complex subalgebra A ⊂ C(SU2), which is isomorphic to C[X], via
X → χ1. We can find integers ckl ∈ N such that ckk = 1 and:

χk1 =
k∑
l=0

cklχl
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Also, we can define a morphism Ψ : A→ C(O+
N) by χ1 → f1, where f1 is the character

of the fundamental representation of O+
N . The elements fk = Ψ(χk) verify then:

fkfl = f|k−l| + f|k−l|+2 + . . .+ fk+l

We prove now by recurrence on k that each fk is the character of an irreducible corep-
resentation rk of C(O+

N), non-equivalent to r0, . . . , rk−1. At k = 0, 1 this is clear.
Assume now that the result holds at k − 1. We have fk−2f1 = fk−3 + fk−1, and so we

get rk−2⊗ r1 = rk−3 + rk−1, which gives rk−1 ⊂ rk−2⊗ r1. Now since rk−2 is irreducible, by
Frobenius reciprocity we have rk−2 ⊂ rk−1 ⊗ r1, so there exists a representation rk such
that rk−1 ⊗ r1 = rk−2 + rk. Since fk−1f1 = fk−2 + fk, the character of rk is fk.

It remains to prove that rk is irreducible, and non-equivalent to r1, . . . , rk−1. For this
purpose, observe that we have inequalities as follows:

k∑
l=0

c2
kl ≤ dim(End(u⊗k)) ≤ #NC2(k, k)

Indeed, the first inequality comes from the fact that we have fk1 =
∑k

l=0 cklfl, with the
remark that the equality case holds precisely when rk is irreducible, and non-equivalent
to r1, . . . , rk−1. As for the second inequality, this comes from Theorem 4.26.

Our claim now, which will end the proof, is that we have equalities everywhere. But
in order to prove this claim, we can ignore of course the middle quantity, and we are left
with a question regarding the numbers ckl, and so with a question regarding SU2.

In order to solve this latter question, let w be the fundamental representation of SU2.
We have then some well-known equalities, as follows:

k∑
l=0

c2
kl = dim(End(w⊗k)) = #NC2(k, k)

Indeed, the first equality follows from the definition of the numbers ckl. As for the
second equality, this is something standard, coming for instance from the fact that we
have an isomorphism SU2 ' S3

R, as compact measured spaces, which makes the main
character χw correspond to a semicircular variable, having the numbers #NC2(k, k) as
moments. All this is standard, and will be discussed in section 6 below, and everything
can be deduced as well directly from the Clebsch-Gordan rules.

Summariring, we have equalities everywhere, and this proves our claim. Finally, since
any irreducible representation of O+

N must appear in some tensor power of u, and we have
a formula for decomposing each u⊗k into sums of representations rl, we conclude that
these representations rl are all the irreducible representations of O+

N .
Finally, from the Clebsch-Gordan rules we have in particular:

rkr1 = rk−1 + rk+1

But this gives the dimension formula in the statement, and we are done. �
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Let us investigate now the quantum group U+
N . We first have:

Theorem 4.28. The canonical free complexification model

C(U+
N )→ C(T) ∗ C(O+

N)

is faithful, at the level of the reduced version algebras.

Proof. We have embeddings as follows, with the first one coming by using the counit, and
with the second one coming from the universality property of U+

N :

O+
N ⊂ Õ+

N ⊂ U+
N

If we denote by v, zv, u the corresponding fundamental corepresentations, at the level
of the associated Hom spaces we obtain reverse inclusions, as follows:

Hom(v⊗k, v⊗l) ⊃ Hom((zv)⊗k, (zv)⊗l) ⊃ Hom(u⊗k, u⊗l)

The spaces on the left and on the right are known from Theorem 4.26 above, the result
there stating that these spaces are as follows:

span
(
Tπ

∣∣∣π ∈ NC2(k, l)
)
⊃ span

(
Tπ

∣∣∣π ∈ NC2(k, l)
)

Regarding the spaces in the middle, these are obtained from those on the left by “color-
ing”, so we obtain the same spaces as those on the right. Thus, by Tannakian duality, our

embedding Õ+
N ⊂ U+

N is an isomorphism, modulo identifying full and reduced versions. �

We can now compute the fusion rules for U+
N , and we have:

Theorem 4.29. The irreducible corepresentations of U+
N are labelled by N ∗ N, and

rk ⊗ rl =
∑

k=xy,l=ȳz

rxz

which appear as “free complexifications” of the Clebsch-Gordan ones.

Proof. This follows by combining Theorem 4.27 and Theorem 4.28 above. Indeed, the

fusion rules for Õ+
N can be explicitely computed, and appear as “free complexifications”

of the fusion rules for O+
N , which are the Clebsch-Gordan ones. Alternatively, we can use

a recurrence argument as in the proof of Theorem 4.27 above, with rk ⊂ u⊗k being the
“new components” which appear. All this is quite technical, see [1], [77] for details. �

As a conclusion, the Tannakian duality methods allow us to have a very good insight
into the structure of O+

N , U
+
N , and the same methods can be in principle applied to any

quantum group whose algebra of functions is given by a simple presentation formula.
We will systematically exploit this point of view, in what follows.
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5. Easiness, examples

Our purpose now will be that of extending the main findings about O+
N , U

+
N from the

previous section to ON , UN too, and to other compact quantum groups as well.
Let us begin with a general definition, from [35], [83], as follows:

Definition 5.1. Let P (k, l) be the set of partitions between an upper colored integer k,
and a lower colored integer l. A set D =

⊔
k,lD(k, l) with D(k, l) ⊂ P (k, l) is called a

category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.

We have already met a number of such categories, in Definition 4.22 above. Indeed,
the sets there are categories of pairings, with inclusions between them as follows:

P2

��

NC2
oo

��
P2 NC2
oo

There are many other examples of such categories, as for instance P itself, or the
category NC ⊂ P of all noncrossing partitions. We will gradually explore these examples,
in what follows. For the moment, we will rather focus on the categories of pairings.

The relation with the Tannakian categories comes from:

Proposition 5.2. Each π ∈ P (k, l) produces a linear map Tπ : (CN)⊗k → (CN)⊗l,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

with the Kronecker type symbols δπ ∈ {0, 1} depending on whether the indices fit or not.
The assignement π → Tπ is categorical, in the sense that we have

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.

Proof. This is something that we already know for the pairings, from Proposition 4.25
above. In general, the proof is identical. To be more precise, the proof of Proposition
4.25 does not use the fact that the partitions there are actually pairings. �

In relation with the quantum groups, we have the following result, from [35]:
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Theorem 5.3. Each category of partitions D = (D(k, l)) produces a family of compact
quantum groups G = (GN), one for each N ∈ N, via the formula

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

which produces a Tannakian category, and the Tannakian duality correspondence.

Proof. This follows indeed from Woronowicz’s Tannakian duality, in its “soft” form from
[70], as explained in section 4 above. Indeed, let us set:

C(k, l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

By using the axioms in Definition 5.1, and the categorical properties of the operation
π → Tπ, from Proposition 5.2 above, we deduce that C = (C(k, l)) is a Tannakian
category. Thus the Tannakian duality applies, and gives the result. �

We already know, from section 4 above, that the quantum groups O+
N , U

+
N appear in

this way, with D being respectively NC2,NC2. In general now, let us formulate:

Definition 5.4. A closed subgroup G ⊂ U+
N is called easy when we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from a category of partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool.

Observe that the category D is not unique, for instance because at N = 1 all the
categories of partitions produce the same easy quantum group, namely G = {1}. We will
be back to this issue on several occasions, with various results about it.

We will see in what follows, in this section and in the next few ones, that many in-
teresting examples of compact quantum groups are easy. Moreover, most of the known
series of “basic” compact quantum groups, G = (GN) with N ∈ N, can be in principle
made fit into some suitable extensions of the easy quantum group formalism.

In practice now, what we know so far is that O+
N , U

+
N are easy. Here is a simplified proof

for this fact, using the main Tannakian result from section 4 as ingredient:

Proposition 5.5. We have the following results:

(1) The quantum group U+
N is easy, coming from the category NC2.

(2) The quantum group O+
N is easy as well, coming from the category NC2.

Proof. We use the Tannakian duality result from section 4 above:
(1) U+

N is defined via the relations u∗ = u−1, ut = ū−1, which tell us that the operators
Tπ, with π = ∩

◦• and π = ∩
•◦, must be in the associated Tannakian category C. We

therefore obtain C = span(Tπ|π ∈ D), with D =< ∩
◦• ,

∩
•◦ >= NC2, as claimed.
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(2) O+
N ⊂ U+

N is defined by imposing the relations uij = ūij, which tell us that the
operators Tπ, with π = |◦• and π = |•◦, must be in the associated Tannakian category C. We
therefore obtain C = span(Tπ|π ∈ D), with D =< NC2, |◦•, |•◦ >= NC2, as claimed. �

Next in our lineup, we have the following result, due to Brauer [47]:

Proposition 5.6. We have the following results:

(1) The unitary group UN is easy, coming from the category P2.
(2) The orthogonal group ON is easy as well, coming from the category P2.

Proof. As already mentioned, this result is due to Brauer [47]. The classical proof is via
classical Tannakian duality, for the usual closed subgroups G ⊂ UN .

In the present context, we can deduce this result from the one that we already have,
for O+

N , U
+
N . The idea is very simple, namely that of “adding crossings”, as follows:

(1) UN ⊂ U+
N is defined via the relations [uij, ukl] = 0 and [uij, ūkl] = 0, which tell

us that the operators Tπ, with π = /\◦◦◦◦ and π = /\◦••◦, must be in the associated Tannakian
category C. Thus C = span(Tπ|π ∈ D), with D =< NC2, /\◦◦◦◦, /\

◦•
•◦ >= P2, as claimed.

(2) In order to deal now with ON , we can simply use the formula ON = O+
N ∩ UN .

At the categorical level, this tells us that the associated Tannakian category is given by
C = span(Tπ|π ∈ D), with D =< NC2,P2 >= P2, as claimed. �

Regarding now the half-liberations, we have here:

Proposition 5.7. We have the following results:

(1) U∗N is easy, coming from the category P∗2 ⊂ P2 of pairings having the property that,
when the legs are relabelled clockwise ◦ • ◦ • . . ., each string connects ◦ − •.

(2) O∗N is easy too, coming from the category P ∗2 ⊂ P2 of pairings having the same
property: when legs are labelled clockwise ◦ • ◦ • . . ., each string connects ◦ − •.

Proof. We can proceed here as in the proof of Proposition 5.6 above, by replacing the
basic crossing by the half-commutation crossing, as follows:

(1) Regarding U∗N ⊂ U+
N , the corresponding Tannakian category is generated by the

operators Tπ, with π = /\| , taken with all the possible 23 = 8 matching colorings. Since
these latter 8 partitions generate the category P∗2 , we obtain the result.

(2) Finally, for O∗N we can proceed similarly, by using the formula O∗N = O+
N ∩ U∗N .

At the categorical level, this tells us that the associated Tannakian category is given by
C = span(Tπ|π ∈ D), with D =< NC2,P∗2 >= P ∗2 , as claimed. �

Let us collect now the results that we have so far in a single theorem, as follows:
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Theorem 5.8. The basic unitary quantum groups are all easy, as follows,

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

:

P2

��

P∗2oo

��

NC2
oo

��
P2 P ∗2oo NC2

oo

with the corresponding categories of partitions being those on the right.

Proof. This follows indeed from the above results. �

We have seen in section 4 above that the easiness property of O+
N , U

+
N leads to some

interesting consequences. Regarding O∗N , U
∗
N , as a main consequence, we can now compute

their projective versions, as part of the following general result:

Theorem 5.9. The projective versions of the basic quantum groups are as follows,

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

→

PUN // PUN // PU+
N

PON
//

OO

PUN //

OO

PU+
N

OO

when identifying, in the free case, full and reduced version algebras.

Proof. In the classical case, there is nothing to prove. Regarding the half-classical versions,
consider the inclusions O∗N , UN ⊂ U∗N . These induce inclusions PO∗N , PUN ⊂ PU∗N , and
our claim is that these latter inclusions are isomorphisms.

In order to prove this, let u, v, w be the fundamental corepresentations of O∗N , UN , U
∗
N .

We have then the following equalities, coming from Theorem 5.8 above:

Hom
(
(u⊗ ū)k, (u⊗ ū)l

)
= span

(
Tπ

∣∣∣π ∈ P ∗2 ((◦•)k, (◦•)l)
)

Hom
(
(u⊗ ū)k, (u⊗ ū)l

)
= span

(
Tπ

∣∣∣π ∈ P2((◦•)k, (◦•)l)
)

Hom
(
(u⊗ ū)k, (u⊗ ū)l

)
= span

(
Tπ

∣∣∣π ∈ P∗2 ((◦•)k, (◦•)l)
)

The sets on the right being equal, we conclude that the inclusionsO∗N , UN ⊂ U∗N preserve
the corresponding Tannakian categories, and so must be isomorphisms.

Finally, in the free case the result follows either from the free complexification result in
Theorem 4.28, or from Theorem 5.8, by using the same method. �
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The above result is quite interesting, philosophically, because it shows that, in the
nocommutative setting, the distinction between R and C becomes “blurred”. We will be
back to this in section 11 below, with some noncommutative geometry considerations.

In order to enlarge now our list of examples, and develop some general theory as well,
we have several directions to be explored. A first natural question is that of computing
the quantum group associated to the category P itself, and we have here:

Theorem 5.10. The symmetric group SN , regarded as a compact quantum group,

SN ⊂ UN ⊂ U+
N

via the permutation matrices, is easy, coming from the category of all partitions P .

Proof. Consider indeed the symmetric group SN , regarded as a group of unitary matrices,
with each permutation σ ∈ SN corresponding to the associated permutation matrix,
σ(ei) = eσ(i). We have in this way an embedding SN ⊂ UN ⊂ U+

N , as above.
Consider as well the easy quantum group G ⊂ O+

N coming from the category of all
partitions P . Since P contains the basic crossing, we have G ⊂ ON . Moreover, since P is
generated by the one-block partition µ ∈ P (2, 1), we have:

C(G) = C(ON)
/〈

Tµ ∈ Hom(u⊗2, u)
〉

The linear map associated to µ being given by Tµ(ei ⊗ ej) = δijei, we have:

u = (uij)ij , u⊗2 = (uijukl)ik,jl , Tµ = (δijk)i,jk

We therefore obtain the following formulae:

(Tµu
⊗2)i,jk =

∑
lm

(Tµ)i,lm(u⊗2)lm,jk = uijuik

(uTµ)i,jk =
∑
l

uil(Tµ)l,jk = δjkuij

Thus, the relation defining G ⊂ ON reformulates as follows:

Tµ ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k

In other words, the elements uij must be projections, and these projections must be
pairwise orthogonal on the rows of u = (uij). We conclude that G ⊂ ON is the subgroup
of matrices U ∈ ON having the property Uij ∈ {0, 1}, and so G = SN , as desired. �

With the above result in hand, and after a quick look at Theorem 5.8, it is tempting
to define the “quantum permutation group” as being the easy quantum group associated
to the category of noncrossing partitions NC. We will discuss this in section 7 below.

For the moment, let us stay at the general level. We have:
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Proposition 5.11. Any easy quantum group G ⊂ U+
N appears as an intermediate subgroup

SN ⊂ G ⊂ U+
N . Also, the intermediate subgroups SN ⊂ G ⊂ U+

N are those satisfying

Hom(u⊗k, u⊗l) ⊂ span
(
Tπ

∣∣∣π ∈ P (k, l)
)

for any k, l, and the easy ones are those having the property that these inclusions come
from an inclusion of categories of partitions D ⊂ P , via the π → Tπ construction.

Proof. The first assertion follows from Theorem 5.10, by functoriality. The first part of
the second assertion follows as well from Theorem 5.10, by functoriality. As for the second
part of the second assertion, this is just a reformulation of Definition 5.4. �

All this suggests looking, more generally, at the arbitrary intermediate closed subgroups
SN ⊂ G ⊂ U+

N , by using combinatorial methods. We have here, as a basic result:

Proposition 5.12. Given an intermediate quantum group SN ⊂ G ⊂ U+
N , with Tannakian

category CG, the following is a category of partitions,

D′ =
{
π ∈ P

∣∣∣Tπ ∈ CG}
and the corresponding easy quantum group G′ ⊂ U+

N is smallest easy quantum group
containing G. Moreover, the same holds under the sole assumption G ⊂ U+

N .

Proof. The fact that D′ satisfies the axioms for the categories of partitions comes from
the fact that CG satisfies the axioms for the Tannakian categories. By functoriality we
have an inclusion G ⊂ G′, and the fact that G′ is the smallest easy quantum group having
this property is clear as well, once again by functoriality considerations. �

The quantum group G′ constructed above is called “easy envelope” of G. The con-
struction G→ G′ is something quite interesting, and we will be back to it, later on.

When G is easy, coming from a category of partitions D, we have of course G = G′.
By functoriality we have D ⊂ D′, and the category D′, called “saturation” of D, is the
biggest category of partitions producing the same easy quantum group as D.

Observe however that the construction D → D′ depends on N ∈ N, so it is does not
provide a good answer to the functoriality issues mentioned after Definition 5.4.

Let us discuss now composition operations. We will be interested in:

Proposition 5.13. The closed subgroups of U+
N are subject to operations as follows:

(1) Intersection: H ∩K is the biggest quantum subgroup of H,K.
(2) Generation: < H,K > is the smallest quantum group containing H,K.

Proof. We must prove that the universal quantum groups in the statement exist indeed.
For this purpose, let us pick writings as follows, with I, J being Hopf ideals:

C(H) = C(U+
N )/I , C(K) = C(U+

N )/J
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We can then construct our two universal quantum groups, as follows:

C(H ∩K) = C(U+
N )/ < I, J >

C(< H,K >) = C(U+
N )/(I ∩ J)

Thus, we obtain the result. �

In practice, the operation ∩ can be usually computed by using:

Proposition 5.14. Assuming H,K ⊂ G, the intersection H ∩K is given by

C(H ∩K) = C(G)/{R,P}
whenever C(H) = C(G)/R and C(K) = C(G)/P, with R,P being certain sets of poly-
nomial ∗-relations between the standard coordinates uij.

Proof. This follows from Proposition 5.13 above, or rather from its proof, and from the
following trivial fact, regarding relations and ideals:

I =< R >, J =< P > =⇒ < I, J >=< R,P >

Thus, we obtain the result. �

In order to discuss now the generation operation, let us call Hopf image of a repre-
sentation C(G) → A the smallest Hopf algebra quotient C(L) producing a factorization
C(G) → C(L) → A. The fact that such a quotient exists indeed is routine, by dividing
by a suitable ideal, and we will be back to this, with details, in section 12 below.

This notion can be generalized to families of representations, and we have:

Proposition 5.15. Assuming H,K ⊂ G, the quantum group < H,K > is such that

C(G)→ C(H ∩K)→ C(H), C(K)

is the joint Hopf image of the quotient maps C(G)→ C(H), C(K).

Proof. In the particular case from the statement, the joint Hopf image appears as the
smallest Hopf algebra quotient C(L) producing factorizations as follows:

C(G)→ C(L)→ C(H), C(K)

We conclude from this that we have L =< H,K >, as claimed. See [49]. �

In the Tannakian setting now, we have the following result:

Theorem 5.16. The intersection and generation operations ∩ and < ,> can be con-
structed via the Tannakian correspondence G→ CG, as follows:

(1) Intersection: defined via CG∩H =< CG, CH >.
(2) Generation: defined via C<G,H> = CG ∩ CH .

Proof. This follows from Proposition 5.13, or rather from its proof, by taking I, J to be
the ideals coming from Tannakian duality, in its soft form, from section 4 above. �
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In relation now with our easiness questions, we first have the following result:

Proposition 5.17. Assuming that H,K are easy, then so is H ∩K, and we have

DH∩K =< DH , DK >

at the level of the corresponding categories of partitions.

Proof. We have indeed the following computation:

CH∩K = < CH , CK >

= < span(DH), span(DK) >

= span(< DH , DK >)

Thus, by Tannakian duality we obtain the result. �

Regarding the generation operation, the situation is more complicated, as follows:

Proposition 5.18. Assuming that H,K are easy, we have inclusions

< H,K >⊂< H,K >′⊂ {H,K}
coming from inclusions of Tannakian categories as follows,

CH ∩ CK ⊃ span
(
Tπ

∣∣∣Tπ ∈ CH ∩ CK) ⊃ span(DH ∩DK)

where {H,K} is the easy quantum group having as category of partitions DH ∩DK.

Proof. This follows from the definition and properties of the easy envelope operation, from
Proposition 5.1 above, and from the following computation:

C<H,K> = CH ∩ CK
= span(DH) ∩ span(DK)

⊃ span(DH ∩DK)

Indeed, by Tannakian duality we obtain from this all the assertions. �

It is not very clear if the various inclusions in Proposition 5.18 are isomorphisms or
not, perhaps under a N >> 0 assumption, and this is actually a topic of active research.
Technically speaking, the problem comes from the fact that the operation π → Tπ does
not produce linearly independent maps. We will be back to this, later on.

Summarizing, we have a gap in our theory, and we must cheat, as follows:

Theorem 5.19. The intersection and easy generation operations ∩ and { , } can be con-
structed via the Tannakian correspondence G→ DG, as follows:

(1) Intersection: defined via DG∩H =< DG, DH >.
(2) Easy generation: defined via D{G,H} = DG ∩DH .

Proof. Here (1) is an honest result, coming from Proposition 5.17, and (2) is an empty
statement, related to the difficulties that we met in Proposition 5.18. �
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Observe that we are actually cheating twice here, once for each of the 2 inclusions in
Proposition 5.18. This is how mathematics goes. In what follows we will use the above
operations ∩ and { , } several times, in order to formulate certain results.

Let us go back now to more concrete things, and explore a number of further examples
of easy quantum groups. With the convention that a matrix is called bistochastic when
its entries sum up to 1, on each row and each column, we have:

Proposition 5.20. We have the following groups and quantum groups:

(1) BN ⊂ ON , consisting of the orthogonal matrices which are bistochastic.
(2) CN ⊂ UN , consisting of the unitary matrices which are bistochastic.
(3) B+

N ⊂ O+
N , coming via uξ = ξ, where ξ is the all-one vector.

(4) C+
N ⊂ U+

N , coming via uξ = ξ, where ξ is the all-one vector.

Also, we have inclusions BN ⊂ B+
N and CN ⊂ C+

N , which are both liberations.

Proof. Here the fact that BN , CN are indeed groups is clear. As for B+
N , C

+
N , these are

quantum groups as well, because the relation ξ ∈ Fix(u) is categorical.
Finally, observe that for U ∈ UN the condition Uξ = ξ is equivalent to U∗ξ = ξ. By

conjugating, these conditions are equivalent as well to Ūξ = ξ, and to U tξ = ξ. Thus
U ∈ UN is bistochastic precisely when Uξ = ξ, and this gives the last assertion. �

The above quantum groups are all easy, and following [35], [83], we have:

Theorem 5.21. The basic orthogonal and unitary quantum groups and their bistochastic
versions are all easy, and they form a diagram as follows,

C+
N

// U+
N

B+
N

//

>>

O+
N

>>

CN //

OO

UN

OO

BN

OO

==

// ON

OO

==

which is an intersection and easy generation diagram, in the sense that any of its faces
P ⊂ Q,R ⊂ S satisfies the condition P = Q ∩R, {Q,R} = S.

Proof. The first assertion comes from the fact that the all-one vector ξ used in Proposition
5.20 above is the vector associated to the singleton partition, ξ = T|. Indeed, we obtain
from this that the quantum groups BN , CN , B

+
N , C

+
N are indeed easy, appearing from the

categories of partitions for ON , UN , O
+
N , U

+
N , by adding singletons.

In practice now, according to this observation, and to Theorem 5.8 above, the corre-
sponding categories of partitions are as follows, where the symbol 12 stands for “singletons
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and pairings”, in the same way as the symbol 2 stands for “pairings”:

NC12

}}

��

NC2

~~

oo

��

NC12

��

NC2

��

oo

P12

}}

P2

~~

oo

P12 P2
oo

Now since both this diagram and the one the statement are intersection diagrams, the
quantum groups form an intersection and easy generation diagram, as stated. �

The above result looks quite nice, theoretically speaking, but there are a few problems
with it. First, we cannot really merge it with Theorem 5.8, as to obtain a nice cubic
diagram, containing all the quantum groups considered so far, and this because the half-
classical versions of the bistochastic quantum groups collapse, as follows:

Proposition 5.22. The half-classical versions of B+
N , C

+
N are given by:

B+
N ∩O

∗
N = BN , C+

N ∩ U
∗
N = CN

In other words, the half-classical versions collapse to the classical versions.

Proof. This follows for instance from Tannakian duality, by using the fact that when
capping the half-classical crossing with 2 singletons, we obtain the classical crossing. �

Yet another problem with the bistochastic groups and quantum groups comes from the
fact that these objects are not really “new”, because, following [77], we have:

Proposition 5.23. We have isomorphisms as follows:

(1) BN ' ON−1, B+
N ' O+

N−1.
(2) CN ' UN−1, C+

N ' U+
N−1.

Proof. Let us pick F ∈ UN satisfying Fe0 = 1√
N
ξ, where ξ is the all-one vector, the basic

example here being the Fourier matrix, FN = (wij) with w = e2πi/N . We have then:

uξ = ξ ⇐⇒ uFe0 = Fe0

⇐⇒ F ∗uFe0 = e0

⇐⇒ F ∗uF = diag(1, w)

Thus we have isomorphisms as in the statement, given by wij → (F ∗uF )ij. �
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Summarizing, we have some examples of easy quantum groups, but we are not ready
yet for some serious structure and classification work. We will be back to all this later
on, in section 9 below, after introducing and studying some more examples.

Back to generalities now, let us point out the fact that the easy quantum groups are
not the only ones “coming from partitions”, but are rather the simplest ones having this
property. There are many other classes of such quantum groups, see [4], [33], [59].

In what follows we discuss one such construction, which is of particular interest, coming
from the twisting philosophy of Drinfeld [58] and Jimbo [65]. Their idea was to deform
the compact Lie groups with the help of a parameter q ∈ C, the interesting case being
q ∈ T. However, as explained by Woronowicz in [97], in the extended compact quantum
group setting the parameter needs to be real, q ∈ R. We are therefore led to:

q ∈ T ∩ R = {±1}

In practice now, we can think for instance of the easy quantum groups as corresponding
to the case q = 1, and we are led to the question of “twisting” them, at q = −1.

All this is quite tricky, and in order to start, best is to deform first the simplest objects
that we have, namely the noncommutative spheres. Our starting point will be:

Proposition 5.24. We have noncommutative spheres as follows, obtained via the twisted
commutation relations ab = ±ba, and twisted half-commutation relations abc = ±cba,

S̄N−1
C

// S̄N−1
C,∗

// SN−1
C,+

S̄N−1
R

//

OO

S̄N−1
R,∗

//

OO

SN−1
R,+

OO

where the signs at left correspond to the anticommutation of distinct coordinates, and their
adjoints, and the other signs come from functoriality.

Proof. For the spheres on the left, if we want to replace some of the commutation relations
zizj = zjzi by anticommutation relations zizj = −zjzi, the one and only natural choice is
zizj = −zjzi for i 6= j. In other words, with the notation εij = 1− δij, we must have:

zizj = (−1)εijzjzi

Regarding now the spheres in the middle, the situation is a priori a bit more tricky,
because we have to take into account the various possible collapsings of {i, j, k}. However,
if we want to have embeddings as above, there is only one choice, namely:

zizjzk = (−1)εij+εjk+εikzkzjzi

Thus, we have constructed our spheres, and embeddings, as needed. �
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Let us discuss now the quantum group case. The situation here is considerably more
complicated, because the coordinates uij depend on double indices, and finding for in-
stance the correct signs for uijuklumn = ±umnukluij looks nearly impossible.

However, we can solve this problem by taking some inspiration from the sphere case,
which was already solved. A bit of thinking suggests that each row and column of u = (uij)
must be subject to the relations found above for the spheres, and if we want for instance
to have coactions as well, we end up with a complete picture, as follows:

Theorem 5.25. We have quantum groups as follows, obtained via the twisted commuta-
tion relations ab = ±ba, and twisted half-commutation relations abc = ±cba,

ŪN // Ū∗N
// U+

N

ŌN
//

OO

Ō∗N
//

OO

O+
N

OO

where the signs at left correspond to anticommutation for distinct entries on rows and
columns, and commutation otherwise, and the other signs come from functoriality.

Proof. As explained above, there is only one reasonable way of arranging the signs, as for
everything to work fine. So let us go ahead now, and present the solution.

Given abstract coordinates a, b, c, . . . ∈ {uij}, let us set span(a, b, c, . . .) = (r, c), where
r, c ∈ {1, 2, 3, . . .} are the numbers of rows and columns spanned by a, b, c, . . ., inside the
matrix u = (uij). Also, we make the conventions α = a, a∗, β = b, b∗, and so on.

With these conventions, the relations for the quantum groups on the left, which are the
only possible ones, as for having a good compatibility with the spheres, are:

αβ =

{
−βα for a, b ∈ {uij} with span(a, b) = (1, 2) or (2, 1)

βα otherwise

As for the relations for the quantum groups in the middle, once again these are uniquely
determined by various functoriality considerations, and must be as follows:

αβγ =

{
−γβα for a, b, c ∈ {uij} with span(a, b, c) = (≤ 2, 3) or (3,≤ 2)

γβα otherwise

Summarizing, we are done with the difficult part, namely guessing the signs. What is
left is to prove that the above relations produce indeed quantum groups, with inclusions
between them, as in the statement. But this is routine, by proceeding as in the non-
twisted case, and adding signs where needed. For details on this, as well on the fact that
we have indeed quantum isometry group results in this setting, we refer to [4]. �
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All the above, while definitely not random, remains however a bit mysterious, and un-
complete. Our purpose now will be that of showing that the quantum groups constructed
above can be in fact defined in a very conceptual way, as “Schur-Weyl twists”.

Let Peven(k, l) ⊂ P (k, l) be the set of partitions with blocks having even size, and
NCeven(k, l) ⊂ Peven(k, l) be the subset of noncrossing partitions. Also, we use the stan-
dard embedding Sk ⊂ P2(k, k), via the pairings having only up-to-down strings.

Given a partition τ ∈ P (k, l), we call “switch” the operation which consists in switching
two neighbors, belonging to different blocks, in the upper row, or in the lower row.

With these conventions, we have the following result:

Proposition 5.26. There is a signature map ε : Peven → {−1, 1}, given by ε(τ) = (−1)c,
where c is the number of switches needed to make τ noncrossing. In addition:

(1) For τ ∈ Sk, this is the usual signature.
(2) For τ ∈ P2 we have (−1)c, where c is the number of crossings.
(3) For τ ≤ π ∈ NCeven, the signature is 1.

Proof. In order to show that ε is well-defined, we must prove that the number c in the
statement is well-defined modulo 2. It is enough to perform the verification for the non-
crossing partitions. More precisely, given τ, τ ′ ∈ NCeven having the same block structure,
we must prove that the number of switches c required for the passage τ → τ ′ is even.

In order to do so, observe that any partition τ ∈ P (k, l) can be put in “standard form”,
by ordering its blocks according to the appearence of the first leg in each block, counting
clockwise from top left, and then by performing the switches as for block 1 to be at left,
then for block 2 to be at left, and so on. Here the required switches are also uniquely
determined, by the order coming from counting clockwise from top left.

Here is an example of such an algorithmic switching operation, with block 1 being first
put at left, by using two switches, then with block 2 left unchanged, and then with block
3 being put at left as well, but at right of blocks 1 and 2, with one switch:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

The point now is that, under the assumption τ ∈ NCeven(k, l), each of the moves
required for putting a leg at left, and hence for putting a whole block at left, requires an
even number of switches. Thus, putting τ is standard form requires an even number of
switches. Now given τ, τ ′ ∈ NCeven having the same block structure, the standard form
coincides, so the number of switches c required for the passage τ → τ ′ is indeed even.

Regarding now the remaining assertions, these are all elementary:
(1) For τ ∈ Sk the standard form is τ ′ = id, and the passage τ → id comes by composing

with a number of transpositions, which gives the signature.
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(2) For a general τ ∈ P2, the standard form is of type τ ′ = | . . . |∪...∪∩...∩, and the passage
τ → τ ′ requires c mod 2 switches, where c is the number of crossings.

(3) Assuming that τ ∈ Peven comes from π ∈ NCeven by merging a certain number of
blocks, we can prove that the signature is 1 by proceeding by recurrence. �

We define the kernel of a multi-index (ij) to be the partition obtained by joining the
equal indices. Also, we write π ≤ σ if each block of π is contained in a block of σ.

With these conventions, and the above result in hand, we can now formulate:

Definition 5.27. Associated to a partition π ∈ Peven(k, l) is the linear map

T̄π(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δ̄π

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

where δ̄π ∈ {−1, 0, 1} is δ̄π = ε(τ) if τ ≥ π, and δ̄π = 0 otherwise, with τ = ker(ij).

In other words, what we are doing here is to add signatures to the usual formula of Tπ.
Indeed, observe that the usual formula for Tπ can be written as folllows:

Tπ(ei1 ⊗ . . .⊗ eik) =
∑

j:ker(ij)≥π

ej1 ⊗ . . .⊗ ejl

Now by inserting signs, coming from the signature map ε : Peven → {±1}, we are led
to the following formula, which coincides with the one given above:

T̄π(ei1 ⊗ . . .⊗ eik) =
∑
τ≥π

ε(τ)
∑

j:ker(ij)=τ

ej1 ⊗ . . .⊗ ejl

We will be back later to this analogy, with more details on what can be done with it.
For the moment, we must first prove a key categorical result, as follows:

Proposition 5.28. The assignement π → T̄π is categorical, in the sense that

T̄π ⊗ T̄σ = T̄[πσ], T̄πT̄σ = N c(π,σ)T̄[σπ ], T̄ ∗π = T̄π∗

where c(π, σ) are certain positive integers.

Proof. We have to go back to the proof of Proposition 5.2, or rather to the proof of
Proposition 4.25, and insert signs. We have to check three conditions, as follows:

1. Concatenation. In the untwisted case, this was based on the following formula:

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
= δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
In the twisted case, it is enough to check the following formula:

ε

(
ker

(
i1 . . . ip
j1 . . . jq

))
ε

(
ker

(
k1 . . . kr
l1 . . . ls

))
= ε

(
ker

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

))
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Let us denote by τ, ν the partitions on the left, so that the partition on the right is of
the form ρ ≤ [τν]. Now by switching to the noncrossing form, τ → τ ′ and ν → ν ′, the
partition on the right transforms into ρ→ ρ′ ≤ [τ ′ν ′]. Now since [τ ′ν ′] is noncrossing, we
can use Proposition 5.26 (3), and we obtain the result.

2. Composition. In the untwisted case, this was based on the following formula:∑
j1...jq

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
j1 . . . jq
k1 . . . kr

)
= N c(π,σ)δ[πσ ]

(
i1 . . . ip
k1 . . . kr

)
In order to prove now the result in the twisted case, it is enough to check that the signs

match. More precisely, we must establish the following formula:

ε

(
ker

(
i1 . . . ip
j1 . . . jq

))
ε

(
ker

(
j1 . . . jq
k1 . . . kr

))
= ε

(
ker

(
i1 . . . ip
k1 . . . kr

))
Let τ, ν be the partitions on the left, so that the partition on the right is of the form

ρ ≤ [τν ]. Our claim is that we can jointly switch τ, ν to the noncrossing form. Indeed, we
can first switch as for ker(j1 . . . jq) to become noncrossing, and then switch the upper legs
of τ , and the lower legs of ν, as for both these partitions to become noncrossing.

Now observe that when switching in this way to the noncrossing form, τ → τ ′ and
ν → ν ′, the partition on the right transforms into ρ → ρ′ ≤ [τ

′

ν′ ]. Now since [τ
′

ν′ ] is
noncrossing, we can apply Proposition 5.26 (3), and we obtain the result.

3. Involution. Here we must prove the following formula:

δ̄π

(
i1 . . . ip
j1 . . . jq

)
= δ̄π∗

(
j1 . . . jq
i1 . . . ip

)
But this is clear from the definition of δ̄π, and we are done. �

As a conclusion, our twisted construction π → T̄π has all the needed properties for
producing quantum groups, via Tannakian duality. So, let us formulate:

Theorem 5.29. Given a category of partitions D ⊂ Peven, the construction

Hom(u⊗k, u⊗l) = span
(
T̄π

∣∣∣π ∈ D(k, l)
)

produces via Tannakian duality a quantum group ḠN ⊂ U+
N , for any N ∈ N.

Proof. This follows indeed from the Tannakian results from section 4 above, exactly as
in the easy case, by using this time Proposition 5.28 as technical ingredient. To be more
precise, Proposition 5.28 shows that the linear spaces on the right form a Tannakian
category, and so the results in section 4 apply, and give the result. �

We can unify the easy quantum groups, or at least the examples coming from categories
D ⊂ Peven, with the quantum groups constructed above, as follows:
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Definition 5.30. A closed subgroup G ⊂ U+
N is called q-easy, or quizzy, with deformation

parameter q = ±1, when its tensor category appears as follows,

Hom(u⊗k, u⊗l) = span
(
Ṫπ

∣∣∣π ∈ D(k, l)
)

for a certain category of partitions D ⊂ Peven, where Ṫ = T̄ , T for q = −1, 1. The
Schur-Weyl twist of G is the quizzy quantum group Ḡ ⊂ U+

N obtained via q → −q.

The terminology here is of course a bit awkward, but there is no way of fixing this,
because the construction of the signature in Proposition 5.26 really needs the partitions
to have even blocks. We will see later on, in section 8 below, that the easy quantum group
associated to Peven itself is the hyperochahedral group HN , and so that our assumption
D ⊂ Peven, replacing D ⊂ P , corresponds to HN ⊂ G, replacing SN ⊂ G. We will also
see, in section 9, that for classification purposes, this is a good assumption.

In relation now with the twists, we have the following result:

Theorem 5.31. The quantum groups ŌN , Ō
∗
N , O

+
N , ŪN , Ū

∗
N , U

+
N introduced before appear

as Schur-Weyl twists of the quantum groups ON , O
∗
N , O

+
N , UN , U

∗
N , U

+
N .

Proof. The basic crossing, ker
(
ij
ji

)
with i 6= j, comes from the transposition τ ∈ S2, so its

signature is −1. As for its degenerated version ker
(
ii
ii

)
, this is noncrossing, so here the

signature is 1. We conclude that the linear map associated to the basic crossing is:

T̄/\(ei ⊗ ej) =

{
−ej ⊗ ei for i 6= j

ej ⊗ ei otherwise

For the half-classical crossing, here the signature is once again −1, and by examining
the signatures of its various degenerations, we are led to the following formula:

T̄/\| (ei ⊗ ej ⊗ ek) =

{
−ek ⊗ ej ⊗ ei for i, j, k distinct

ek ⊗ ej ⊗ ei otherwise

We can proceed now as in the untwisted case, and since the intertwining relations
coming from T̄/\, T̄/\| correspond to the relations defining ŪN , Ū

∗
N , we obtain the result. �

As a conclusion, we have a quite interesting notion of easy quantum group, basically
coming from the Brauer philosophy for ON , UN , and notably covering O+

N , U
+
N , along with

some theory and examples, and with a twisting extension as well.
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6. Probabilistic aspects

We discuss here the computation of the various integrals over the compact quantum
groups, with respect to the Haar measure. In order to formulate our results in a conceptual
form, we use the modern measure theory language, namely probability theory.

In the noncommutative setting, the starting definition is as follows:

Definition 6.1. Let A be a C∗-algebra, given with a trace tr.

(1) The elements a ∈ A are called random variables.
(2) The moments of such a variable are the numbers Mk(a) = tr(ak).
(3) The law of such a variable is the functional µ : P → tr(P (a)).

Here k = ◦ • • ◦ . . . is as usual a colored integer, and the powers ak are defined by the
usual formulae, namely a∅ = 1, a◦ = a, a• = a∗ and multiplicativity. As for the polynomial
P , this is a noncommuting ∗-polynomial in one variable, P ∈ C < X,X∗ >.

Observe that the law is uniquely determined by the moments, because:

P (X) =
∑
k

λkX
k =⇒ µ(P ) =

∑
k

λkMk(a)

In the self-adjoint case, the law is a usual probability measure, supported by the spec-
trum of a. This follows indeed from the Gelfand theorem, and the Riesz theorem.

Now back to the quantum groups, let us start with:

Proposition 6.2. Given a Woronowicz algebra (A, u), with u ∈MN(A), the moments of
the main character χ =

∑
i uii are given by:∫

G

χk = dim
(
Fix(u⊗k)

)
In the case u ∼ ū the law of χ is a usual probability measure, supported on [−N,N ].

Proof. The first assertion follows from the Peter-Weyl theory, which tells us that we have
the following formula, valid for any corepresentation v ∈Mn(A):∫

G

χv = dim(Fix(v))

Indeed, with v = u⊗k the character is χv = χk, and we obtain the result.
As for the second assertion, if we assume u ∼ ū then we have χ = χ∗, and so the general

theory, explained above, tells us that law(χ) is in this case a real probability measure,
supported by the spectrum of χ. But, since u ∈MN(A) is unitary, we have:

uu∗ = 1 =⇒ ||uij|| ≤ 1, ∀i, j =⇒ ||χ|| ≤ N

Thus the spectrum of the character satisfies σ(χ) ⊂ [−N,N ], and we are done. �

Summarizing, the law of the main character encodes some important representation
theory data. Here is a second motivation for the study of such laws:
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Proposition 6.3. Consider two Woronowicz algebras (A, u) and (B, v), and assume that
we have a morphism f : A→ B, mapping uij → vij.

(1) We have Mk(χu) ≤Mk(χv), for any colored integer k.
(2) f is an isomorphism when all these inequalities are equalities.
(3) Thus, f is an isomorphism precisely when law(χu) = law(χv).

Proof. This is a probabilistic version of Proposition 4.2 above:
(1) This follows indeed from Proposition 4.2, via Proposition 6.2.
(2) This follows once again from Proposition 4.2, via Proposition 6.2.
(3) This follows from (2), the laws being uniquely determined by the moments. �

Here is a third motivation as well, analytic this time:

Proposition 6.4. A Woronowicz algebra (A, u), with u ∈MN(A), is amenable when

N ∈ supp
(
law(Re(χ))

)
and the support on the right depends only on law(χ).

Proof. According to the Kesten amenability criterion, from Theorem 3.27 (4) above, the
algebra A is amenable when the following condition is satisfied:

N ∈ σ(Re(χ))

Now since Re(χ) is self-adjoint, the support of its spectral measure law(Re(χ)) is
precisely its spectrum σ(Re(χ)), and this gives the first assertion.

Regarding now the second assertion, once again the variable Re(χ) being self-adjoint,
its law depends only on the moments

∫
G
Re(χ)p, with p ∈ N. But, we have:∫

G

Re(χ)p =

∫
G

(
χ+ χ∗

2

)p
=

1

2p

∑
|k|=p

∫
G

χk

Thus law(Re(χ)) depends only on law(χ), and this gives the result. �

As yet another motivation for the study of law(χ), let us work out the group dual case.
Here we obtain is a very interesting measure, called Kesten measure [67], as follows:

Proposition 6.5. In the case A = C∗(Γ) and u = diag(g1, . . . , gN), and with the nor-
malization assumption 1 ∈ u = ū made, the moments of the main character are∫

Γ̂

χp = #
{
i1, . . . , ip

∣∣∣gi1 . . . gip = 1
}

counting the loops based at 1, having lenght p, on the corresponding Cayley graph.

Proof. Consider indeed a discrete group Γ =< g1, . . . , gN >. The main character of
A = C∗(Γ), with fundamental corepresentation u = diag(g1, . . . , gN), is then:

χ = g1 + . . .+ gN
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Given a colored integer k = e1 . . . ep, the corresponding moment is given by:∫
Γ̂

χk =

∫
Γ̂

(g1 + . . .+ gN)k = #
{
i1, . . . , ip

∣∣∣ge1i1 . . . gepip = 1
}

In the self-adjoint case, u ∼ ū, we are only interested in the moments with respect to
usual integers, p ∈ N, and the above formula becomes:∫

Γ̂

χp = #
{
i1, . . . , ip

∣∣∣gi1 . . . gip = 1
}

Assume now that we have in addition 1 ∈ u, so that the normalization condition
1 ∈ u = ū in the statement is satisfied. At the level of the generating set S = {g1, . . . , gN}
this means 1 ∈ S = S−1, and so the corresponding Cayley graph is well-defined, with the
elements of Γ as vertices, and with the edges g − h appearing when gh−1 ∈ S.

A loop on this graph based at 1, having lenght p, is then a sequence as follows:

(1)− (gi1)− (gi1gi2)− . . .− (gi1 . . . gip−1)− (gi1 . . . gip = 1)

Thus the moments of χ count indeed such loops, as claimed. �

In order to generalize the above result to arbitrary Woronowicz algebras, we can use
the discrete quantum group philosophy. The fundamental result here is as follows:

Proposition 6.6. Let (A, u) be a Woronowicz algebra, and assume, by enlarging if nec-
essary u, that we have 1 ∈ u = ū. The following formula

d(v, w) = min
{
k ∈ N

∣∣∣1 ⊂ v̄ ⊗ w ⊗ u⊗k
}

defines then a distance on Irr(A), which coincides with the geodesic distance on the
associated Cayley graph. In the group dual case we obtain the usual distance.

Proof. The fact that the lengths are finite follows from Woronowicz’s analogue of Peter-
Weyl theory. The symmetry axiom is clear as well, and the triangle inequality is elemen-
tary to establish as well. Finally, the last assertion is elementary as well.

In the group dual case, where A = C∗(Γ) with Γ =< S > being a finitely generated
discrete group, our normalization condition 1 ∈ u = ū means that the generating set must
satisfy 1 ∈ S = S−1. But this is precisely the normalization condition for the discrete
groups, and the fact that we obtain the same metric space is clear. �

We can now formulate a generalization of Proposition 6.5, as follows:

Proposition 6.7. Let (A, u) be a Woronowicz algebra, with the normalization assumption
1 ∈ u = ū made. The moments of the main character,∫

G

χp = dim
(
Fix(u⊗p)

)
count then the loops based at 1, having lenght p, on the corresponding Cayley graph.
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Proof. Here the formula of the moments, with p ∈ N, is the one coming from Proposition
6.2 above, and the Cayley graph interpretation comes from definitions. �

Summarizing, the computation of the law of the main character is the “main” problem
regarding a Woronowicz algebra (A, u), from a massive variety of viewpoints.

In what follows we will be interested in computing such laws, for the main examples of
quantum groups that we have. In the easy quantum group case, we have:

Proposition 6.8. Let G be an easy quantum group, coming from a category of partitions
D = (D(k, l)). The moments of the main character are then given by∫

G

χk = dim
(
span

(
ξπ
∣∣π ∈ D(k)

) )
where D(k) = D(∅, k), and where for π ∈ D(k) we use the notation ξπ = Tπ.

Proof. We recall from section 5 above that for an easy quantum group G, coming from a
category of partitions D = (D(k, l)), we have equalities as follows:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

By interchanging k ↔ l in this formula, and then setting l = ∅, we obtain:

Fix(u⊗k) = span
(
ξπ

∣∣∣π ∈ D(k)
)

By using now Proposition 6.2 above, we obtain the result. �

Thus, in the easy case, we are led into linear independence questions for the vectors ξπ.
In order to investigate these questions, we will use the Gram matrix of these vectors. Let
us begin with some standard combinatorial definitions, as follows:

Definition 6.9. Let P (k) be the set of partitions of {1, . . . , k}, and let π, σ ∈ P (k).

(1) We write π ≤ σ if each block of π is contained in a block of σ.
(2) We let π ∨ σ ∈ P (k) be the partition obtained by superposing π, σ.

As an illustration here, at k = 2 we have P (2) = {||,u}, and we have || ≤ u. Also, at
k = 3 we have P (3) = {|||,u|,u| , |u,uu}, and the order relation is as follows:

||| ≤ u|,u| , |u ≤ uu
Observe also that we have π, σ ≤ π ∨ σ, and that π ∨ σ is the smallest partition with

this property. Due to this fact, π ∨ σ is called supremum of π, σ.
Now back to the easy quantum groups, we have:

Proposition 6.10. The Gram matrix GkN(π, σ) =< ξπ, ξσ > is given by

GkN(π, σ) = N |π∨σ|

where |.| is the number of blocks.
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Proof. According to the formula of the vectors ξπ, we have:

< ξπ, ξσ > =
∑
i1...ik

δπ(i1, . . . , ik)δσ(i1, . . . , ik)

=
∑
i1...ik

δπ∨σ(i1, . . . , ik)

= N |π∨σ|

Thus, we have obtained the formula in the statement. �

In order to study the Gram matrix, and more specifically to compute its determinant,
we will use several standard facts about the partitions. We have:

Definition 6.11. The Möbius function of any lattice, and so of P , is given by

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π 6≤ σ

with the construction being performed by recurrence.

As an illustration here, let us go back to the set of 2-point partitions, P (2) = {||,u}.
We have by definition µ(||, ||) = µ(u,u) = 1. Also, we know that we have || < u, with no
intermediate partition in between, and so the above recurrence procedure gives:

µ(||,u) = −µ(||, ||) = −1

Finally, we have u 6≤ ||, and so µ(u, ||) = 0. Thus, as a conclusion, the Möbius matrix
Mπσ = µ(π, σ) of the lattice P (2) = {||,u} is as follows:

M =

(
1 −1
0 1

)
The interest in the Möbius function comes from the Möbius inversion formula:

f(σ) =
∑
π≤σ

g(π) =⇒ g(σ) =
∑
π≤σ

µ(π, σ)f(π)

In linear algebra terms, the statement and proof of this formula are as follows:

Proposition 6.12. The inverse of the adjacency matrix of P , given by

Aπσ =

{
1 if π ≤ σ

0 if π 6≤ σ

is the Möbius matrix of P , given by Mπσ = µ(π, σ).

Proof. This is well-known, coming for instance from the fact that A is upper triangular.
Indeed, when inverting, we are led into the recurrence from Definition 6.11. �
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As a first illustration, for P (2) the formula M = A−1 appears as follows:(
1 −1
0 1

)
=

(
1 1
0 1

)−1

Also, for P (3) = {|||,u|,u| , |u,uu} the formula M = A−1 reads:
1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1

 =


1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1


−1

Now back to our Gram matrix considerations, we have the following result:

Proposition 6.13. The Gram matrix is given by GkN = AL, where

L(π, σ) =

{
N(N − 1) . . . (N − |π|+ 1) if σ ≤ π

0 otherwise

and where A = M−1 is the adjacency matrix of P (k).

Proof. We have indeed the following computation:

N |π∨σ| = #
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i ≥ π ∨ σ
}

=
∑
τ≥π∨σ

#
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i = τ
}

=
∑
τ≥π∨σ

N(N − 1) . . . (N − |τ |+ 1)

According to Proposition 6.10 and to the definition of A,L, this formula reads:

(GkN)πσ =
∑
τ≥π

Lτσ =
∑
τ

AπτLτσ = (AL)πσ

Thus, we obtain in this way the formula in the statement. �

As an illustration for the above result, at k = 2 we have P (2) = {||,u}, and the above
formula GkN = AL appears as follows:(

N2 N
N N

)
=

(
1 1
0 1

)(
N2 −N 0
N N

)
At k = 3 we have P (3) = {|||,u|,u| , |u,uu}, which leads to a similar formula.
With the above result in hand, we can now investigate the linear independence prop-

erties of the vectors ξπ. To be more precise, we have the following result:
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Theorem 6.14. The determinant of the Gram matrix GkN is given by

det(GkN) =
∏

π∈P (k)

N !

(N − |π|)!

and in particular, for N ≥ k, the vectors {ξπ|π ∈ P (k)} are linearly independent.

Proof. According to the formula in Proposition 6.13 above, we have:

det(GkN) = det(A) det(L)

Now if we order P (k) as above, with respect to the number of blocks, and then lexico-
graphically, we see that A is upper triangular, and that L is lower triangular.

Thus det(A) can be computed simply by making the product on the diagonal, and we
obtain 1. As for det(L), this can computed as well by making the product on the diagonal,
and we obtain the number in the statement, with the technical remark that in the case
N < k the convention is that we obtain a vanishing determinant. See [24]. �

Now back to the laws of characters, we can formulate:

Theorem 6.15. For an easy quantum group G = (GN), coming from a category of
partitions D = (D(k, l)), the asymptotic moments of the main character are given by

lim
N→∞

∫
GN

χk = #D(k)

where D(k) = D(∅, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proof. This follows indeed from the general formula from Proposition 6.8, by using the
linear independence result from Theorem 6.14 above. �

Our next purpose will be that of understanding what happens for the basic classes of
easy quantum groups. In order to deal with the orthogonal case, we will need:

Proposition 6.16. We have the following formulae:

(1) #P2(2k) = (2k)!!, where (2k)!! = 1.3.5 . . . (2k − 3)(2k − 1).
(2) #NC2(2k) = Ck, where Ck are the Catalan numbers, Ck = 1

k+1

(
2k
k

)
.

Proof. This is very standard combinatorics, the proof being as follows:
(1) We have to count the pairings of {1, . . . , 2k}. But, in order to construct such a

pairing, we have 2k − 1 choices for the pair of the number 1, then 2k − 3 choices for the
pair of the next number left, and so on. Thus, we obtain (2k)!!, as claimed.

(2) We have to count the noncrossing pairings of {1, . . . , 2k}. But such a pairing
appears by pairing 1 to an odd number, 2a+ 1, and then inserting a noncrossing pairing
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of {2, . . . , 2a}, and a noncrossing pairing of {2a+ 2, . . . , 2l}. We conclude from this that
we have the following recurrence for the Catalan numbers, Ck = #NC2(2k):

Ck =
∑

a+b=k−1

CaCb

In terms of the generating series f(z) =
∑

k≥0Ckz
k, this recurrence gives:

zf 2 =
∑
a,b≥0

CaCbz
a+b+1 =

∑
k≥1

∑
a+b=k−1

CaCbz
k =

∑
k≥1

Ckz
k = f − 1

Thus f satisfies the degree 2 equation zf 2 − f + 1 = 0, and by solving this equation,
and choosing the solution which is bounded at z = 0, we obtain:

f(z) =
1−
√

1− 4z

2z

By using now the Taylor formula for
√
x, we obtain the following formula:

f(z) =
∑
k≥0

1

k + 1

(
2k

k

)
zk

Thus, the Catalan numbers are given by the formula in the statement. �

With these preliminaries in hand, we can now state and prove:

Theorem 6.17. In the N →∞ limit, the law of the main character χu is as follows:

(1) For ON we obtain a Gaussian law, 1√
2π
e−x

2/2dx.

(2) For O+
N we obtain a Wigner semicircle law, 1

2π

√
4− x2dx.

Proof. These results follow from the general formula from Theorem 6.15 above, by using
the knowledge of the associated categories of partitions, from section 5, then the counting
formulae from Proposition 6.16, and finally by doing some calculus:

(1) For ON the associated category of partitions is P2, so the asymptotic moments of
the main character are as follows, with the convention k!! = 0 when k is odd:

Mk = #P2(k) = k!!

In order to recapture now the corresponding measure, there are some tools here, such
as the Stieltjes inversion formula, but all this is quite advanced and technical, so perhaps
best is to use our intuition. A bit of thinking at ON , and at the associated sphere SN−1

as well, leads to the conclusion that our asymptotic law is probably Gaussian.
With this guess in mind, what we have to do is simply take the Gaussian law, and

compute its moments. And the computation here, by partial integration, gives:

1√
2π

∫
R
e−x

2/2xkdx = (k − 1)
1√
2π

∫
R
e−x

2/2xk−2dx
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By recurrence, we obtain from this the following moment formula:

1√
2π

∫
R
e−x

2/2xkdx = k!!

Thus our guess was right, and we have proved our result.
(2) For O+

N the associated category of partitions is NC2, so the asymptotic moments of
the main character are as follows, with the convention Ck = 0 for k 6∈ Z:

Mk = #NC2(k) = Ck/2

The problem now is that none of the “classical” probability measures has the Catalan
numbers as moments. Thus, we are in trouble here.

In short, we have to ask a fellow physicist. And the physicist will tell us to try the
Wigner semicircle law [96]. The moments of this law can be computed with the change
of variable x = 2 cos t, and we are led to the following formula:

1

2π

∫ 2

−2

√
4− x2xkdx = Ck

Thus, our guess was right, with the remark however that, honestly speaking, this was
not really our guess, and we obtain the conclusion in the statement. �

In order to fully understand all this, and to further advance, we definitely must gain
some more familiarity with the Gaussian law, and its versions. The Gaussian law tradi-
tionally appears via the Central Limit Theorem (CLT), which is as follows:

Theorem 6.18 (CLT). Given real random variables x1, x2, x3, . . . , which are i.i.d., cen-
tered, and with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

xi ∼ gt

where gt is the Gaussian law of parameter t, having as density 1√
2πt
e−x

2/2tdx.

Proof. This is something standard, the proof being in two steps, as follows:
(1) Linearization of the convolution. It well-known that the log of the Fourier transform

Fx(ξ) = E(eiξx) does the job, in the sense that if x, y are independent, then Fx+y = FxFy.
Let us record as well the following useful formula for Fx, in terms of moments:

Fx(ξ) =
∞∑
k=0

ikMk(x)

k!
ξk

(2) Study of the limit. The Fourier transform of the variable in the statement is:

F (ξ) =

[
Fx

(
ξ√
n

)]n
=

[
1− tξ2

2n
+ o(ξ2)

]n
' e−tξ

2/2

But this being the Fourier transform of gt, we obtain the result. �
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In view of this, and of Theorem 6.17 above, we can expect the Winger semicircle law
to appear, conceptually speaking, via some kind of “free CLT”, at t = 1.

This is indeed true, but quite tricky. We need to develop here a free analogue of
probability theory, and our starting point will be the following definition:

Definition 6.19. Given a pair (A, tr), we call two subalgebras B,C ⊂ A free when the
following condition is satisfied, for any xi ∈ B and yi ∈ C:

tr(xi) = tr(yi) = 0 =⇒ tr(x1y1x2y2 . . .) = 0

Also, two noncommutative random variables b, c ∈ A are called free when the C∗-algebras
B =< b >,C =< c > that they generate inside A are free, in the above sense.

As a first observation, there is a similarity here with the classical notion of indepen-
dence. Indeed, modulo some standard identifications, two subalgebras B,C ⊂ L∞(X) are
independent when the following condition is satisfied, for any x ∈ B and y ∈ C:

tr(x) = tr(y) = 0 =⇒ tr(xy) = 0

Thus, freeness appears as a kind of “free analogue” of independence. As a basic result
now regarding these notions, and providing us with examples, we have:

Proposition 6.20. We have the following results, valid for group algebras:

(1) C∗(Γ), C∗(Λ) are independent inside C∗(Γ× Λ).
(2) C∗(Γ), C∗(Λ) are free inside C∗(Γ ∗ Λ).

Proof. In order to prove these results, we can use the fact that each group algebra is
spanned by the corresponding group elements. Thus, it is enough to check the indepen-
dence and freeness formulae on group elements, and this is in turn trivial. �

There are many things that can be said about the analogy between independence and
freeness. We have in particular the following result, due to Voiculescu [86]:

Theorem 6.21 (Free CLT). Given self-adjoint variables x1, x2, x3, . . . , which are f.i.d.,
centered, with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

xi ∼ γt

where γt is the Wigner semicircle law of parameter t, having density 1
2πt

√
4t2 − x2dx.

Proof. We follow the same idea as in the proof of Theorem 6.18 above:
(1) Linearization of the free convolution. In order to model the free convolution, the

best is to use the monoid algebra C∗(N ∗ N). Indeed, we have freeness here, a bit in the
same way as for the above group algebras C∗(Γ∗Λ), and the point is that the variables of
type S∗ + f(S), with S ∈ C∗(N) being the shift, and with f ∈ C[X] being a polynomial,
are easily seen to model in moments all the distributions µ : C[X]→ C.
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Now let f, g ∈ C[X] and consider the variables S∗ + f(S) and T ∗ + g(T ), where S, T ∈
C∗(N ∗ N) are the shifts corresponding to the generators of N ∗ N. These variables are
free, and by using a 45◦ argument, their sum has the same law as S∗ + (f + g)(S).

Thus the operation µ→ f linearizes the free convolution. We are therefore left with a
computation inside C∗(N), which is elementary, and whose conclusion is that Rµ = f can
be recaptured from µ via the Cauchy transform Gµ, in the following way:

Gµ(ξ) =

∫
R

dµ(t)

ξ − t
=⇒ Gµ

(
Rµ(ξ) +

1

ξ

)
= ξ

(2) Study of the limit. At t = 1, the R-transform of the variable in the statement can
be computed by using the linearization property, and is given by:

R(ξ) = nRx

(
ξ√
n

)
' ξ

On the other hand, the computations from the proof of Theorem 6.17 (2) show that
the Cauchy transform of the Wigner law γ1 satisfies the following equation:

Gγ1

(
ξ +

1

ξ

)
= ξ

Thus we have Rγ1(ξ) = ξ, which by the way follows as well from S∗+S
2
∼ γ1, and this

gives the result. The passage to the general case, t > 0, is routine, by dilation. �

Summarizing, we have now a more conceptual understanding of Theorem 6.17, and we
can actually reprove now this theorem, without any help from a fellow physicist.

In order to discuss now the unitary case, concerning UN , U
+
N , the most straightforward

way, which would allow us to reach to the results without troubles, is by working out first
the complex versions of the above results. In the classical case, we have:

Theorem 6.22 (Complex CLT). Given variables x1, x2, x3, . . . , whose real and imaginary
parts are i.i.d., centered, and with variance t > 0, we have, with n→∞,

1√
n

n∑
i=1

xi ∼ Gt

where Gt is the complex Gaussian law of parameter t, appearing as the law of 1√
2
(a+ ib),

where a, b are real and independent, each following the law gt.

Proof. This is clear from Theorem 6.18 above, by taking real and imaginary parts. �

Similarly, in the free case, we have the following result:
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Theorem 6.23 (Free complex CLT). Given variables x1, x2, x3, . . . , whose real and imag-
inary parts are f.i.d., centered, and with variance t > 0, we have, with n→∞,

1√
n

n∑
i=1

xi ∼ Γt

where Γt is the Voiculescu circular law of parameter t, appearing as the law of 1√
2
(a+ ib),

where a, b are self-adjoint and free, each following the law γt.

Proof. This is clear from Theorem 6.21 above, by taking real and imaginary parts. �

There are of course many other things that can be said about gt, γt, Gt,Γt, but for the
moment, this is all we need. We will be back later to these laws, with more details.

We know that for ON , O
+
N , the asymptotic law of the main character follows the laws

g1, γ1. This suggests that for UN , U
+
N we should obtain G1,Γ1, and indeed, it is so:

Theorem 6.24. In the N →∞ limit, the law of the main character χu is as follows:

(1) For UN we obtain the complex Gaussian law G1.
(2) For U+

N we obtain the Voiculescu circular law Γ1.

Proof. This basically follows from Theorem 6.17 above and its proof, by performing some
suitable complexification manipulations, as in [89]. To be more precise:

(1) This follows from some combinatorics. To be more precise, the asymptotic moments
of the main character, with respect to the colored integers, are as follows:

Mk = #P2(k)

But, by doing some combinatorics, the moments of the variable 1√
2
(a + ib), where a, b

are real and independent, each following the law g1, are given by the same formula.
(2) This follows too from some combinatorics. To be more precise, the asymptotic

moments of the main character, with respect to the colored integers, are as follows:

Mk = #NC2(k)

But, by doing some combinatorics, the moments of the variable 1√
2
(a + ib), where a, b

are self-adjoint and free, each following the law γ1, are given by the same formula. �

Summarizing, we have seen so far that for ON , O
+
N , UN , U

+
N , the asymptotic laws of the

main characters are the laws g1, γ1, G1,Γ1 coming from the various CLT.
This is certainly nice, but there is still one conceptual problem, coming from:

Proposition 6.25. The above convergences law(χu)→ g1, γ1, G1,Γ1 are as follows:

(1) They are non-stationary in the classical case.
(2) They are stationary in the free case, starting from N = 2.
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Proof. This is something quite subtle, which can be proved as follows:
(1) Here we can use an amenability argument, based on the Kesten criterion. Indeed,

ON , UN being coamenable, the upper bound of the support of the law of Re(χu) is precisely
N , and we obtain from this that the law of χu itself depends on N ∈ N.

(2) Here the result follows from the computations in section 4 above, performed when
working out the representation theory of O+

N , U
+
N , which show that the linear maps Tπ

associated to the noncrossing pairings are linearly independent, at any N ≥ 2. �

In short, we are not over with our study, which seems to open more questions than
it solves. Fortunately the solution to this latest question is quite simple. The idea will
be that of improving our g1, γ1, G1,Γ1 results with certain gt, γt, Gt,Γt results, which will
require N →∞ in both the classical and free cases, in order to hold at any t.

In practice, the definition that we will need is as follows:

Definition 6.26. Given a Woronowicz algebra (A, u), the variable

χt =

[tN ]∑
i=1

uii

is called truncation of the main character, with parameter t ∈ (0, 1].

Our purpose in what follows will be that of proving that for ON , O
+
N , UN , U

+
N , the

asymptotic laws of the truncated characters χt with t ∈ (0, 1] are the laws gt, γt, Gt,Γt.
This is something quite technical, motivated by the findings in Proposition 6.25 above,
and also by a number of more advanced considerations, to become clear later on.

In order to start now, the basic result from Proposition 6.2 is not useful in the general
t ∈ (0, 1] setting, and we must use instead general integration methods [51], [94]:

Proposition 6.27. Assuming that A = C(G) has Tannakian category C = (C(k, l)), the
Haar integration over G is given by the Weingarten type formula∫

G

ue1i1j1 . . . u
ek
ikjk

=
∑

π,σ∈Dk

δπ(i)δσ(j)Wk(π, σ)

for any colored integer k = e1 . . . ek and any multi-indices i, j, where Dk is a linear basis
of C(∅, k), δπ(i) =< π, ei1 ⊗ . . .⊗ eik >, and Wk = G−1

k , with Gk(π, σ) =< π, σ >.

Proof. We know from section 3 above that the integrals in the statement form altogether
the orthogonal projection P k onto the space Fix(u⊗k) = span(Dk). Consider now the
following linear map, with Dk = {ξk} being as in the statement:

E(x) =
∑
π∈Dk

< x, ξπ > ξπ

By a standard linear algebra computation, it follows that we have P = WE, where W
is the inverse on span(Tπ|π ∈ Dk) of the restriction of E. But this restriction is the linear
map given by Gk, and so W is the linear map given by Wk, and this gives the result. �
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In the easy quantum group case, the above formula simplifies, as follows:

Theorem 6.28. For an easy quantum group G ⊂ U+
N , coming from a category of partitions

D = (D(k, l)), we have the Weingarten integration formula∫
G

ue1i1j1 . . . u
ek
ikjk

=
∑

π,σ∈D(k)

δπ(i)δσ(j)WkN(π, σ)

for any k = e1 . . . ek and any i, j, where D(k) = D(∅, k), δ are usual Kronecker symbols,
and WkN = G−1

kN , with GkN(π, σ) = N |π∨σ|, where |.| is the number of blocks.

Proof. With notations from Proposition 6.27, the Kronecker symbols are given by:

δξπ(i) =< ξπ, ei1 ⊗ . . .⊗ eik >= δπ(i1, . . . , ik)

The Gram matrix being as well the correct one, we obtain the result. See [20]. �

We can apply this formula to truncated characters, and we obtain:

Proposition 6.29. The moments of truncated characters are given by the formula∫
G

(u11 + . . .+ uss)
k = Tr(WkNGks)

and with N →∞ this quantity equals (s/N)k#D(k).

Proof. The first assertion follows from the following computation:∫
G

(u11 + . . .+ uss)
k =

s∑
i1=1

. . .
s∑

ik=1

∫
ui1i1 . . . uikik

=
∑

π,σ∈D(k)

WkN(π, σ)
s∑

i1=1

. . .
s∑

ik=1

δπ(i)δσ(i)

=
∑

π,σ∈D(k)

WkN(π, σ)Gks(σ, π)

= Tr(WkNGks)

We have GkN(π, σ) = Nk for π = σ, and GkN(π, σ) ≤ Nk−1 for π 6= σ. Thus with
N →∞ we have GkN ∼ Nk1, which gives:∫

G

(u11 + . . .+ uss)
k = Tr(G−1

kNGks)

∼ Tr((Nk1)−1Gks)

= N−kTr(Gks)

= N−ksk#D(k)

Thus, we have obtained the formula in the statement. See [20]. �
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In order to process the above formula, we will need some more theory. Given a ran-
dom variable a, we write logFa(ξ) =

∑
n kn(a)ξn and Ra(ξ) =

∑
n κn(a)ξn, and call the

coefficients kn(a), κn(a) cumulants, respectively free cumulants of a. With this notion in
hand, we can define then more general quantities kπ(a), κπ(a), depending on partitions
π ∈ P (k), by multiplicativity over the blocks. We have then the following result:

Theorem 6.30. We have the classical and free moment-cumulant formulae

Mk(a) =
∑

π∈P (k)

kπ(a) , Mk(a) =
∑

π∈NC(k)

κπ(a)

where kπ(a), κπ(a) are the generalized cumulants and free cumulants of a.

Proof. This is standard, by using the formulae of Fa, Ra, or by doing some direct combi-
natorics, based on the Möbius inversion formula from Proposition 6.12. See [76]. �

We can now improve our results about characters, as follows:

Theorem 6.31. With N →∞, the laws of truncated characters are as follows:

(1) For ON we obtain the Gaussian law gt.
(2) For O+

N we obtain the Wigner semicircle law γt.
(3) For UN we obtain the complex Gaussian law Gt.
(4) For U+

N we obtain the Voiculescu circular law Γt.

Proof. With s = [tN ] and N →∞, the formula in Proposition 6.29 above gives:

lim
N→∞

∫
GN

χkt =
∑

π∈D(k)

t|π|

By using now the formulae in Theorem 6.30, this gives the results. See [20]. �

As an interesting consequence, related to [38], let us formulate as well:

Theorem 6.32. The asymptotic laws of truncated characters for the liberation operations
ON → O+

N and UN → U+
N are in Bercovici-Pata bijection, in the sense that the classical

cumulants in the classical case equal the free cumulants in the free case.

Proof. This follows indeed from the computations in the proof of Theorem 6.31. �

This result will be of great use for the liberation of more complicated compact Lie
groups, because it provides us with a criterion for checking if our guesses are right.

Let us discuss now the other easy quantum groups that we have. Regarding O∗N , U
∗
N

the situation is a bit complicated, but we have the following result, at t = 1:

Proposition 6.33. The asymptotic laws of the main characters are as follows:

(1) For O∗N we obtain a symmetrized Rayleigh variable.
(2) For U∗N we obtain a complexification of this variable.
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Proof. The idea is to use a projective version trick. Indeed, assuming that G = (GN) is
easy, coming from a category of pairings D, we have:

lim
N→∞

∫
PGN

(χχ∗)k = #D((◦•)k)

In our case, where GN = O∗N , U
∗
N , we can therefore use Theorem 5.9 above, and we are

led to the conclusions in the statement. See [25], [26], [83]. �

The above result is of course something quite modest. We will be back to the quantum
groups O∗N , U

∗
N in section 12 below, with some powerful modelling results for them.

Next in our lineup, we have the bistochastic quantum groups. We have here:

Proposition 6.34. For the bistochastic quantum groups BN , B
+
N , CN , C

+
N , the asymptotic

laws of truncated characters appear as modified versions of gt, γt, Gt,Γt, and the operations
ON → O+

N and UN → U+
N are compatible with the Bercovici-Pata bijection.

Proof. This follows indeed by using the same methods as for ON , O
+
N , UN , U

+
N , with the

verification of the Bercovici-Pata bijection being elementary, and with the computation
of the corresponding laws being routine as well. See [35], [26], [83]. �

Regarding now the twists, we have here the following general result:

Proposition 6.35. The integration over ḠN is given by the Weingarten type formula∫
ḠN

ui1j1 . . . uikjk =
∑

π,σ∈D(k)

δ̄π(i)δ̄σ(j)WkN(π, σ)

where WkN is the Weingarten matrix of GN .

Proof. This follows from the general Weingarten formula from Proposition 6.27, with the
corresponding Gram matrix being computed exactly as in the untwisted case. See [4]. �

As a consequence of the above result, we have another general result, as follows:

Theorem 6.36. The Schur-Weyl twisting operation GN ↔ ḠN leaves invariant:

(1) The law of the main character.
(2) The coamenability property.
(3) The asymptotic laws of truncated characters.

Proof. This basically follows from Proposition 6.35, as follows:
(1) This is clear from the integration formula.
(2) This follows from (1), and from the Kesten criterion.
(3) This follows once again from the integration formula. �

To summarize, we have results for all the easy quantum groups introduced so far, except
for SN , and in each case we obtain Gaussian laws, and their versions.
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7. Quantum permutations

The quantum groups that we considered so far, namely ON , UN and their liberations
and twists, are of “continuous” nature. In order to have as well “discrete” examples, the
idea will be that of looking at the corresponding quantum reflection groups.

In this section we discuss the quantum permutation groups. These are the simplest
quantum reflection groups, but are interesting as well, as objects on their own.

Let us start with a functional analytic description of the usual symmetric group:

Proposition 7.1. Consider the symmetric group SN .

(1) The standard coordinates vij ∈ C(SN), coming from the embedding SN ⊂ ON given
by the permutation matrices, are given by vij = χ(σ|σ(j) = i).

(2) The matrix v = (vij) is magic, in the sense that its entries are orthogonal projec-
tions, summing up to 1 on each row and each column.

(3) The algebra C(SN) is isomorphic to the universal commutative C∗-algebra gener-
ated by the entries of a N ×N magic matrix.

Proof. These results are all elementary, as follows:
(1) We recall that the canonical embedding SN ⊂ ON , coming from the standard

permutation matrices, is given by σ(ej) = eσ(j). Thus, we have:

σ =
∑
j

eσ(j)j

It follows that the standard coordinates on SN ⊂ ON are given by vij(σ) = δi,σ(j). In
other words, we must have vij = χ(σ|σ(j) = i), as claimed.

(2) Any characteristic function χ ∈ {0, 1} being a projection in the operator algebra
sense (χ2 = χ∗ = χ), we have indeed a matrix of projections. As for the sum 1 condition
on rows and columns, this is clear from the formula of the elements vij.

(3) Consider the universal algebra in the statement, namely:

A = C∗comm

(
(wij)i,j=1,...,N

∣∣∣w = magic
)

We have a quotient map A→ C(SN), given by wij → vij. On the other hand, by using
the Gelfand theorem we can write A = C(X), with X being a compact space, and by
using the coordinates wij we have X ⊂ ON , and then X ⊂ SN . Thus we have as well a
quotient map C(SN)→ A given by vij → wij, and this gives (3). See Wang [92]. �

With the above result in hand, we can now formulate, following [92]:

Proposition 7.2. The following is a Woronowicz algebra,

C(S+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

and the compact quantum group S+
N is called quantum permutation group.



102 TEO BANICA

Proof. As a first remark, the algebra C(S+
N) is indeed well-defined, because the magic

condition forces ||uij|| ≤ 1, for any C∗-norm. Our claim now is that, by using the universal
property of this algebra, we can define maps ∆, ε, S as in Definition 2.1.

Consider indeed the matrix Uij =
∑

k uik ⊗ ukj. We have Uij = U∗ij, and in fact the
entries Uij are orthogonal projections, because we have as well:

U2
ij =

∑
kl

uikuil ⊗ ukjulj =
∑
k

uik ⊗ ukj = Uij

In order to prove now that the matrix U = (Uij) is magic, it remains to verify that the
sums on the rows and columns are 1. But this can be checked as follows:∑

j

Uij =
∑
jk

uik ⊗ ukj =
∑
k

uik ⊗ 1 = 1⊗ 1

∑
i

Uij =
∑
ik

uik ⊗ ukj =
∑
k

1⊗ ukj = 1⊗ 1

Thus the matrix U = (Uij) is magic indeed, and so we can define a comultiplication
map by setting ∆(uij) = Uij. By using a similar reasoning, we can define as well a counit
map by ε(uij) = δij, and an antipode map by S(uij) = uji. Thus the Woronowicz algebra
axioms from Definition 2.1 are satisfied, and this finishes the proof. �

The terminology comes from the following result, also from [92]:

Proposition 7.3. The quantum permutation group S+
N acts on the set X = {1, . . . , N},

the corresponding coaction map Φ : C(X)→ C(S+
N)⊗ C(X) being given by:

Φ(δi) =
∑
j

uij ⊗ δj

In fact, S+
N is the biggest compact quantum group acting on X, by leaving the counting

measure invariant, in the sense that (id⊗ tr)Φ = tr(.)1, where tr(δi) = 1
N
,∀i.

Proof. Our claim is that given a compact matrix quantum group G, the formula Φ(δi) =∑
j uij ⊗ δj defines a morphism of algebras, which is a coaction map, leaving the trace

invariant, precisely when the matrix u = (uij) is a magic corepresentation of C(G).
Indeed, let us first determine when Φ is multiplicative. We have:

Φ(δi)Φ(δk) =
∑
jl

uijukl ⊗ δjδl =
∑
j

uijukj ⊗ δj

Φ(δiδk) = δikΦ(δi) = δik
∑
j

uij ⊗ δj

We conclude that the multiplicativity of Φ is equivalent to the following conditions:

uijukj = δikuij , ∀i, j, k
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Regarding now the unitality of Φ, we have the following formula:

Φ(1) =
∑
i

Φ(δi) =
∑
ij

uij ⊗ δj =
∑
j

(∑
i

uij

)
⊗ δj

Thus Φ is unital when the following conditions are satisfied:∑
i

uij = 1 , ∀j

Finally, the fact that Φ is a ∗-morphism translates into:

uij = u∗ij , ∀i, j

Summing up, in order for Φ(δi) =
∑

j uij ⊗ δj to be a morphism of C∗-algebras, the
elements uij must be projections, summing up to 1 on each column of u. Regarding now
the preservation of the trace condition, observe that we have:

(id⊗ tr)Φ(δi) =
1

n

∑
j

uij

Thus the trace is preserved precisely when the elements uij sum up to 1 on each of the
rows of u. We conclude from this that Φ(δi) =

∑
j uij ⊗ δj is a morphism of C∗-algebras

preserving the trace precisely when u is magic, and since the coaction conditions on Φ
are equivalent to the fact that u must be a corepresentation, this finishes the proof of our
claim. But this claim proves all the assertions in the statement. �

As a perhaps quite surprising result now, also from [92], we have:

Proposition 7.4. We have an embedding of compact quantum groups SN ⊂ S+
N , given at

the algebra level by

uij → χ
(
σ
∣∣∣σ(j) = i

)
and this embedding is an isomorphism at N ≤ 3, but not at N ≥ 4, where S+

N is non-
classical, infinite compact quantum group.

Proof. The fact that we have indeed an embedding as above is clear from Proposition 7.1
and Proposition 7.2. Note that this follows as well from Proposition 7.3. Regarding now
the second assertion, we can prove this in four steps, as follows:

Case N = 2. The result here is trivial, the 2× 2 magic matrices being by definition as
follows, with p being a projection:

U =

(
p 1− p

1− p p

)
Indeed, this shows that the entries of a 2 × 2 magic matrix must pairwise commute,

and so the algebra C(S+
2 ) follows to be commutative, which gives the result.
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Case N = 3. This is more tricky, and we present here a simple, recent proof, from [69].
By using the same abstract argument as in the N = 2 case, and by permuting rows and
columns, it is enough to check that u11, u22 commute. But this follows from:

u11u22 = u11u22(u11 + u12 + u13)

= u11u22u11 + u11u22u13

= u11u22u11 + u11(1− u21 − u23)u13

= u11u22u11

Indeed, by applying the involution to this formula, we obtain from this that we have
u22u11 = u11u22u11 as well, and so we get u11u22 = u22u11, as desired.

Case N = 4. In order to prove our various claims about S+
4 , consider the following

matrix, with p, q being projections, on some infinite dimensional Hilbert space:

U =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


This matrix is magic, and if we choose p, q as for the algebra < p, q > to be not

commutative, and infinite dimensional, we conclude that C(S+
4 ) is not commutative and

infinite dimensional as well, and in particular is not isomorphic to C(S4).
Case N ≥ 5. Here we can use the standard embedding S+

4 ⊂ S+
N , obtained at the level

of the corresponding magic matrices in the following way:

u→
(
u 0
0 1N−4

)
Indeed, with this embedding in hand, the fact that S+

4 is a non-classical, infinite compact
quantum group implies that S+

N with N ≥ 5 has these two properties as well. �

At the representation theory level now, we have the following result, from [35]:

Theorem 7.5. For the quantum permutation group S+
N , the intertwining spaces for the

tensor powers of the fundamental corepresentation u = (uij) are given by:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ NC(k, l)
)

In other words, S+
N is easy, coming from the category of noncrossing partitions NC.

Proof. We use the Tannakian duality results from sections 4 and 5 above. According to
Proposition 7.2, the algebra C(S+

N) appears as follows:

C(S+
N) = C(O+

N)
/〈

u = magic
〉
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On the other hand, we know from the proof of Theorem 5.10 that if we denote by
µ ∈ P (2, 1) the one-block partition, then we have:

Tµ ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k

The condition on the right being equivalent to the magic condition, we obtain:

C(S+
N) = C(O+

N)
/〈

Tµ ∈ Hom(u⊗2, u)
〉

By using now the general theory from section 5, we conclude that the quantum group
S+
N is indeed easy, with the corresponding category of partitions being:

D =< µ >

But this latter category is NC, as one can see by “chopping” arbitrary noncrossing
partitions into µ-shaped components, and so we obtain the result. �

The above result is in clear analogy with Theorem 5.10, stating that the usual permu-
tation group SN is easy, coming from the category of all partitions P .

As a technical comment, there might seem to be a bit of a clash between Theorem 5.10
and Theorem 7.5 at N = 2, 3, where SN = S+

N . However, there is no clash, because the
implementation of the partitions is not faithful. We will be back to this.

In order to clarify all this, and to understand as well the representation theory of S+
N

at N ≥ 4, we will need some combinatorics. Let us start with:

Proposition 7.6. We have a bijection NC(k) ' NC2(2k), constructed as follows:

(1) The application NC(k) → NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k)→ NC(k) is the “shrinking” application, obtained by collaps-
ing pairs of consecutive neighbors.

Proof. The fact that the two operations in the statement are indeed inverse to each other
is clear, by computing the corresponding two compositions, with the remark that the
construction of the fattening operation requires the partitions to be noncrossing. �

The above result suggests using the theory of O+
N , from section 4 above, in order to

obtain results about S+
N . This will be indeed our idea, and we have:

Proposition 7.7. The Gram matrices of NC2(2k), NC(k) are related as follows, where
π → π′ is the shrinking operation, and ∆kn is the diagonal of Gkn:

G2k,n(π, σ) = nk(∆−1
knGk,n2∆−1

kn )(π′, σ′)

In particular, we have det(Gk,n2) 6= 0 for any n ≥ 2, and so the family of vectors
{ξπ|π ∈ NC(k)} ⊂ (CN)⊗k, with N = n2, is linearly independent.
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Proof. In the context of Proposition 7.6 above, it is elementary to see that we have:

|π ∨ σ| = k + 2|π′ ∨ σ′| − |π′| − |σ′|

We therefore have the following formula, valid for any n ∈ N:

n|π∨σ| = nk+2|π′∨σ′|−|π′|−|σ′|

Thus, we obtain the formula in the statement. Now by applying the determinant, we
obtain from this of formula of the following type, with C > 0 being a constant:

det(G2k,n) = C · det(Gk,n2)

Since we know from section 4 above, from our results regarding O+
n , that we have

det(G2k,n) 6= 0, we conclude that we have as well det(Gk,n2) 6= 0, as claimed. �

Summarizing, we have now some good knowledge of NC(k), which includes a linear
independence result for the associated vectors ξπ, valid at any N = n2 with n ≥ 2.

This technology covers for instance the quantum group S+
4 , whose understanding would

be our first objective here. However, in order to deal directly with the N ≥ 4 case, we
would need linear independence results at any N ≥ 4. We have here:

Theorem 7.8. Consider the Temperley-Lieb algebra of index N ≥ 4, defined as

TLN(k) = span(NC(k, k))

with product given by the rule © = N , when concatenating.

(1) We have a representation i : TLN(k)→ B((CN)⊗k), given by π → Tπ.
(2) Tr(Tπ) = N loops(<π>), where π →< π > is the closing operation.
(3) The linear form τ = Tr ◦ i : TLN(k)→ C is a faithful positive trace.
(4) The representation i : TLN(k)→ B((CN)⊗k) is faithful.

In particular, the vectors {ξπ|π ∈ NC(k)} ⊂ (CN)⊗k are linearly independent.

Proof. All this is quite standard, but advanced, the idea being as follows:
(1) This is clear from the categorical properties of π → Tπ.
(2) This follows indeed from the following computation:

Tr(Tπ) =
∑
i1...ik

δπ

(
i1 . . . ik
i1 . . . ik

)
= #

{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker

(
i1 . . . ik
i1 . . . ik

)
≥ π

}
= N loops(<π>)

(3) The traciality of τ is clear, because Tr is tracial. Regarding now the faithfulness,
this is best viewed via the formula τ(π) = N loops(<π>), coming from (2).
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The point indeed is that the Temperley-Lieb algebra TLN(k) appears in a massive
number of mathematical contexts, with its standard trace τ(π) = N loops(<π>) playing a
key role in each of these situations, and known in particular to be faithful.

The original argument here, due to Jones [66], is very beautiful. According to the work
of von Neumann and others [73], [90], of particular importance in mathematical physics
are the C∗-algebras A ⊂ B(H) which are closed under the weak topology, making the
maps a→ aξ with ξ ∈ H continuous, which are called von Neumann algebras.

The structure and classification work for such algebras, basically due to von Neumann
and Connes, leads to the conclusion that the “building blocks” of the theory are the von
Neumann algebras A which are infinite dimensional, dimA = ∞, have trivial center,
Z(A) = C, and possess a faithful trace tr : A→ C. These are called II1 factors.

Now given an inclusion of II1 factors A1 ⊂ A2, which is once again something natural in
physics, we can consider the orthogonal projection e1 : A2 → A1, and set A3 =< A2, e1 >.
This procedure, discovered by Jones and called “basic construction”, can be iterated, and
we obtain in this way a whole tower of II1 factors, with projections, as follows:

A1 ⊂e1 A2 ⊂e2 A3 ⊂e3 A4 ⊂ . . . . . .

The point now is that the sequence of projections e1, e2, e3, . . . ∈ B(H) behaves exactly
as the sequence of diagrams ε1, ε2, ε3, . . . ∈ TLN given by ε1 = ∪

∩, ε2 = | ∪∩, ε3 = || ∪∩, and
so on, with the parameter being the index, N = [A2, A1]. Thus, we have a model for the
Temperley-Lieb algebra, and the trace is the one that we are interested in:

TLN = span(ei) , tr(π) = N loops(<π>)

As a conclusion, in this situation, the Temperley-Lieb trace is the II1 factor trace, so it
is faithful. Together with the standard fact that inclusions of II1 factors A1 ⊂ A2 can be
constructed for any index values N ≥ 4, this gives the result. See Jones [66].

(4) This follows from (3) above, via a standard positivity argument.
As for the last assertion, this follows from (4), by completing the partitions π ∈ NC(k)

into partitions π̃ ∈ NC(k, k), by adding singletons, attached to the upper legs. �

For our purposes, the final conclusion of Theorem 7.8 is exactly what we need. The
problem, however, is that the proof of this fact remains quite heavy, based on [66]. We
will be back to this a bit later, with the outline of a few alternative arguments.

We can now work out the representation theory of S+
N , as follows:

Theorem 7.9. The quantum groups S+
N with N ≥ 4 have the following properties:

(1) The moments of the main character are the Catalan numbers,
∫
χk = Ck.

(2) The fusion rules are rk ⊗ rl = r|k−l| + r|k−l|+1 + . . .+ rk+l, as for SO3.

Proof. We know from Theorem 7.8 above that the vectors {ξπ|π ∈ NC(k)} ⊂ (CN)⊗k are
linearly independent, and by using this, the proof, from [2], goes as follows:
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(1) We have indeed the following computation, with the various equalities coming from
Proposition 6.2, Theorem 7.5, Proposition 7.6 and Proposition 6.16:∫

S+
N

χk = dim(Fix(u⊗k)) = #NC(k) = #NC2(2k) = Ck

(2) This is standard, by using the moment formula in (1), and the known theory of
SO3. Let indeed A = span(χk|k ∈ N) be the algebra of characters of SO3. We can define
a morphism Ψ : A→ C(S+

N) by χ1 → f1−1, where f1 is the character of the fundamental
representation of S+

N . The elements fk = Ψ(χk) verify then:

fkfl = f|k−l| + f|k−l|+1 + . . .+ fk+l

We prove now by recurrence on k that each fk is the character of an irreducible corep-
resentation rk of C(S+

N), non-equivalent to r0, . . . , rk−1. At k = 0, 1 this is clear.
Assume now that the result holds at k − 1. By integrating characters we have then

rk−2, rk−1 ⊂ rk−1 ⊗ r1, exactly as for SO3, so there exists a corepresentation rk such that
rk−1 ⊗ r1 = rk−2 + rk−1 + rk. Once again by integrating characters, we conclude that rk
is irreducible, and non-equivalent to r1, . . . , rk−1, as for SO3. This proves our claim.

Finally, since any irreducible representation of S+
N must appear in some tensor power

of u, and we have a formula for decomposing each u⊗k into sums of representations rl, we
conclude that these representations rl are all the irreducible representations of S+

N . �

The above result is quite surprising, and raises a massive number of questions. We
would like to better understand the relation with SO3, and more generally see what
happens at values N = n2 with n ≥ 2, and also compute the law of χ, and so on.

We will come up with answers to all these questions, but we will do this slowly.
One way of understanding the reltion with SO3 comes from noncommutative geometry

considerations. We recall that, according to the general theory from section 1, each finite
dimensional C∗-algebra A can be written as A = C(X), with X being a “noncommutative
finite space”. We make the convention that each such spaceX is endowed with its counting
measure, corresponding to the canonical trace tr : A ⊂ B(A)→ C.

We have then the following general result, also from [2]:

Theorem 7.10. Given a noncommutative finite space X, there exists a universal compact
quantum group G+(X) acting on X, by leaving the counting measure invariant, and:

(1) For X = {1, . . . , N} we have G+(X) = S+
N .

(2) For X = Spec(M2(C)) we have G+(X) = SO3.
(3) The fusion semiring of G+(X) is independent of X.
(4) Thus, S+

N with N ≥ 4 has the same fusion semiring as SO3.

Proof. In this statement the first assertion follows as in Proposition 7.3 above, with the
remark that what we have here is a theoretical result, and so we are not in need of working
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out the precise algebraic formulae between generators. In fact, if we denote by m,u the
multiplication and the unit of A = C(X), the coaction conditions reformulate as:

m ∈ Hom(u⊗2, u) , u ∈ Fix(u)

Thus, we can define our quantum group by imposing these relations, and all this is
quite standard. Regarding now the other assertions, the proofs here are as follows:

(1) This is something that we already know, from Proposition 7.3 above.
(2) We use here some standard facts about SU2, SO3. We have an action by conjugation

SU2 yM2(C), and this action produces, via the canonical quotient map SU2 → SO3, an
action SO3 yM2(C). On the other hand, it is quite routine to check, by using arguments
like those in the proof of Proposition 7.4, that any action GyM2(C) must come from a
classical group. Thus the action SO3 yM2(C) is universal, as claimed.

(3) This follows a bit as in the proof of Theorem 7.9 above. To be more precise, this
follows from the fact that the multiplication and unit of any complex algebra, and in
particular of CN , can be modelled by the following two diagrams:

m = | ∪ | , u = ∩

But these diagrams generate the Temperley-Lieb algebra TL, and by collapsing neigh-
bors, as in the proof of Theorem 7.9, we are led in this way to the category NC.

(4) This follows indeed from (1,2,3) above. �

All this is certainly quite conceptual, but perhaps a bit too abstract. At N = 4 we can
formulate a more concrete result on the subject, by using the following construction:

Definition 7.11. C(SO−1
3 ) is the universal C∗-algebra generated by the entries of a 3×3

orthogonal matrix a = (aij), with the following relations:

(1) Skew-commutation: aijakl = ±aklaij, with sign + if i 6= k, j 6= l, and − otherwise.
(2) Twisted determinant condition: Σσ∈S3a1σ(1)a2σ(2)a3σ(3) = 1.

Observe the similarity with the twising constructions from section 5. However, SO3

being not easy, we are not exactly in the Schur-Weyl twisting framework from there.
Our first task would be to prove that C(SO−1

3 ) is a Woronowicz algebra. This is of course
possible, by doing some computations, but we will not need to do these computations,
because the result follows from the following theorem, from [11]:

Theorem 7.12. We have an isomorphism of compact quantum groups

S+
4 = SO−1

3

given by the Fourier transform over the Klein group K = Z2 × Z2.
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Proof. Consider indeed the matrix a+ = diag(1, a), corresponding to the action of SO−1
3

on C4, and apply to it the Fourier transform over the Klein group K = Z2 × Z2:

u =
1

4


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1




1 0 0 0
0 a11 a12 a13

0 a21 a22 a23

0 a31 a32 a33




1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1


It is routine to check that this matrix is magic, and vice versa, i.e. that the Fourier

transform over K converts the relations in Definition 7.11 into the magic relations in
Definition 7.1. Thus, we obtain the identification from the statement. �

It is possible to get beyond this, with an ADE classification of the closed subgroups of
S+

4 = SO−1
3 . All this is, however, quite technical, and we refer here to [11].

As an overall conclusion, the twisting formula S+
4 = SO−1

3 ultimately comes from
something of type X4 'M2, where X4 = {1, 2, 3, 4} and M2 = Spec(M2(C)).

Yet another extension of Theorem 7.12, which is however quite technical, comes by
looking at the general case N = n2, with n ≥ 2. It is possible indeed to complement

Theorem 7.10 above, with a general twisting result of type G+(Ĥσ) = G+(Ĥ)σ, valid for
any finite group H and any 2-cocycle σ on it. In the case H = Z2

n with Fourier cocycle,
this leads to the conclusion that PO+

n appears as a cocycle twist of S+
n2 . See [17].

Let us just record here an interesting probabilistic fact, from [17] as well:

Theorem 7.13. The following families of variables have the same joint law,

(1) {u2
ij} ∈ C(O+

n ),

(2) {Xij = 1
n

∑
ab pia,jb} ∈ C(S+

n2),

where u = (uij) and p = (pia,jb) are the corresponding fundamental corepresentations.

Proof. As already mentioned, this result can be obtained via twisting methods. An al-
ternative approach is by using the Weingarten formula for our two quantum groups, and
the shrinking operation π → π′. Indeed, we obtain the following moment formulae:∫

O+
n

u2k
ij =

∑
π,σ∈NC2(2k)

W2k,n(π, σ)∫
S+

n2

Xk
ij =

∑
π,σ∈NC2(2k)

n|π
′|+|σ′|−kWk,n2(π′, σ′)

According to Proposition 7.7 the summands coincide, and so the moments are equal,
as desired. The proof in general, dealing with joint moments, is similar. �

The above result is quite interesting, making a connection between free hyperspherical
and free hypergeometric laws. We will discuss this later on, in section 11 below.

Before getting into further probabilistic aspects, let us however go back to the linear
independence result in Theorem 7.8, and discuss some alternative arguments.
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We know from Proposition 7.7 that the result at N = n2 with n ∈ N can be obtained
from the results for O+

n from section 4, via the connecting formula for the Gram matrices.
It is possible to use this kind of argument in general as well, by using the extended compact
quantum group framework, as in Woronowicz’s papers [97], [98], [99], [100], with S2 6= id.
Indeed, in this framework the quantum groups O+

n can be deformed, as to probabilistically
have n ∈ [2,∞), and we can obtain the faithfulness result via Proposition 7.7.

Yet another approach, which is heavy too, but only computationally, not using any
extra general theory, is by explicitely computing the determinants of the Gram matrices
in Proposition 7.7. The formulae here, due to Di Francesco [57], are as follows:

Theorem 7.14. The Gram determinants for O+
n , S

+
n are given by the formulae

det(Gkn) =

[k/2]∏
r=1

Pr(n)dk/2,r , det(Gkn) = (
√
n)ak

k∏
r=1

Pr(
√
n)dkr

where Pr are the Chebycheff polynomials, P0 = 1, P1 = n and Pr+1 = nPr − Pr−1,

fkr =

(
2k

k − r

)
−
(

2k

k − r − 1

)
depending on k, r ∈ Z, with fkr = 0 for k /∈ Z, and dkr = fkr − fk+1,r.

Proof. Let Γ = N, regarded as Cayley graph of O+
n , and consider its orthogonal polynomial

eigenvector µ(r) = Pr(n), with eigenvalue n. Let also Lk be the set of length k loops
l = l1 . . . lk based at 0, and Hk = span(Lk). For π ∈ NC2(k) we define fπ ∈ Hk by:

fπ =
∑
l∈Lk

(∏
i∼πj

δ(li, l
o
j )γ(li)

)
l

Here e→ eo is the edge reversing, and the “spin factor” is γ =
√
µ(t)/µ(s), where s, t

are the source and target of the edges. The point is that we have:

Gkn(π, σ) =< fπ, fσ >

We have a bijection NC2(k) → Lk, constructed as follows. For π ∈ NC2(k) and
0 ≤ i ≤ k we define hπ(i) to be the number of 1 ≤ j ≤ i which are joined by π to a
number strictly larger than i. We then define a loop l(π) = l(π)1 . . . l(π)k, where l(π)i is
the edge from hπ(i− 1) to hπ(i). Consider now the following matrix:

Tkn(π, σ) =
∏
i∼πj

δ(l(σ)i, l(σ)oj)γ(l(σ)i)

We have then fπ =
∑

σ Tkn(π, σ) · l(σ), and we obtain from this:

Gkn = TknT
t
kn
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If we consider the partial order on NC2(k) given by π ≤ σ if hπ(i) ≤ hσ(i) for i =
1, . . . , k, then σ 6≤ π implies Tkn(π, σ) = 0, and so Tkn is lower triangular. Thus:

det(Tkn) =
∏
π

Tkn(π, π) =
∏
π

∏
i∼πj

√
Phπ(i)
Phπ(i)−1

=

k/2∏
r=1

P ekr/2
r

Here the exponents appearing on the right are by definition as follows:

ekr =
∑
π

∑
i∼πj

δhπ(i),r − δhπ(i),r+1

On the other hand, by doing some combinatorics, for 1 ≤ r ≤ k/2 we have:∑
π

∑
i∼πj

δhπ(i)r = fk/2,r

Thus, we obtain the formula for O+
n in the statement. As for the formula for S+

n , this
follows from this, and from the formula in Proposition 7.7. See [24], [57]. �

Summarizing, there is a lot of interesting mathematics in connnection with S+
N . Passed

the problem of understanding all this, at a first glance, this is a good thing.
Let us go back now to our main result so far, namely Theorem 7.9, and further build

on that. The dimensions of the representations appearing there are as follows:

Proposition 7.15. The dimensions of the irreducible corepresentations of S+
N are

dim(rk) =
qk+1 − q−k

q − 1

where q, q−1 are the roots of X2 − (N − 2)X + 1 = 0.

Proof. From the Clebsch-Gordan rules we have, in particular:

rkr1 = rk−1 + rk + rk+1

We are therefore led to a recurrence, and the initial data being dim(r0) = 1 and
dim(r1) = N − 1 = q + 1 + q−1, we are led to the following formula:

dim(rk) = qk + qk−1 + . . .+ q1−k + q−k

In more compact form, this gives the formula in the statement. �

Let us work out now some probabilistic consequences. Following [10], we have:

Theorem 7.16. The spectral measure of the main character of S+
N with N ≥ 4 is the

Marchenko-Pastur law of parameter 1, having the following density:

π1 =
1

2π

√
4x−1 − 1dx

Also, S+
4 is coamenable, and S+

N with N ≥ 5 is not coamenable.
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Proof. Here the first assertion follows from the following formula, which can be established
by doing some calculus, and more specifically by setting x = 4 sin2 t:

1

2π

∫ 4

0

√
1− 4x−1xkdx = Ck

Of course, it is a bit unclear where the Marchenko-Pastur law [72] comes from. This
comes of course from our physicist friend, as it was the case with the Wigner law [96].

As for the second assertion, this follows from this, and from the Kesten criterion. �

Summarizing, we have some results, but all this is still dependent on our physicist
friend, and his excellent knowledge of calculus, SU2/SO3, and other things, like [88].

So, our next purpose will be that of understanding, probabilistically speaking, and in
a conceptual way, out of nothing, the liberation operation SN → S+

N .
Let us begin our study with the classical case computation, for the symmetric group

SN . Here the result, which is truly remarkable, and well-known, is as follows:

Theorem 7.17. Consider the symmetric group SN , regarded as a compact group of ma-
trices, SN ⊂ ON , via the standard permutation matrices.

(1) The main character χ ∈ C(SN), defined as usual as χ =
∑

i uii, counts the number
of fixed points, χ(σ) = #{i|σ(i) = i}.

(2) The probability for a permutation σ ∈ SN to be a derangement, meaning to have
no fixed points at all, becomes, with N →∞, equal to 1/e.

(3) The law of the main character χ ∈ C(SN) becomes, with N → ∞, a Poisson law
of parameter 1, with respect to the counting measure.

Proof. This is something very classical, and beautiful, as follows:
(1) We have indeed the following computation:

χ(σ) =
∑
i

uii(σ) =
∑
i

δσ(i)i = #
{
i
∣∣σ(i) = i

}
(2) This is best viewed by using the inclusion-exclusion principle. Let us set:

Si1...ikN =
{
σ ∈ SN

∣∣∣σ(i1) = i1, . . . , σ(ik) = ik

}
By using the inclusion-exclusion principle, we have:

P(χ = 0) =
1

N !

(
|SN | −

∑
i

|SiN |+
∑
i<j

|SijN | − . . .+ (−1)N
∑

i1<...<iN

|Si1...iNN |

)

Now since |Si1...ikN | = (N − k)! for any i1 < . . . < ik, we obtain from this:

P(χ = 0) = 1− 1

1!
+

1

2!
− . . .+ (−1)N−1 1

(N − 1)!
+ (−1)N

1

N !
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Since on the right we have the expansion of 1
e
, we conclude that we have:

lim
N→∞

P(χ = 0) =
1

e

(3) This follows by generalizing the computation in (2). To be more precise, a similar
application of the inclusion-exclusion principle gives the following formula:

lim
N→∞

P(χ = k) =
1

k!e

Thus, we obtain in the limit a Poisson law, as stated. �

In order to talk about free analogues of this, we will need some theory. Let us denote
by ∗ the usual convolution of measures, and by � its free version. We have then:

Theorem 7.18. The following Poisson type limits converge, for any t > 0,

pt = lim
n→∞

((
1− 1

n

)
δ0 +

1

n
δt

)∗n
, πt = lim

n→∞

((
1− 1

n

)
δ0 +

1

n
δt

)�n

the limiting measures being the Poisson law pt, and the Marchenko-Pastur law πt,

pt =
1

et

∞∑
k=0

tkδk
k!

, πt = max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

whose moments are given by the following formulae:

Mk(pt) =
∑

π∈P (k)

t|π| , Mk(πt) =
∑

π∈NC(k)

t|π|

The Marchenko-Pastur measure πt is also called free Poisson law.

Proof. This is something standard, which follows by using either logF,R and calculus, or
classical and free cumulants, and combinatorics. In combinatorial terms, the point is that
the limiting measures must be those having classical and free cumulants t, t, t, . . . But this
gives all the assertions, the density computations being standard. See [76]. �

We can now formulate a conceptual result about SN → S+
N , as follows:

Theorem 7.19. The law of the main character χu is as follows:

(1) For SN with N →∞ we obtain a Poisson law p1.
(2) For S+

N with N ≥ 4 we obtain a free Poisson law π1.

In addition, these laws are related by the Bercovici-Pata correspondence.

Proof. This follows indeed from the computations that we have, from Theorem 7.16 and
Theorem 7.17, by using the various theoretical results from Theorem 7.18. �

As in the continuous case, our purpose now will be that of extending this result to the
truncated characters. In order to discuss the classical case, we first have:
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Proposition 7.20. Consider the symmetric group SN , together with its standard matrix
coordinates uij = χ(σ ∈ SN |σ(j) = i). We have the formula∫

SN

ui1j1 . . . uikjk =

{
(N−| ker i|)!

N !
if ker i = ker j

0 otherwise

where ker i denotes as usual the partition of {1, . . . , k} whose blocks collect the equal indices
of i, and where |.| denotes the number of blocks.

Proof. According to the definition of uij, the integrals in the statement are given by:∫
SN

ui1j1 . . . uikjk =
1

N !
#
{
σ ∈ SN

∣∣∣σ(j1) = i1, . . . , σ(jk) = ik

}
Since the existence of σ ∈ SN as above requires im = in ⇐⇒ jm = jn, this integral

vanishes when ker i 6= ker j. As for the case ker i = ker j, if we denote by b ∈ {1, . . . , k}
the number of blocks of this partition, we have N−b points to be sent bijectively to N−b
points, and so (N − b)! solutions, and the integral is (N−b)!

N !
, as claimed. �

We can now compute the laws of truncated characters, and we obtain:

Proposition 7.21. For the symmetric group SN ⊂ ON , regarded as a compact group of
matrices, SN ⊂ ON , via the standard permutation matrices, the truncated character

χt =

[tN ]∑
i=1

uii

counts the number of fixed points among {1, . . . , [tN ]}, and its law with respect to the
counting measure becomes, with N →∞, a Poisson law of parameter t.

Proof. The first assertion comes from the formula uij = χ(σ|σ(j) = i). Regarding now
the second assertion, a first proof can be obtained via inclusion-exclusion, along the lines
of the proof of Theorem 7.17. However, simplest here is to use the integration formula in
Proposition 7.20. With Sk,b being the Stirling numbers, we have:∫

SN

χkt =

[tN ]∑
i1...ik=1

∫
SN

ui1i1 . . . uikik

=
∑
π∈Pk

[tN ]!

([tN ]− |π|!)
· (N − |π|!)

N !

=

[tN ]∑
b=1

[tN ]!

([tN ]− b)!
· (N − b)!

N !
· Sk,b
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In particular with N →∞ we obtain the following formula:

lim
N→∞

∫
SN

χkt =
k∑
b=1

Sk,bt
b

But this is a Poisson(t) moment, and so we are done. �

In the free case now, the integration formula, from [20], is as follows:

Proposition 7.22. We have the Weingarten formula∫
S+
N

ui1j1 . . . uikjk =
∑

π,σ∈NC(k)

δπ(i)δσ(j)WkN(π, σ)

where the Kronecker symbols and Weingarten matrix are defined as usual. In particular,
at k ≤ 3 we obtain in this way the same integrals as those over SN .

Proof. The formula in the statement is the usual one. Regarding the second assertion, we
can write a Weingarten formula for the usual symmetric group SN as well, as follows:∫

SN

ui1j1 . . . uikjk =
∑

π,σ∈P (k)

δπ(i)δσ(j)W ′
kN(π, σ)

Now since at k ≤ 3 all the partitions of {1, . . . , k} are noncrossing, we have P (k) =
NC(k), the Weingarten functions for SN , S

+
N coincide, and we obtain the result. �

We can now finish our computations, and generalize Theorem 7.19, as follows:

Theorem 7.23. The laws of truncated characters χt =
∑[tN ]

i=1 uii are as follows:

(1) For SN with N →∞ we obtain a Poisson law pt.
(2) For S+

N with N →∞ we obtain a free Poisson law πt.

In addition, these laws are related by the Bercovici-Pata correspondence.

Proof. This follows from the above results:
(1) This is something that we already know, from Proposition 7.21.
(2) This is something that we know so far only at t = 1, from Theorem 7.19. In order

to deal with the general t ∈ (0, 1] case, we can use the same method as for the orthogonal
and unitary quantum groups, from section 6, and we obtain the following moments:

Mk =
∑

π∈NC(k)

t|π|

But these being the moments of the free Poisson law of parameter t, as explained in
Theorem 7.18 above, or in section 8 below, we obtain the result. See [21]. �

Summarizing, the liberation operation SN → S+
N has many common features with the

liberation operations ON → O+
N and UN → U+

N , studied in section 6 above.
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8. Quantum reflections

We have seen that the quantum permutation groups S+
N are understood quite well. In

this section we explore, with similar methods, some of the subgroups G ⊂ S+
N .

Many interesting examples of quantum permutation groups appear as particular cases
of the following general construction from [3], involving finite graphs:

Proposition 8.1. Given a finite graph X, with adjacency matrix d ∈ MN(0, 1), the
following construction produces a quantum permutation group,

C(G+(X)) = C(S+
N)
/〈

du = ud
〉

whose classical version G(X) is the usual automorphism group of X.

Proof. The fact that we have a quantum group comes from the fact that du = ud refor-
mulates as d ∈ End(u), which makes it clear that we are dividing by a Hopf ideal.

Regarding the second assertion, we must establish here the following equality:

C(G(X)) = C(SN)
/〈

d ∈ End(u)
〉

For this purpose, observe that with uij = χ(σ|σ(j) = i), as in Proposition 7.1 above,
which is the same as saying that uij(σ) = δσ(j)i, we have:

(du)ij(σ) =
∑
k

dikukj(σ) =
∑
k

dikδσ(j)k = diσ(j)

(ud)ij(σ) =
∑
k

uik(σ)dkj =
∑
k

δσ(k)idkj = dσ−1(i)j

Thus du = ud reformulates as dij = dσ(i)σ(j), and we are led to usual the notion of an
action of a permutation group on X, which leaves invariant the edges, as claimed. �

Let us work out some basic examples. We have the following result:

Proposition 8.2. The construction X → G+(X) has the following properties:

(1) For the N-point graph, having no edges at all, we obtain S+
N .

(2) For the N-simplex, having edges everywhere, we obtain as well S+
N .

(3) We have G+(X) = G+(Xc), where Xc is the complementary graph.
(4) For a disconnected union, we have G+(X) ∗̂G+(Y ) ⊂ G+(X t Y ).
(5) For the square, we obtain a non-classical, proper subgroup of S+

4 .

Proof. All these results are elementary, the proofs being as follows:
(1) This follows from definitions, because here we have d = 0.
(2) Here d = I is the all-one matrix, and since the magic condition gives uI = Iu = NI,

we conclude that du = ud is automatic in this case, and so G+(X) = S+
N .
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(3) The adjacency matrices of X,Xc being related by the formula dX +dXc = I, we can
use here the above formula uI = Iu = NI, and we conclude that dXu = udX is equivalent
to dXcu = udXc . Thus, we obtain G+(X) = G+(Xc), as claimed.

(4) The adjacency matrix of a disconnected union is given by dXtY = diag(dX , dY ).
Now let w = diag(u, v) be the fundamental corepresentation of G+(X) ∗̂G+(Y ). Since
dXu = udX and dY v = vdY imply dXtYw = wdXtY , this gives the result.

(5) We know from (3) that we have G+(�) = G+(| |), and we know as well from (4) that
we have Z2 ∗̂Z2 ⊂ G+(| |). It follows that G+(�) is non-classical. Finally, the inclusion
G+(�) ⊂ S+

4 is indeed proper, because S4 ⊂ S+
4 does not act on the square. �

In order to further advance, we can use the spectral decomposition of d:

Proposition 8.3. A closed subgroup G ⊂ S+
N acts on a graph X precisely when

Pλu = uPλ , ∀λ ∈ R
where d =

∑
λ λ · Pλ is the spectral decomposition of the adjacency matrix of X.

Proof. Since d ∈ MN(0, 1) is a symmetric matrix, we can consider indeed its spectral
decomposition, d =

∑
λ λ · Pλ. We have then the following formula:

< d >= span
{
Pλ

∣∣∣λ ∈ R
}

But this shows that we have the following equivalence:

d ∈ End(u) ⇐⇒ Pλ ∈ End(u),∀λ ∈ R
Thus, we are led to the conclusion in the statement. �

In order to exploit this, we will often combine it with the following standard fact:

Proposition 8.4. Consider a closed subgroup G ⊂ S+
N , with associated coaction map

Φ : CN → C(G)⊗ CN . For a linear subspace V ⊂ CN , the following are equivalent:

(1) The magic matrix u commutes with PV .
(2) We have Φ(V ) ⊂ C(G)⊗ V .

Proof. Let P = PV . For any i ∈ {1, . . . , N} we have the following formula:

Φ(P (δi)) = Φ

(∑
j

Pijδj

)
=
∑
jk

ujk ⊗ Pijδk =
∑
k

(Pu)ik ⊗ δk

On the other hand the linear map (id⊗ P )Φ is given by a similar formula:

(id⊗ P )(Φ(δi)) =
∑
j

uij ⊗ P (δj) =
∑
jk

uij ⊗ Pjkδk =
∑
k

(uP )ik ⊗ δk

Thus ΦP = (P ⊗ id)Φ is equivalent to Pu = uP , and the conclusion follows. �

We have as well the following useful complementary result, from [3]:
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Proposition 8.5. Let p ∈ MN(C) be a matrix, and consider its “color” decomposition,
obtained by setting (pc)ij = 1 if pij = c and (pc)ij = 0 otherwise:

p =
∑
c∈C

c · pc

Then u = (uij) commutes with p if and only if it commutes with all matrices pc.

Proof. Since the multiplication M : δi⊗δj → δiδj and the counit C : δi → δi⊗δi intertwine
u, u⊗2, their iterations M (k), C(k) intertwine u, u⊗k, and so we have:

p(k) = M (k)p⊗kC(k) =
∑
c∈C

ckpc ∈ End(u)

Let S = {c ∈ C|pc 6= 0}, and f(c) = c. By Stone-Weierstrass we have S =< f >, and
so for any e ∈ S the Dirac mass at e is a linear combination of powers of f :

δe =
∑
k

λkf
k =

∑
k

λk

(∑
c∈S

ckδc

)
=
∑
c∈S

(∑
k

λkc
k

)
δc

The corresponding linear combination of matrices p(k) is given by:∑
k

λkp
(k) =

∑
k

λk

(∑
c∈S

ckpc

)
=
∑
c∈S

(∑
k

λkc
k

)
pc

The Dirac masses being linearly independent, in the first formula all coefficients in the
right term are 0, except for the coefficient of δe, which is 1. Thus the right term in the
second formula is pe, and it follows that we have pe ∈ End(u), as claimed. �

The above results can be combined, and we are led into a “color-spectral” decomposition
method for d, which can lead to a number of nontrivial results. See [3].

As a basic application of this, we can further study G+(�), as follows:

Proposition 8.6. The quantum automorphism group of the N-cycle is as follows:

(1) At N 6= 4 we have G+(X) = DN .
(2) At N = 4 we have D4 ⊂ G+(X) ⊂ S+

4 , with proper inclusions.

Proof. We already know that the results hold at N ≤ 4, so let us assume N ≥ 5.
Given a N -th root of unity, wN = 1, the vector ξ = (wi) is an eigenvector of d, with

eigenvalue w + wN−1. Now by taking w = e2πi/N , it follows that 1, f, f 2, . . . , fN−1 are
eigenvectors of d. More precisely, the invariant subspaces of d are as follows, with the last
subspace having dimension 1 or 2 depending on the parity of N :

C1, Cf ⊕ CfN−1, Cf 2 ⊕ CfN−2, . . .

Consider now the associated coaction Φ : CN → C(G)⊗ CN , and write:

Φ(f) = a⊗ f + b⊗ fN−1
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By taking the square of this equality we obtain:

Φ(f 2) = a2 ⊗ f 2 + b2 ⊗ fN−2 + (ab+ ba)⊗ 1

It follows that ab = −ba, and that Φ(f 2) is given by the following formula:

Φ(f 2) = a2 ⊗ f 2 + b2 ⊗ fN−2

By multiplying this with Φ(f) we obtain:

Φ(f 3) = a3 ⊗ f 3 + b3 ⊗ fN−3 + ab2 ⊗ fN−1 + ba2 ⊗ f
Now since N ≥ 5 implies that 1, N − 1 are different from 3, N − 3, we must have

ab2 = ba2 = 0. By using this and ab = −ba, we obtain by recurrence on k that:

Φ(fk) = ak ⊗ fk + bk ⊗ fN−k

In particular at k = N − 1 we obtain:

Φ(fN−1) = aN−1 ⊗ fN−1 + bN−1 ⊗ f
On the other hand we have f ∗ = fN−1, so by applying ∗ to Φ(f) we get:

Φ(fN−1) = a∗ ⊗ fN−1 + b∗ ⊗ f
Thus a∗ = aN−1 and b∗ = bN−1. Together with ab2 = 0 this gives:

(ab)(ab)∗ = abb∗a∗ = abNaN−1 = (ab2)bN−2aN−1 = 0

From positivity we get from this ab = 0, and together with ab = −ba, this shows that
a, b commute. On the other hand C(G) is generated by the coefficients of Φ, which are
powers of a, b, and so C(G) must be commutative, and we obtain the result. �

Summarizing, this was a bad attempt in understanding G+(�), which appears to be
“exceptional” among the quantum symmetry groups of the N -cycles.

An alternative approach to G+(�) comes by regarding the square as the N = 2 par-
ticular case of the N -hypercube �N . Indeed, the usual symmetry group of �N is the
hyperoctahedral group HN , so we should have a formula of type G(�) = H+

2 .
In order to clarify this, let us start with the following simple fact:

Proposition 8.7. We have an embedding as follows, gi being the generators of ZN2 ,

ẐN2 ⊂ SN−1
R,+ , xi =

gi√
N

whose image is the geometric hypercube �N = {x ∈ RN |xi = ±1/
√
N, ∀i}.

Proof. This is something that we already know, from Theorem 1.20 above, and which

comes from the fact that the standard generators gi ∈ C∗(ZN2 ) = C(ẐN2 ) satisfy:

gi = g∗i , g2
i = 1

Indeed, when rescaling by 1/
√
N , we obtain the relations defining �N . �
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We can now study the quantum symmetry groups G+(�N), and we are led to the quite
surprising conclusion, from [15], that these are the twisted orthogonal groups ŌN :

Theorem 8.8. With ZN2 =< g1, . . . , gN > we have a coaction map

Φ : C∗(ZN2 )→ C(ŌN)⊗ C∗(ZN2 ) , gi →
∑
j

uij ⊗ gj

which makes ŌN the quantum isometry group of the hypercube �N = ẐN2 , as follows:

(1) With �N viewed as an algebraic manifold, �N ⊂ SN−1
R ⊂ SN−1

R,+ .

(2) With �N viewed as a graph, with 2N vertices and 2N−1N edges.
(3) With �N viewed as a metric space, with metric coming from RN .

Proof. Observe first that �N is indeed an algebraic manifold, so (1) as formulated above
makes sense, in the general framework of Proposition 2.23. The cube �N is also a graph,
as indicated, and so (2) makes sense as well, in the framework of Proposition 8.1. Finally,
(3) makes sense as well, because we can define the quantum isometry group of a finite
metric space exactly as for graphs, but with d being this time the distance matrix.

(1) In order for G ⊂ O+
N to act affinely on �N , the variables Gi =

∑
j uij ⊗ gj must

satisfy the same relations as the generators gi ∈ ZN2 . The self-adjointness being automatic,
the relations to be checked are therefore G2

i = 1, GiGj = GjGi. We have:

G2
i =

∑
kl

uikuil ⊗ gkgl = 1 +
∑
k<l

(uikuil + uiluik)⊗ gkgl

[Gi, Gj] =
∑
k<l

(uikujl − ujkuil + uilujk − ujluik)⊗ gkgl

From the first relation we obtain ab = 0 for a 6= b on the same row of u, and by using
the antipode, the same happens for the columns. From the second relation we obtain
[uik, ujl] = [ujk, uil] for k 6= l. Now by applying the antipode we obtain [ulj, uki] = [uli, ukj],
and by relabelling, this gives [uik, ujl] = [uil, ujk] for j 6= i. Thus for i 6= j, k 6= l we must
have [uik, ujl] = [ujk, uil] = 0, and we are therefore led to G ⊂ ŌN , as claimed.

(2) We can use here the fact that the cube �N , when regarded as a graph, is the Cayley
graph of the group ZN2 . The eigenvectors and eigenvalues of �N are as follows:

vi1...iN =
∑
j1...jN

(−1)i1j1+...+iN jNgj11 . . . gjNN

λi1...iN = (−1)i1 + . . .+ (−1)iN

With this picture in hand, and by using Proposition 8.3 and Proposition 8.4 above, the
result follows from the same computations as in the proof of (1). See [15].

(3) Our claim here is that we obtain the same symmetry group as in (2). Indeed,
observe that distance matrix of the cube has a color decomposition as follows:

d = d1 +
√

2d2 +
√

3d3 + . . .+
√
NdN
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Since the powers of d1 can be computed by counting loops on the cube, we have formulae
as follows, with xij ∈ N being certain positive integers:

d2
1 = x211N + x22d2

d3
1 = x311N + x32d2 + x33d3

. . .

dN1 = xN11N + xN2d2 + xN3d3 + . . .+ xNNdN

But this shows that we have < d >=< d1 >. Now since d1 is the adjacency matrix of
�N , viewed as graph, this proves our claim, and we obtain the result via (2). �

Now back to our questions regarding the square, we have G+(�) = Ō2, and this formula
appears as the N = 2 particular case of a general formula, namely G+(�N) = ŌN .

This is quite conceptual, but still not ok. The problem is that we have G(�N) = HN ,
and so for our theory to be complete, we would need a formula of type H+

N = ŌN .
And this latter formula is obviously wrong, because for ŌN the character computations

lead to Gaussian laws, who cannot appear as liberations of the character laws for HN ,
that we have not computed yet, but which can only be something Poisson-related.

Summarizing, the problem of conceptually understanding G(�) remains open. In order
to present now the correct, final solution, the idea will be that to look at the quantum
group G+(| |) instead, which is equal to it, according to Proposition 8.2 (3).

We first have the following result, extending Proposition 8.2 (4) above:

Proposition 8.9. For a disconnected union of graphs we have

G+(X1) ∗̂ . . . ∗̂ G+(Xk) ⊂ G+(X1 t . . . tXk)

and this inclusion is in general not an isomorphism.

Proof. The proof of the first assertion is nearly identical to the proof of Proposition 8.2
(4) above. Indeed, the adjacency matrix of the disconnected union is given by:

dX1t...tXk = diag(dX1 , . . . , dXk)

w = diag(u1, . . . , uk)

We have then dXiui = uidXi , and this implies dw = wd, which gives the result. As for
the last assertion, this is something that we already know, from Proposition 8.6 (2). �

In the case where the graphs X1, . . . , Xk are identical, which is the one that we are
truly interested in, we can further build on this. Let us first recall that we have:

Proposition 8.10. Given closed subgroups G ⊂ U+
N , H ⊂ S+

k , with fundamental corep-
resentations u, v, the following construction produces a closed subgroup of U+

Nk:

C(G o∗ H) = (C(G)∗k ∗ C(H))/ < [u
(a)
ij , vab] = 0 >

In the case where G,H are classical, the classical version of G o∗ H is the usual wreath
product G oH. Also, when G is a quantum permutation group, so is G o∗ H.



QUANTUM GROUPS 123

Proof. Consider indeed the matrix wia,jb = u
(a)
ij vab, over the quotient algebra in the state-

ment. It is routine to check that w is unitary, and in the case G ⊂ S+
N , our claim is that

this matrix is magic. Indeed, the entries are projections, because they appear as products
of commuting projections, and the row and column sums are as follows:∑

ia

wia,jb =
∑
ia

u
(a)
ij vab =

∑
a

vab
∑
i

u
(a)
ij = 1

∑
jb

wia,jb =
∑
jb

u
(a)
ij vab =

∑
b

vab
∑
j

u
(a)
ij = 1

With these observations in hand, it is routine to check that G o∗H is indeed a quantum
group, with fundamental corepresentation w, by constructing maps ∆, ε, S as in Definition
2.1, and in the case G ⊂ S+

N , we obtain in this way a closed subgroup of S+
Nk. Finally, the

assertion regarding the classical version is standard as well. See [41]. �

We refer to [10], [41], [82] for more details regarding the above construction.
With this notion in hand, we can now formulate a non-trivial result, as follows:

Theorem 8.11. Given a connected graph X, and k ∈ N, we have the formulae

G(kX) = G(X) o Sk , G+(kX) = G+(X) o∗ S+
k

where kX = X t . . . tX is the k-fold disjoint union of X with itself.

Proof. The first formula is something well-known, which follows as well from the second
formula, by taking the classical version. Regarding now the second formula, it is quite
elementary to check that we have an inclusion as follows, for any finite graph X:

G+(X) o∗ S+
k ⊂ G+(kX)

Indeed, we want to construct an action G+(X)o∗S+
k y kX, and this amounts in proving

that we have [w, d] = 0. But, the matrices w, d are given by:

wia,jb = u
(a)
ij vab , dia,jb = δijdab

With these formulae in hand, we have the following computations:

(dw)ia,jb =
∑
k

dikwka,jb =
∑
k

diku
(a)
kj vab = (du(a))ijvab

(wd)ia,jb =
∑
k

wia,kbdkj =
∑
k

u
(a)
ik vabdkj = (u(a)d)ijvab

Thus we have [w, d] = 0, and from this we obtain:

G+(X) o∗ S+
k ⊂ G+(kX)



124 TEO BANICA

Regarding now the reverse inclusion, which requires X to be connected, this follows by
doing some matrix analysis, by using the commutation with u. To be more precise, let us
denote by w the fundamental corepresentation of G+(kX), and set:

u
(a)
ij =

∑
b

wia,jb , vab =
∑
i

vab

It is then routine to check, by using the fact that X is indeed connected, that we have
here magic unitaries, as in the definition of the free wreath products. Thus we obtain the
reverse inclusion G+(kX) ⊂ G+(X) o∗ S+

k , and this gives the result.
To be more precise, the key ingredient is the fact that when X is connected, the ∗-

algebra generated by dX contains a matrix having nonzero entries. See [10]. �

We are led in this way to the following result:

Theorem 8.12. Consider the graph consisting of N segments.

(1) Its symmetry group is the hyperoctahedral group HN = Z2 o SN .
(2) Its quantum symmetry group is the quantum group H+

N = Z2 o∗ S+
N .

Proof. Here the first assertion is clear from definitions, with the remark that the relation
with the formula HN = G(�N) comes by viewing the N segments as being the [−1, 1]
segments on each of the N coordinate axes of RN . Indeed, a symmetry of the N -cube is
the same as a symmetry of the N segments, and so G(�N) = Z2 o SN , as desired.

As for the second assertion, this follows from Theorem 8.11 above, applied to the
segment graph. Observe also that (2) implies (1), by taking the classical version. �

Now back to the square, we have G+(�) = H+
2 , and our claim is that this is the

“good” and final formula. In order to prove this, we must work out the easiness theory
for HN , H

+
N , and find a compatibility there. We first have the following result:

Proposition 8.13. The algebra C(H+
N) can be presented in two ways, as follows:

(1) As the universal algebra generated by the entries of a 2N × 2N magic unitary
having the “sudoku” pattern w = (ab

b
a), with a, b being square matrices.

(2) As the universal algebra generated by the entries of a N × N orthogonal matrix
which is “cubic”, in the sense that uijuik = ujiuki = 0, for any j 6= k.

As for C(HN), this has similar presentations, among the commutative algebras.

Proof. Here the first assertion follows from Theorem 8.12, via Proposition 8.10, and the
last assertion is clear as well, because C(HN) is the abelianization of C(H+

N). Thus, we
are left with proving that the algebras As, Ac coming from (1,2) coincide.

We construct first the arrow Ac → As. The elements aij, bij being self-adjoint, their
differences are self-adjoint as well. Thus a − b is a matrix of self-adjoint elements. We
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have the following formula for the products on the columns of a− b:

(a− b)ik(a− b)jk = aikajk − aikbjk − bikajk + bikbjk

=

{
0 for i 6= j

aik + bik for i = j

In the i = j case the elements aik + bik sum up to 1, so the columns of a − b are
orthogonal. A similar computation works for rows, so a− b is orthogonal.

Now by using the i 6= j computation, along with its row analogue, we conclude that
a− b is cubic. Thus we can define a morphism Ac → As by the following formula:

ϕ(uij) = aij − bij
We construct now the inverse morphism. Consider the following elements:

αij =
u2
ij + uij

2
, βij =

u2
ij − uij

2

These are projections, and the following matrix is a sudoku unitary:

M =

(
(αij) (βij)
(βij) (αij)

)
Thus we can define a morphism As → Ac by the following formula:

ψ(aij) =
u2
ij + uij

2
, ψ(bij) =

u2
ij − uij

2

We check now the fact that ψ, ϕ are indeed inverse morphisms:

ψϕ(uij) = ψ(aij − bij) =
u2
ij + uij

2
−
u2
ij − uij

2
= uij

As for the other composition, we have the following computation:

ϕψ(aij) = ϕ

(
u2
ij + uij

2

)
=

(aij − bij)2 + (aij − bij)
2

= aij

A similar computation gives ϕψ(bij) = bij, which completes the proof. �

We can now work out the easiness property of HN , H
+
N , with respect to the cubic

representations, and we are led to the following result, which is fully satisfactory:

Theorem 8.14. The quantum groups HN , H
+
N are both easy, as follows:

(1) HN corresponds to the category Peven.
(2) H+

N corresponds to the category NCeven.

Proof. These assertions follow indeed from the fact that the cubic relations are imple-
mented by the one-block partition in P (2, 2), which generates NCeven. �
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There is a similarity here with the easiness results for permutations and quantum
permutations, obtained in sections 5 and 7 above. In fact, the basic algebraic results
regarding SN , S

+
N and HN , H

+
N appear as the s = 1, 2 particular cases of:

Theorem 8.15. The complex reflection groups Hs
N = Zs o SN and their free analogues

Hs+
N = Zs o∗ S+

N , defined for any s ∈ N, have the following properties:

(1) They have N-dimensional coordinates u = (uij), which are subject to the relations
uiju

∗
ij = u∗ijuij, pij = uiju

∗
ij = magic, and usij = pij.

(2) They are easy, the corresponding categories P s ⊂ P,NCs ⊂ NC being given by
the fact that we have # ◦ −#• = 0(s), as a weighted sum, in each block.

Proof. We already know that the results hold at s = 1, 2, and the proof in general is
similar. With respect to the above proof at s = 2, the situation is as follows:

(1) Observe first that the result holds at s = 1, where we obtain the magic condition,
and at s = 2 as well, where we obtain something equivalent to the cubic condition. In
general, this follows from a Zs-analogue of Proposition 8.13. See [37].

(2) Once again, the result holds at s = 1, trivially, and at s = 2 as well, where our
condition is equivalent to # ◦ +#• = 0(2), in each block. In general, this follows as in
the proof of Theorem 8.14, by using the one-block partition in P (s, s). See [8]. �

The above proof is of course quite brief, but we will not be really interested here in the
case s ≥ 3, which is quite technical. In fact, the above result, dealing with the general
case s ∈ N, is here for providing an introduction to the case s =∞, where we have:

Theorem 8.16. The pure complex reflection groups KN = T oSN and their free analogues
K+
N = T o∗ S+

N have the following properties:

(1) They have N-dimensional coordinates u = (uij), which are subject to the relations
uiju

∗
ij = u∗ijuij and pij = uiju

∗
ij = magic.

(2) They are easy, the corresponding categories Peven ⊂ P,NCeven ⊂ NC being given
by the fact that we have #◦ = #•, as a weighted equality, in each block.

Proof. The assertions here appear as an s =∞ extension of (1,2) in Theorem 8.15 above,
and their proof can be obtained along the same lines, as follows:

(1) This follows indeed by working out a T-analogue of the computations in the proof
of Proposition 8.13 above. We refer here to [8].

(2) Once again, this appears as a s =∞ extension of the results that we already have,
and for details here, we refer once again to [8]. �

The above results at s = 2,∞ are quite interesting for us, because we can now focus
on the quantum reflection groups HN , H

+
N , KN , K

+
N , with the idea in mind of completing

the orthogonal and unitary quantum group picture from section 5 above.
Before doing this, we have two more quantum groups to be introduced and study,

namely the half-liberations H∗N , K
∗
N . We have here the following result:
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Theorem 8.17. We have quantum groups H∗N , K
∗
N , which are both easy, as follows,

(1) H∗N = H+
N ∩O∗N , corresponding to the category P ∗even,

(2) K∗N = K+
N ∩ U∗N , corresponding to the category P∗even,

with the symbol ∗ standing for the fact that the corresponding partitions, when relabelled
clockwise ◦ • ◦ • . . ., must contain the same number of ◦, •, in each block.

Proof. This is standard, from the results that we already have, regarding the various
quantum groups involved, because the interesection operations at the quantum group
level correspond to generation operations, at the category of partitions level. �

We can now complete the “continuous” picture from section 5 above, as follows:

Theorem 8.18. The basic orthogonal and unitary quantum groups are related to the basic
real and complex quantum reflection groups as follows,

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

↔

KN
// K∗N

// K+
N

HN
//

OO

H∗N
//

OO

H+
N

OO

the connecting operations U ↔ K being given by K = U ∩K+
N and U = {K,ON}.

Proof. According to the general results in section 5 above, in terms of categories of par-
titions, the operations introduced in the statement reformulate as follows:

DK =< DU ,NCeven > , DU = DK ∩ P2

On the other hand, by putting together the various easiness results that we have, the
categories of partitions for the quantum groups in the statement are as follows:

P2

��

P∗2oo

��

NC2
oo

��
P2 P ∗2oo NC2

oo

:

Peven

��

P∗evenoo

��

NCevenoo

��
Peven P ∗evenoo NCevenoo

It is elementary to check that these categories are related by the above intersection and
generation operations, and we conclude that the correspondence holds indeed. �

All this looks quite conceptual, but as a word of warning here, for more complicated
intermediate liberations, such as those found in [71], [78], the problem of establishing
correspondences is quite complicated. We will comment on this in section 9 below.
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Our purpose now will be that of showing that a twisted analogue of the above result
holds, with the quantum unitary groups being those in section 5 above, and with the
quantum reflection groups being equal to their own Schur-Weyl twists.

It is convenient to include in our discussion two more important quantum groups,

coming from [25], [78] and denoted H
[∞]
N , K

[∞]
N , which are constructed as follows:

Theorem 8.19. We have intermediate liberations H
[∞]
N , K

[∞]
N as follows, constructed by

using the relations αβγ = 0, for any a 6= c on the same row or column of u,

KN
// K∗N

// K
[∞]
N

// K+
N

HN
//

OO

H∗N
//

OO

H
[∞]
N

//

OO

H+
N

OO

with the convention α = a, a∗, and so on. These quantum groups are easy, the correspond-

ing categories P
[∞]
even ⊂ Peven and P [∞]

even ⊂ Peven being generated by η = ker(iijjii).

Proof. This is routine, by using the fact that the relations αβγ = 0 in the statement are
equivalent to the condition η ∈ End(u⊗k), with |k| = 3. We refer here to [25], [78]. �

In order to discuss the twisting, we will need the following technical result:

Proposition 8.20. We have the following equalities,

P ∗even =
{
π ∈ Peven

∣∣∣ε(τ) = 1,∀τ ≤ π, |τ | = 2
}

P [∞]
even =

{
π ∈ Peven

∣∣∣σ ∈ P ∗even,∀σ ⊂ π
}

P [∞]
even =

{
π ∈ Peven

∣∣∣ε(τ) = 1,∀τ ≤ π
}

where ε : Peven → {±1} is the signature of even permutations.

Proof. This is routine combinatorics, from [5], [78], the idea being as follows:
(1) Given π ∈ Peven, we have τ ≤ π, |τ | = 2 precisely when τ = πβ is the partition

obtained from π by merging all the legs of a certain subpartition β ⊂ π, and by merging
as well all the other blocks. Now observe that πβ does not depend on π, but only on
β, and that the number of switches required for making πβ noncrossing is c = N• − N◦
modulo 2, where N•/N◦ is the number of black/white legs of β, when labelling the legs
of π counterclockwise ◦ • ◦ • . . . Thus ε(πβ) = 1 holds precisely when β ∈ π has the same
number of black and white legs, and this gives the result.

(2) This simply follows from the equality P
[∞]
even =< η > coming from Theorem 8.19, by

computing < η >, and for the complete proof here we refer to [78].
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(3) We use here the fact, also from [78], that the relations gigigj = gjgigi are trivially
satisfied for real reflections. This leads to the following conclusion:

P [∞]
even(k, l) =

{
ker

(
i1 . . . ik
j1 . . . jl

) ∣∣∣gi1 . . . gik = gj1 . . . gjl inside Z∗N2
}

In other words, the partitions in P
[∞]
even are those describing the relations between free

variables, subject to the conditions g2
i = 1. We conclude that P

[∞]
even appears from NCeven

by “inflating blocks”, in the sense that each π ∈ P [∞]
even can be transformed into a partition

π′ ∈ NCeven by deleting pairs of consecutive legs, belonging to the same block.
Now since this inflation operation leaves invariant modulo 2 the number c ∈ N of

switches in the definition of the signature, it leaves invariant the signature ε = (−1)c

itself, and we obtain in this way the inclusion “⊂” in the statement.
Conversely, given π ∈ Peven satisfying ε(τ) = 1, ∀τ ≤ π, our claim is that:

ρ ≤ σ ⊂ π, |ρ| = 2 =⇒ ε(ρ) = 1

Indeed, let us denote by α, β the two blocks of ρ, and by γ the remaining blocks of
π, merged altogether. We know that the partitions τ1 = (α ∧ γ, β), τ2 = (β ∧ γ, α),
τ3 = (α, β, γ) are all even. On the other hand, putting these partitions in noncrossing
form requires respectively s+ t, s′+ t, s+s′+ t switches, where t is the number of switches
needed for putting ρ = (α, β) in noncrossing form. Thus t is even, and we are done.

With the above claim in hand, we conclude, by using the second equality in the state-

ment, that we have σ ∈ P ∗even. Thus we have π ∈ P [∞]
even, which ends the proof of “⊃”. �

With the above result in hand, we can now prove:

Theorem 8.21. We have the following results:

(1) The quantum groups from Theorem 8.19 are equal to their own twists.
(2) With input coming from this, a twisted version of Theorem 8.18 holds.

Proof. This result, established in [5], basically comes from the results that we have.
(1) In the real case, the verifications are as follows:
– H+

N . We know from Proposition 5.26 above that for π ∈ NCeven we have T̄π = Tπ,
and since we are in the situation D ⊂ NCeven, the definitions of G, Ḡ coincide.

– H
[∞]
N . Here we can use the same argument as in (1), based this time on the description

of P
[∞]
even involving the signature found in Proposition 8.20.

– H∗N . We have H∗N = H
[∞]
N ∩ O∗N , so H̄∗N ⊂ H

[∞]
N is the subgroup obtained via the

defining relations for Ō∗N . But all the abc = −cba relations defining H̄∗N are automatic,

of type 0 = 0, and it follows that H̄∗N ⊂ H
[∞]
N is the subgroup obtained via the relations

abc = cba, for any a, b, c ∈ {uij}. Thus we have H̄∗N = H
[∞]
N ∩O∗N = H∗N , as claimed.

– HN . We have HN = H∗N ∩ ON , and by functoriality, H̄N = H̄∗N ∩ ŌN = H∗N ∩ ŌN .
But this latter intersection is easily seen to be equal to HN , as claimed.
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In the complex case the proof is similar, and we refer here to [5].
(2) This can be proved by proceeding as in the proof of Theorem 8.18 above, with of

course some care when formulating the result. Once again, we refer here to [5]. �

Let us go back now to the free examples H+
N , K

+
N , or rather to the whole series Hs+

N ,
with s ∈ {1, 2, . . . ,∞} and work out the fusion rules, and the probabilistic aspects.

Regarding the fusion rules, one can prove that the irreducible representations of Hs+
N

can be labeled rx, with x being a word over Zs, such that the fusion rules are:

rx ⊗ ry =
∑

x=vz,y=z̄w

rvw + rv·w

Observe that at s = 1 we have here, modulo some indentifications, the Clebsch-Gordan
rules for S+

N . In general, all this is quite technical, and we refer here to [36].
Regarding the probabilistic aspects, we will need some general theory. We have the

following definition, extending the Poisson limit theory from section 6 above:

Definition 8.22. Associated to any compactly supported positive measure ρ on R are the
probability measures

pρ = lim
n→∞

((
1− c

n

)
δ0 +

1

n
ρ

)∗n
, πρ = lim

n→∞

((
1− c

n

)
δ0 +

1

n
ρ

)�n

where c = mass(ρ), called compound Poisson and compound free Poisson laws.

In what follows we will be interested in the case where ρ is discrete, as is for instance
the case for ρ = δt with t > 0, which produces the Poisson and free Poisson laws.

The following result allows one to detect compound Poisson/free Poisson laws:

Proposition 8.23. For ρ =
∑s

i=1 ciδzi with ci > 0 and zi ∈ R, we have

Fpρ(y) = exp

(
s∑
i=1

ci(e
−iyzi − 1)

)
, Rπρ(y) =

s∑
i=1

cizi
1− yzi

where F,R denote respectively the Fourier transform, and Voiculescu’s R-transform.

Proof. Let µn be the measure appearing in Definition 8.22, under the convolution signs.
In the classical case, we have the following computation, with Fδz(y) = e−iyz:

Fµn(y) =
(

1− c

n

)
+

1

n

s∑
i=1

cie
−iyzi =⇒ Fµ∗nn (y) =

((
1− c

n

)
+

1

n

s∑
i=1

cie
−iyzi

)n

=⇒ Fpρ(y) = exp

(
s∑
i=1

ci(e
−iyzi − 1)

)
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In the free case now, we use a similar method. First, we have:

fµn(y) =
(

1− c

n

)
+

1

n

s∑
i=1

ci
1− ziy

=⇒ Gµn(ξ) =
(

1− c

n

) 1

ξ
+

1

n

s∑
i=1

ci
ξ − zi

=⇒ y =
(

1− c

n

) 1

Kµn(y)
+

1

n

s∑
i=1

ci
Kµn(y)− zi

Now since Kµn(y) = y−1 +Rµn(y) = y−1 +R/n, where R = Rµ�nn
(y), we get:

y =
(

1− c

n

) 1

y−1 +R/n
+

1

n

s∑
i=1

ci
y−1 +R/n− zi

=⇒ 1 =
(

1− c

n

) 1

1 + yR/n
+

1

n

s∑
i=1

ci
1 + yR/n− yzi

Now multiplying by n, rearranging the terms, and letting n→∞, we get:

c+ yR

1 + yR/n
=

s∑
i=1

ci
1 + yR/n− yzi

=⇒ c+ yRπρ(y) =
s∑
i=1

ci
1− yzi

=⇒ Rπρ(y) =
s∑
i=1

cizi
1− yzi

This finishes the proof in the free case, and we are done. �

We have as well the following result, providing an alternative to Definition 8.22:

Theorem 8.24. For ρ =
∑s

i=1 ciδzi with ci > 0 and zi ∈ R, we have

pρ/πρ = law

(
s∑
i=1

ziαi

)
where the variables αi are Poisson/free Poisson(ci), independent/free.

Proof. Let α be the sum of Poisson/free Poisson variables in the statement. We will show
that the Fourier/R-transform of α is given by the formulae in Proposition 8.23.

Indeed, by using some well-known Fourier transform formulae, we have:

Fαi(y) = exp(ci(e
−iy − 1)) =⇒ Fziαi(y) = exp(ci(e

−iyzi − 1))

=⇒ Fα(y) = exp

(
s∑
i=1

ci(e
−iyzi − 1)

)



132 TEO BANICA

Also, by using some well-known R-transform formulae, we have:

Rαi(y) =
ci

1− y
=⇒ Rziαi(y) =

cizi
1− yzi

=⇒ Rα(y) =
s∑
i=1

cizi
1− yzi

Thus we have indeed the same formulae as those in Proposition 8.23. �

We can go back now to quantum reflection groups, and we have:

Theorem 8.25. The asymptotic laws of truncated characters are as follows, where εs
with s ∈ {1, 2, . . . ,∞} is the uniform measure on the s-th roots of unity:

(1) For Hs
N we obtain the compound Poisson law bst = ptεs.

(2) For Hs+
N we obtain the compound free Poisson law βst = πtεs.

These measures are in Bercovici-Pata bijection.

Proof. This follows from easiness, and from the Weingarten formula. To be more precise,
at t = 1 this follows by counting the partitions, and at t ∈ (0, 1] general, this follows in
the usual way, for instance by using cumulants. For details here, we refer to [8]. �

There are many interesting probabilistic aspects here, that we will not get into. Con-
sider indeed the Bessel function of the first kind:

fk(t) =
∞∑
p=0

t|k|+2p

(|k|+ p)!p!

By doing some computations, one can show that the measure bt in the above statement,
appearing at s = 2, is given by the following formula:

bt = e−t
∞∑

k=−∞

δk fk(t/2)

The measure βt has remarkable properties as well. For instance the odd moments
vanish, and the even moments involve the Fuss-Narayana numbers:∫

R
x2k dβt(x) =

k∑
b=1

1

b

(
k − 1

b− 1

)(
2k

b− 1

)
tb

There are also some interesting results about βt involving the multiplicative free con-
volution � from [87]. All this is quite technical, and we refer here to [8].
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9. Classification results

We discuss here classification questions for the closed subgroups GN ⊂ U+
N , in the easy

case, and beyond. There has been a lot of work on the subject, and our objective will be
that of presenting a few basic results, with proofs, along with some discussion.

We have already met a number of easy quantum groups, as follows:

Proposition 9.1. We have the following basic examples of easy quantum groups:

(1) Unitary quantum groups: ON , O
∗
N , O

+
N , UN , U

∗
N , U

+
N .

(2) Bistochastic versions: BN , B
+
N , CN , C

+
N .

(3) Quantum permutation groups: SN , S
+
N .

(4) Quantum reflections: HN , H
∗
N , H

+
N , KN , K

∗
N , K

+
N .

Proof. This is something that we already know, the partitions being as follows:
(1) P2, P

∗
2 , NC2,P2,P∗2 ,NC2.

(2) P12, NC12,P12,NC12.
(3) P,NC.
(4) Peven, P

∗
even, NCeven,Peven,P∗even,NCeven. �

In addition to the above list, we have the quantum groups Hs
N , H

s+
N with 3 ≤ s < ∞,

as well as the related series Hs∗
N = Hs+

N ∩ U∗N . Further examples can be constructed via
free complexification, or via operations of type GN → Zr × GN , or GN → ZrGN , with
r ∈ {2, 3, . . . ,∞}. There are as well many “exotic” intermediate liberation procedures,
involving relations far more complicated than the half-commutation ones abc = cba.

All this makes the classification question particularly difficult. So, our first task in
what follows will be that of cutting a bit from complexity, by adding some extra axioms,
chosen as “natural” as possible. A first such axiom, very natural, is as follows:

Proposition 9.2. For an easy quantum group G = (GN), coming from a category of
partitions D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ U+
N−1, via the embedding U+

N−1 ⊂ U+
N given by u→ diag(u, 1).

(2) GN−1 = GN ∩ U+
N−1, via the N possible diagonal embeddings U+

N−1 ⊂ U+
N .

(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (GN) is “uniform”.

Proof. We use here the general theory from section 5 above.
(1) ⇐⇒ (2) This is something standard, coming from the inclusion SN ⊂ GN , which

makes everything SN -invariant. The result follows as well from the proof of (1) ⇐⇒ (3)
below, which can be converted into a proof of (2) ⇐⇒ (3), in the obvious way.

(1) ⇐⇒ (3) Given a subgroup K ⊂ U+
N−1, with fundamental corepresentation u,

consider the N ×N matrix v = diag(u, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(v⊗k) ⇐⇒ ξπ′ ∈ Fix(v⊗k
′
), ∀π′ ∈ P (k′), π′ ⊂ π
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In order to prove this, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k) ⇐⇒ (v⊗kξπ)i1...ik = (ξπ)i1...ik ,∀i
⇐⇒

∑
j

(v⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)vi1j1 . . . vikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our corepresentation has the special form v = diag(u, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we must have:

ia = N =⇒ ja = N

With this observation in hand, if we denote by i′, j′ the multi-indices obtained from i, j
obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common length
of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(v
⊗k′)i′j′ = δπ(i1, . . . , ik),∀i

Here the index j is by definition obtained from j′ by filling with N values. In order to
finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j′1, . . . , j
′
k′)(v

⊗k′)i′j′ = δπ(i′1, . . . , i
′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads:

0 = 0

Thus, we are led to ξπ′ ∈ Fix(v⊗k
′
), for any subpartition π′ ⊂ π, as claimed.

Now with this claim in hand, the result follows from Tannakian duality. �

At the level of the basic examples, from Proposition 9.1 above, the classical and free
quantum groups are uniform, while the half-liberations are not. This can be seen either
with categories of partitions, or with intersections, the point in the half-classical case
being that the relations abc = cba, when applied to the coefficients of a matrix of type
v = diag(u, 1), collapse with c = 1 to the usual commutation relations ab = ba.

For classification purposes the uniformity axiom is something very natural and useful,
substantially cutting from complexity, and we have the following result, from [35]:
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Theorem 9.3. The classical and free uniform orthogonal easy quantum groups, with
inclusions between them, are as follows:

H+
N

// O+
N

S+
N

//

>>

B+
N

>>

HN
//

OO

ON

OO

SN

OO

==

// BN

OO

<<

Moreover, this is an intersection/easy generation diagram, in the sense that for any of its
square subdiagrams P ⊂ Q,R ⊂ S we have P = Q ∩R and {Q,R} = S.

Proof. We know that the quantum groups in the statement are indeed easy and uniform,
the corresponding categories of partitions being as follows:

NCeven

}}

��

NC2

~~

oo

��

NC

��

NC12

��

oo

Peven

}}

P2

~~

oo

P P12
oo

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated.

Regarding now the classification, consider an easy quantum group SN ⊂ GN ⊂ ON .
This most come from a category P2 ⊂ D ⊂ P , and by doing some combinatorics, we
can see that D is uniquely determined by the subset L ⊂ N consisting of the sizes of the
blocks of the partitions in D, with the admissible sets being as follows:

(1) L = {2}, producing ON .
(2) L = {1, 2}, producing BN .
(3) L = {2, 4, 6, . . .}, producing HN .
(4) L = {1, 2, 3, . . .}, producing SN .

In the free case, S+
N ⊂ GN ⊂ O+

N , the situation is quite similar, the admissible sets
being once again the above ones, producing this time O+

N , B
+
N , H

+
N , S

+
N . See [35]. �
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The above proof is of course quite brief, but we will not be really interested here in
the classification of the uniform easy quantum groups, which is a quite technical topic.
Let us mention, however, that there are two important known extensions of Theorem 9.3,
concerning the general orthogonal case, and the classical/free unitary case. The results
here come from [78], [83], by imposing the uniformity axiom, which makes a big cleanup,
basically leading to cubes as above, with a few more objects added. See [5], [6].

The problem with all this, indeed, comes from the following negative result:

Proposition 9.4. The cubic diagram from Theorem 9.3, and its unitary analogue,

K+
N

// U+
N

S+
N

//

>>

C+
N

>>

KN
//

OO

UN

OO

SN

OO

==

// CN

OO

==

cannot be merged, without degeneration, into a 4-dimensional cubic diagram.

Proof. All this is a bit philosophical, with the problem coming from the “taking the
bistochastic version” operation, and more specifically, from the following equalities:

HN ∩ CN = KN ∩ CN = SN

Indeed, these equalities do hold, and so the 3D cube obtained by merging the classical
faces of the orthogonal and unitary cubes is something degenerate, as follows:

KN
// UN

SN //

==

CN

<<

HN
//

OO

ON

OO

SN

OO

==

// BN

OO

<<

Thus, the 4D cube, having this 3D cube as one of its faces, is degenerate too. �

Summarizing, when positioning ourselves at U+
N , we have 4 natural directions to be

followed, namely taking the classical, discrete, real and bistochastic versions. And the
problem is that, while the first three operations are “good”, the fourth one is “bad”.
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This is not very good news. In order to fix this, we will have to slash the bistochastic
qauntum groups BN , B

+
N , CN , C

+
N , which after all is not a problem, but we will have to

slash as well the quantum permutation groups SN , S
+
N , that we definitely love.

This is life. In order to formulate now our second general axiom, doing the job, consider
the cube TN = ZN2 , regarded as diagonal torus of ON . We have then:

Proposition 9.5. For an easy quantum group G = (GN), coming from a category of
partitions D ⊂ P , the following conditions are equivalent:

(1) TN ⊂ GN .
(2) HN ⊂ GN .
(3) D ⊂ Peven.

If these conditions are satisfied, we say that GN is “twistable”.

Proof. We use the general theory from section 5 above.
(1) ⇐⇒ (2) Here it is enough to check that the easy envelope T ′N of the cube equals

the hyperoctahedral group HN . But this follows from:

T ′N =< TN , SN >′= H ′N = HN

(2) ⇐⇒ (3) This follows by functoriality, from the fact that HN comes from the
category of partitions Peven, that we know from section 8 above. �

The teminology in the above result comes from the fact that, assuming D ⊂ Peven, we
can indeed twist GN , into a certain quizzy quantum group ḠN . We refer to section 5
above to full details regarding the construction GN → ḠN . In what follows we will not
need this twisting procedure, and we will just use Proposition 9.5 as it is, as a statement
providing us with a simple and natural condition to be imposed on GN .

In practice now, imposing this second axiom leads to something nice, namely:

Theorem 9.6. The basic quantum unitary and quantum reflection groups, from Proposi-
tion 9.1 above, which are uniform and twistable, are as follows,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

and this is an intersection and easy generation diagram.
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Proof. The first assertion comes from discussion after Proposition 9.2, telling us that the
uniformity condition eliminates O∗N , U

∗
N , H

∗
N , K

∗
N , and from the fact that the twistability

condition eliminates BN , B
+
N , CN , C

+
N and SN , S

+
N . Thus, we are left with the 8 quantum

groups in the statement, which are indeed easy, coming from the following categories:

NCeven

{{

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

{{

P2

��

oo

Peven P2
oo

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated. �

Let us explore now the general case, where we have an arbitrary uniform and twistable
easy quantum group. Such a quantum group appears by definition as follows:

HN ⊂ GN ⊂ U+
N

Thus, our quantum group can be imagined as sitting inside the above cube. The point
now is that, by using the operations ∩ and { , }, we can in principle “project” it on the
faces and edges of the cube, and then use some kind of 3D orientation coming from this,
in order to deduce some structure and classification results. This will be our plan.

In order to clarify now all this, let us start with the following definition:

Definition 9.7. Associated to any easy quantum group HN ⊂ GN ⊂ U+
N are its classical,

discrete and real versions, given by

Gc
N = GN ∩ UN , Gd

N = GN ∩K+
N , Gr

N = GN ∩O+
N

as well as its free, smooth and unitary versions, given by

Gf
N = {GN , H

+
N} , Gs

N = {GN , ON} , Gu
N = {GN , KN}

where ∩ and { , } are respectively the intersection and easy generation operations.

In this definition the classical, real and unitary versions are something quite standard.
Regarding now the discrete and smooth versions, here we have no abstract justification for
our terminology, due to the fact that easy quantum groups do not have known differential
geometry. However, in the classical case, where GN ⊂ UN , our constructions produce
indeed discrete and smooth versions, and this is where our terminology comes from.

Finally, regarding the free version, this is something quite subtle. The various results
that we have so far show that the liberation operation GN → G+

N usually appears via the
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formula G+
N = {GN , S

+
N}, which expresses the fact that the category of partitions of G+

N

is obtained from the one of GN by removing the crossings. But in the twistable setting,
where HN ⊂ GN , this is the same as setting G+

N = {GN , H
+
N}. All this is of course a bit

approximative, and this is why we use f , and keep + for rock-solid liberations.
In relation now with our questions, and our 3D plan, we can now formulate:

Proposition 9.8. Given an intermediate quantum group HN ⊂ GN ⊂ U+
N , we have a

diagram of closed subgroups of U+
N , obtained by inserting

Gf
N

Gu
N

Gd
N

// GN
//

OO

;;

Gs
N

Gr
N

;;

Gc
N

OO
//

K+
N

// U+
N

H+
N

//

==

O+
N

==

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

in the obvious way, with each Gx
N belonging to the main diagonal of each face.

Proof. The fact that we have indeed the diagram of inclusions on the left is clear from
Definition 9.7. Regarding now the insertion procedure, consider any of the faces of the
cube, P ⊂ Q,R ⊂ S. Our claim is that the corresponding quantum group G = Gx

N can
be inserted on the corresponding main diagonal P ⊂ S, as follows:

Q // S

G

??

P //

OO

??

R

OO

We have to check here a total of 6 × 2 = 12 inclusions. But, according to Definition
9.7, these inclusions to be checked are as follows:

(1) HN ⊂ Gc
N ⊂ UN , where Gc

N = GN ∩ UN .
(2) HN ⊂ Gd

N ⊂ K+
N , where Gd

N = GN ∩K+
N .

(3) HN ⊂ Gr
N ⊂ O+

N , where Gr
N = GN ∩O+

N .

(4) H+
N ⊂ Gf

N ⊂ U+
N , where Gf

N = {GN , H
+
N}.

(5) ON ⊂ Gs
N ⊂ U+

N , where Gs
N = {GN , ON}.

(6) KN ⊂ Gu
N ⊂ U+

N , where Gu
N = {GN , KN}.

All these statements being trivial from the definition of ∩ and { , }, and from our
assumption HN ⊂ GN ⊂ U+

N , our insertion procedure works indeed, and we are done. �
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In order now to complete the diagram, we have to project as well GN on the edges of
the cube. For this purpose we can basically assume, by replacing GN with each of its 6
projections on the faces, that GN actually lies on one of the six faces.

The technical result that we will need here is as follows:

Proposition 9.9. Given an intersection and easy generation diagram P ⊂ Q,R ⊂ S and
an intermediate easy quantum group P ⊂ G ⊂ S, we have a diagram as follows:

Q // {G,Q} // S

G ∩Q

OO

// G //

OO

{G,R}

OO

P //

OO

G ∩R

OO

// R

OO

In addition, G “slices the square”, in the sense that this is an intersection and easy
generation diagram, precisely when G = {G ∩Q,G ∩R} and G = {G,Q} ∩ {G,R}.

Proof. This is indeed clear from definitions, because the intersection and easy generation
conditions are automatic for the upper left and lower right squares, and so are half of
the intersection and easy generation conditions for the lower left and upper right squares.
Thus, we are left with two conditions only, which are those in the statement. �

Now back to 3 dimensions, and to the cube, we have the following result:

Proposition 9.10. Assuming that HN ⊂ GN ⊂ U+
N satisfies the conditions

Gcs
N = Gsc

N , Gcu
N = Guc

N , Gdf
N = Gfd

N

Gdu
N = Gud

N , Grf
N = Gfr

N , Grs
N = Gsr

N

the diagram in Proposition 9.8 can be completed, via the construction in Proposition 9.9,
into a diagram dividing the cube along the 3 coordinates axes, into 8 small cubes.

Proof. We have to prove that the 12 projections on the edges are well-defined, with the
problem coming from the fact that each of these projections can be defined in 2 possible
ways, depending on the face that we choose first. The verification goes as follows:

(1) Regarding the 3 edges emanating from HN , the result here follows from the following
formulae, which are all trivial, of type (G ∩Q) ∩R = (G ∩R) ∩Q = G ∩ P :

Gcd
N = Gdc

N = GN ∩KN

Gcr
N = Grc

N = GN ∩ON

Gdr
N = Grd

N = GN ∩H+
N
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(2) Regarding the 3 edges landing into U+
N , the result here follows from the following

formulae, which are again trivial, of type {{G,Q}, R} = {{G,R}, Q} = {G,S}:

Gfs
N = Gsf

N = {GN , O
+
N}

Gfu
N = Guf

N = {GN , K
+
N}

Gsu
N = Gus

N = {GN , UN}
(3) Finally, regarding the remaining 6 edges, not emanating from HN or landing into

U+
N , here the result follows from our assumptions in the statement. �

We are not done yet (!) because nothing guarantees that we obtain in this way an
intersection and easy generation diagram. So, we must add more axioms, as follows:

Theorem 9.11. Assume that HN ⊂ GN ⊂ U+
N satisfies the following conditions, where

by “intermediate” we mean in each case “parallel to its neighbors”:

(1) The 6 compatibility conditions in Proposition 9.10 above,

(2) Gc
N , GN , G

f
N slice the classical/intermediate/free faces,

(3) Gd
N , GN , G

s
N slice the discrete/intermediate/smooth faces,

(4) Gr
N , GN , G

u
N slice the real/intermediate/unitary faces,

Then GN “slices the cube”, in the sense that the diagram obtained in Proposition 9.10
above is an intersection and easy generation diagram.

Proof. This follows indeed from Proposition 9.9 and Proposition 9.10 above. �

All this is of course quite theoretical, and might actually seem to be on the verge of
insanity. Indeed, we are asking here for a total of 6 × 4 = 24 conditions to be satisfied.
For the moment, let us not bother with all this, and start the classification work.

It is quite clear that GN can be reconstructed from its edge projections, so in order to
do the classification, we first need a “coordinate system”. Common sense would suggest to
use the one emanating from HN , or perhaps the one landing into U+

N . However, technically
speaking, best is to use the coordinate system based at ON , highlighted below:

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

+3 ON

KS

8@

This choice comes from the fact that the classification result for ON ⊂ O+
N , explained

below, is something very simple. And this is not the case with the results for HN ⊂ H+
N



142 TEO BANICA

and for UN ⊂ U+
N , from [71], [78] which are quite complicated, with uncountably many

solutions, in the general non-uniform case. As for the result for KN ⊂ K+
N , this is not

available yet, but it is known that there are uncountably many solutions here as well.
So, here is now the key result, from [37], dealing with the vertical direction:

Theorem 9.12. There is only one proper intermediate easy quantum group

ON ⊂ GN ⊂ O+
N

namely the quantum group O∗N , which is not uniform.

Proof. We must compute here the categories of pairings NC2 ⊂ D ⊂ P2, and this can be
done via some standard combinatorics, in three steps, as follows:

(1) Let π ∈ P2 −NC2, having s ≥ 4 strings. Our claim is that:
– If π ∈ P2 − P ∗2 , there exists a semicircle capping π′ ∈ P2 − P ∗2 .
– If π ∈ P ∗2 −NC2, there exists a semicircle capping π′ ∈ P ∗2 −NC2.
Indeed, both these assertions can be easily proved, by drawing pictures.
(2) Consider now a partition π ∈ P2(k, l)−NC2(k, l). Our claim is that:
– If π ∈ P2(k, l)− P ∗2 (k, l) then < π >= P2.
– If π ∈ P ∗2 (k, l)−NC2(k, l) then < π >= P ∗2 .
This can be indeed proved by recurrence on the number of strings, s = (k + l)/2, by

using (1), which provides us with a descent procedure s→ s− 1, at any s ≥ 4.
(3) Finally, assume that we are given an easy quantum group ON ⊂ G ⊂ O+

N , coming
from certain sets of pairings D(k, l) ⊂ P2(k, l). We have three cases:

– If D 6⊂ P ∗2 , we obtain G = ON .
– If D ⊂ P2, D 6⊂ NC2, we obtain G = O∗N .
– If D ⊂ NC2, we obtain G = O+

N .
Thus, we have proved the uniquess result. As for the non-uniformity of the unique

solution, O∗N , this is something that we already know, from Theorem 9.6 above. �

The above result is something quite remarkable, and it is actually believed that the
result could still hold, without the easiness assumption. We refer here to [16].

As already mentioned, the related inclusions HN ⊂ H+
N and UN ⊂ U+

N , studied in [71]
and [78], are far from being maximal, having uncountably many intermediate objects,
and the same is known to hold for KN ⊂ K+

N . There are many interesting open questions
here. It is conjectured for instance that there should be a contravariant duality H×N ↔ U×N ,
mapping the family and series from [78] to the series and family from [83].

Here is now another basic result that we will need, in order to perform our classification
work here, dealing this time with the “discrete vs. continuous” direction:

Theorem 9.13. There are no proper intermediate easy groups

HN ⊂ GN ⊂ ON

except for HN , ON themselves.
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Proof. We must prove that there are no proper intermediate categories P2 ⊂ D ⊂ Peven.
But this can done via some combinatorics, in the spirit of the proof of Theorem 9.12, and
with the idea of the proof of Theorem 9.3 in mind. For full details here, see [35]. �

As a comment here, the inclusion H+
N ⊂ O+

N is maximal as well, as explained once again
in [35]. As for the complex versions of these results, regarding the inclusions KN ⊂ UN
and K+

N ⊂ U+
N , here the classification, in the non-uniform case, is available from [83].

Summarizing, we have here once again something very basic and fundamental, providing
some evidence for a kind of general “discrete vs. continuous” dictotomy.

Finally, here is a third and last result that we will need, for our classification work here,
regarding the missing direction, namely the “real vs. complex” one:

Theorem 9.14. The proper intermediate easy groups

ON ⊂ GN ⊂ UN

are the groups ZrON with r ∈ {2, 3, . . . ,∞}, which are not uniform.

Proof. We must compute here the intermediate categories P2 ⊂ D ⊂ P2. If we pick π ∈ D,
assumed to be flat, we can first cap all mixed-colored semicircles, and then pair the black
and white semicircles, as to assume that π consists only of black or white semicircles. But
the number of these semicircles gives the parameter r. For details here, see [83]. �

Once again, there are many comments that can be made here, with the whole subject
in the easy case being generally covered by the classification results in [83]. As for the
non-easy case, there are many interesting things here as well, as for instance the results
in [16], stating that PON ⊂ PUN , and TON ⊂ UN as well, are maximal.

We can now formulate a nice classification result, as follows:

Theorem 9.15 (Ground zero). There are exactly eight closed subgroups GN ⊂ U+
N having

the following properties,

(1) Easiness,
(2) Uniformity,
(3) Twistability,
(4) Slicing property,

namely the quantum groups ON , UN , HN , KN and O+
N , U

+
N , H

+
N , K

+
N .

Proof. This follows indeed from Theorem 9.12, Theorem 9.13 and Theorem 9.14, which
show that the edge projections of GN must be among the vertices of the cube. By using
the slicing axiom, we deduce from this that GN itself must be a vertex of the cube. �

All this is quite philosophical. Bluntly put, by piling up a number of very natural
axioms, namely those of Woronowicz from [98], then our assumption S2 = id, and then
the easiness, uniformity, twistability, and slicing properties, we have managed to destroy
everything, or almost. The casualities include lots of interesting finite and compact Lie
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groups, the duals of all finitely generated discrete groups, plus of course lots of interesting
quantum groups, which appear not to be strong enough to survive our axioms.

With this job done, let us try now to build something new, and more powerful, on top
of this. In order to do so, let us first examine Theorem 9.15, as it is. The easiness property
there is definitely something quite heavy. But so is the slicing axiom too, at least in our
formulation, from Theorem 9.11 above, which looks written a bit in a hurry.

In order to fix this, and reach to a more powerful 3D axiom, the idea will be that of
looking at only 2 of the 6 cubes producing the slicing, namely the lower cube, based at
HN , and the upper cube, based at U+

N . To be more precise, we have:

Definition 9.16. An easy quantum group HN ⊂ GN ⊂ U+
N is called “bi-oriented” if

Gd
N

// GN

Gdr
N

//

==

Gr
N

==

Gcd
N

//

OO

Gc
N

OO

HN

OO

==

// Gcr
N

OO

==

:

Gfu
N

// U+
N

Gf
N

//

==

Gsf
N

==

Gu
N

//

OO

Gsu
N

OO

GN

OO

<<

// Gs
N

OO

<<

are both intersection and easy generation diagrams.

Observe that the diagram on the left is automatically an intersection diagram, and that
the diagram on the right is automatically an easy generation diagram.

The question of replacing the slicing axiom in Theorem 9.15 with the bi-orientability
condition makes sense. In fact, we can even talk about weaker axioms, as follows:

Definition 9.17. An easy quantum group HN ⊂ GN ⊂ U+
N is called “oriented” if

GN = {Gcd
N , G

cr
N , G

dr
N } , GN = Gfs

N ∩G
fu
N ∩G

su
N

and “weakly oriented” if the following weaker conditions hold,

GN = {Gc
N , G

d
N , G

r
N} , GN = Gf

N ∩G
s
N ∩Gu

N

where the various versions are those in Definition 9.7 above.

Here, and in Definition 9.16 as well, the terminology comes from the fact that any GN

not satisfying the assumptions looks a bit “disoriented” inside the cube.
In order to prove now the uniqueness result, in the bi-orientable case, we can still

proceed as in the proof of Theorem 9.15, but we are no longer allowed to use the coordinate
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system there, based at ON . To be more precise, we must use the 2 coordinate systems
highlighted below, both taken in some weak sense, weaker than the slicing:

K+
N

+3 U+
N

H+
N

//

==

O+
N

:B

KN
//

OO

UN

KS

HN

KS

8@

+3 ON

OO

<<

Skipping some details here, all this seems to be doable, by using the known “edge

results” surveyed above, and with the key fact being that the quantum group H
[∞]
N from

[78] has no orthogonal counterpart. Thus, we obtain in principle some improvements
of Theorem 9.15, under the bi-orientability assumption, and more generally under the
orientability assumption. As for the weak orientability assumption, the situation here is
more tricky, because we would need “face results”, which are not available yet.

Let us discuss now the general, non-easy case. This is in fact the point where we wanted
to get, with all that follows being the main motivation for Theorem 9.15 above.

We must first find extensions of the notions of uniformity, twistability and orientability.
Regarding the uniformity, the situation here is as follows:

Definition 9.18. A series G = (GN) of closed subgroups GN ⊂ U+
N is called:

(1) Weakly uniform, if GN−1 = GN ∩ U+
N−1 for any N ∈ N, with respect to the

embedding U+
N−1 ⊂ U+

N given by u→ diag(u, 1).
(2) Uniform, if GN−1 = GN ∩ U+

N−1 for any N ∈ N, with respect to the N possible
embeddings U+

N−1 ⊂ U+
N , of type u→ diag(u, 1).

Observe the difference with what happens in the easy case, from Proposition 9.2, where
these two conditions are equivalent. In what follows we will use the condition (2) here,
for classification purposes, but we will need as well (1) later on, in section 10 below.

Regarding now the examples, in the classical case we have substantially more examples
than in the easy case, obtained by using the determinant, and its powers:

Proposition 9.19. The following compact groups are uniform,

(1) The complex reflection groups Hs,d
N =

{
g ∈ Zs o SN

∣∣(det g)d = 1
}

, for any values
of the parameters s ∈ {1, 2, . . . ,∞} and d ∈ N, d|s,

(2) The orthogonal group ON , the special orthogonal group SON , and the series of
modified unitary groups Ud

N =
{
g ∈ UN

∣∣(det g)d = 1
}

, with s ∈ {1, 2, . . . ,∞},
and so are the bistochastic versions of these groups.



146 TEO BANICA

Proof. Both these assertions are clear from definitions. Observe that the groups in (1),
which are well-known objects in finite group theory, and more precisely form the series of
complex reflection groups, generalize the groups Hs

N from section 8 above, which appear
at d = s. See [80]. The groups in (2) are well-known as well, in compact Lie group theory,
with U1

N being equal to SUN , and with U∞N being by definition UN itself. �

In the free case now, corresponding to the condition S+
N ⊂ GN ⊂ U+

N , it is widely
believed that the only examples are the easy ones. A precise conjecture in this sense,
which is a bit more general, valid for any GN ⊂ U+

N , states that we should have:

< GN , S
+
N >= {G′N , S+

N}
Here G′N denotes as usual the easy envelope of GN , and { , } is an easy generation

operation. This conjecture is probably something quite difficult.
Now back to our questions, we have definitely no new examples in the free case. So,

the basic examples will be those that we previously met, namely:

Proposition 9.20. The following free quantum groups are uniform,

(1) Liberations Hs+
N = Zs o∗ S+

N of the complex reflection groups Hs
N = Zs o SN ,

(2) Liberations O+
N , U

+
N of the continuous groups ON , UN ,

and so are the bistochastic versions of these quantum groups.

Proof. This is something that we basically know, with the uniformity check for Hs+
N being

the same as for S+
N , H

+
N , K

+
N , which appear at s = 1, 2,∞. �

In order to cut now a bit from complexity, we would need a second axiom, such as the
twistability condition TN ⊂ GN . However, if we look at Proposition 9.19, and really like
the series there, a condition of type AN ⊂ GN would be more appropriate.

In order to comment on this dillema, let us recall from the discussion after Proposition
9.4 that “taking the bistochastic version” is a bad direction, geometrically speaking. But
the operations “taking the diagonal torus” and “taking the special version”, that we are
currently discussing, are bad too. Thus, we have 3 bad directions, and so a cube:

Proposition 9.21. We have the following diagram of finite groups,

SN // HN

AN //

<<

SHN

;;

{1} //

OO

TN

OO

{1}

OO

==

// STN

OO

<<

obtained from HN by taking bistochastic, special and diagonal versions.
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Proof. This is clear, with the operations of taking bistochastic versions, special versions
and diagonal subgroups corresponding to going left, backwards, and downwards. �

Observe that the above cube is degenerate on the bottom left, but this is certainly not
surprising, because what we are doing here is to combine 3 bad directions.

Now back to our classification questions, the vertices of the above cube are all inter-
esting groups, and assuming that our quantum groups GN ⊂ U+

N contain any of them is
something quite natural. Let us just select here three such conditions, as follows:

Definition 9.22. A closed subgroup GN ⊂ U+
N is called:

(1) Twistable, if TN ⊂ GN .
(2) Homogeneous, if SN ⊂ GN .
(3) Half-homogeneous, if AN ⊂ GN .

Let us go ahead now, and formulate our third and last definition, regarding the ori-
entability axiom. Things are quite tricky here, and we must start as follows:

Definition 9.23. Associated to any closed subgroup GN ⊂ U+
N are its classical, discrete

and real versions, and mixes of those, given as usual by

Gc
N = GN ∩ UN , Gd

N = GN ∩K+
N , Gr

N = GN ∩O+
N

Gcd
N = GN ∩KN , Gcr

N = GN ∩O+
N , Gdr

N = GN ∩H+
N

as well as its free, smooth and unitary versions, and mixes of those, given by

Gf
N =< GN , H

+
N > , Gs

N =< GN , ON > , Gu
N =< GN , KN >

Gfs
N =< GN , O

+
N > , Gfu

N =< GN , K
+
N > , Gus

N =< GN , UN >

where < ,> is the usual (non-easy) topological generation operation.

Observe the difference, and notational clash, with some of the notions from Definition
9.7 and afterwards. As explained in section 5 above, it is believed that we should have
{ , } =< ,>, but this is not clear at all, and the problem comes from this.

There is an extra issue as well with the mixed versions of the free, smooth and unitary
versions, because we do not really know that these appear indeed by composing the basic
f, s, u operations. Once again, we agree here to use Definition 9.23 as it is.

Now back to our orientation questions, the slicing and bi-orientability conditions lead us
again into { , } vs. < ,> troubles, and are therefore rather to be ignored. The orientability
conditions from Definition 9.17, however, have the following analogue:

Definition 9.24. A closed subgroup GN ⊂ U+
N is called “oriented” if

GN =< Gcd
N , G

cr
N , G

dr
N > , GN = Gfs

N ∩G
fu
N ∩G

su
N

and “weakly oriented” if the following conditions hold,

GN =< Gc
N , G

d
N , G

r
N > , GN = Gf

N ∩G
s
N ∩Gu

N

where the various versions are those in Definition 9.23 above.
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With these notions, our claim is that some classification results are possible:
(1) In the classical case for instance, we believe that the uniform, half-homogeneous,

oriented groups are those in Proposition 9.19, with some bistochastic versions excluded.
This is of course something quite heavy, well beyond easiness, with the potential tools
available for proving such things coming from advanced finite group theory and Lie algebra
theory. Our uniformity axiom could play a key role here, when combined with [80], in
order to exclude all the exceptional objects which might appear on the way.

(2) In the free case, under similar assumptions, we believe that the solutions should be
those in Proposition 9.20, once again with some bistochastic versions excluded. This is
something heavy, too, related to the above conjecture < GN , S

+
N >= {G′N , S+

N}. Indeed,
assuming that we would have such a formula, and perhaps some more formulae of the
same type as well, we can in principle work out our way inside the cube, from the edge
and face projections to GN itself, and in this process GN would become easy.

(3) In the group dual case, the orientability axiom simplifies, because the group duals
are discrete in our sense. We believe that the uniform, twistable, oriented group duals
should appear as combinations of certain abelian groups, which appear in the classical
case, with duals of varieties of real reflection groups, which appear in the real case. All
this looks quite elementary, and nice as well, related for instance to [78], and is probably
the topic to start with, in this whole “orientable and non-easy” business.

Summarizing, we have many interesting questions here. As a philosophical conclusion,
in view of Proposition 9.8 and of Proposition 9.21, and of [33], [59] and related papers as
well, the classification problem in general looks like something quite highly dimensional,
with some of the dimensions being good, some other bad, and some other ugly.
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10. Toral subgroups

We have seen in the previous sections that the group dual subgroups Λ̂ ⊂ G play an
important role in the theory. Our purpose here is to understand how the structure of a
closed subgroup G ⊂ U+

N can be recovered from the knowledge of such subgroups.
Let us start with a basic statement, regarding the classical and group dual cases:

Proposition 10.1. Let G ⊂ U+
N be a compact quantum group, and consider the group

dual subgroups Λ̂ ⊂ G, also called toral subgroups, or simply “tori”.

(1) In the classical case, where G ⊂ UN is a compact Lie group, these are the usual
tori, where by torus we mean here closed abelian subgroup.

(2) In the group dual case, G = Γ̂ with Γ =< g1, . . . , gN > being a discrete group,
these are the duals of the various quotients Γ→ Λ.

Proof. Both these assertions are elementary, as follows:
(1) This follows indeed from the fact that a closed subgroup H ⊂ U+

N is at the same
time classical, and a group dual, precisely when it is classical and abelian.

(2) This follows from the general propreties of the Pontrjagin duality, and more precisely

from the fact that the subgroups Λ̂ ⊂ Γ̂ correspond to the quotients Γ→ Λ. �

There are two motivations for the study of such subgroups. First, it is well-known that
the fine structure of a compact Lie group G ⊂ UN is partly encoded by its maximal torus.

Thus, in view of Proposition 10.1, the various tori Λ̂ ⊂ G encode interesting information
about a quantum group G ⊂ U+

N , both in the classical and in the group dual case.
As a second motivation, any action G y X on some geometric object, such as a

manifold, will produce actions of its tori on the same object, Λ̂ y X. And, due to the
fact that Λ are familiar objects, namely discrete groups, these latter actions are easier to
study, and this can ultimately lead to results about the action Gy X itself.

At a more concrete level now, most of the tori that we met appear as diagonal tori, in
the sense of Proposition 2.18. Let us first review this material. We first have:

Proposition 10.2. The diagonal torus T ⊂ G, which appears via the formula

C(T ) = C(G)
/〈

uij = 0
∣∣∣∀i 6= j

〉
can be defined as well via the following intersection formula, inside U+

N ,

T = G ∩ T+
N

where T+
N ⊂ U+

N is the dual of the free group FN =< g1, . . . , gN >, with u = diag(gi).

Proof. According to Theorem 2.17 above, the free torus T+
N appears as follows:

C(T+
N) = C(U+

N )
/〈

uij = 0
∣∣∣∀i 6= j

〉
Thus, by intersecting with G we obtain the diagonal torus of G. See [37]. �
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Most of our computations so far of diagonal tori concern various classes of easy quantum
groups. In the general easy case, we have the following result:

Proposition 10.3. For an easy quantum group G ⊂ U+
N , coming from a category of

partitions D ⊂ P , the associated diagonal torus is T = Γ̂, with:

Γ = FN

/〈
gi1 . . . gik = gj1 . . . gjl

∣∣∣∀i, j, k, l, ∃π ∈ D(k, l), δπ

(
i
j

)
6= 0

〉
Moreover, we can just use partitions π which generate the category D.

Proof. If we denote by gi = uii the standard coordinates on the associated diagonal torus
T , then we have, with g = diag(g1, . . . , gN):

C(T ) =
[
C(U+

N )
/〈

Tπ ∈ Hom(u⊗k, u⊗l)
∣∣∣∀π ∈ D〉]/〈uij = 0

∣∣∣∀i 6= j
〉

=
[
C(U+

N )
/〈

uij = 0
∣∣∣∀i 6= j

〉]/〈
Tπ ∈ Hom(u⊗k, u⊗l)

∣∣∣∀π ∈ D〉
= C∗(FN)

/〈
Tπ ∈ Hom(g⊗k, g⊗l)

∣∣∣∀π ∈ D〉
The associated discrete group, Γ = T̂ , is therefore given by:

Γ = FN

/〈
Tπ ∈ Hom(g⊗k, g⊗l)

∣∣∣∀π ∈ D〉
Now observe that, with g = diag(g1, . . . , gN) as above, we have:

Tπg
⊗k(ei1 ⊗ . . .⊗ eik) =

∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl · gi1 . . . gik

g⊗lTπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl · gj1 . . . gjl

We conclude that the relation Tπ ∈ Hom(g⊗k, g⊗l) reformulates as follows:

δπ

(
i1 . . . ik
j1 . . . jl

)
6= 0 =⇒ gi1 . . . gik = gj1 . . . gjl

Thus, we obtain the formula in the statement. Finally, the last assertion follows from
Tannakian duality, because we can replace everywhere D by a generating subset. �

In practice now, in the continuous case we have the following result:
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Theorem 10.4. The diagonal tori of the basic unitary quantum groups, namely

UN // U∗N
// U+

N

ON
//

OO

O∗N
//

OO

O+
N

OO

and of their q = −1 twists as well, are TN = ZN2 ,TN = TN and their liberations:

TN // T∗N // T+
N

TN //

OO

T ∗N
//

OO

T+
N

OO

Also, for the quantum groups BN , B
+
N , CN , C

+
N , the diagonal torus collapses to {1}.

Proof. The main assertion, regarding the basic unitary quantum groups, is something
that we already know, from Theorem 2.21 above, with the various liberations T×N ,T

×
N of

the basic tori TN ,TN in the statement being by definition those appearing there.
Regarding the invariance under twisting, this is best seen by using Proposition 10.3.

Indeed, the computation in the proof there applies in the same way to the general quizzy
case, and shows that the diagonal torus is invariant under twisting.

Finally, in the bistochastic case the fundamental corepresentation g = diag(g1, . . . , gN)
of the diagonal torus must be bistochastic, and so g1 = . . . = gN = 1, as claimed. �

Regarding now the discrete case, the result is as follows:

Theorem 10.5. The diagonal tori of the basic quantum reflection groups, namely

KN
// K∗N

// K+
N

HN
//

OO

H∗N
//

OO

H+
N

OO

are the same as those for O×N , U
×
N , given above. Also, for SN , S

+
N we have T = {1}.

Proof. The first assertion follows from the general fact that the diagonal torus of GN ⊂ U+
N

equals the diagonal torus of the discrete version Gd
N = GN ∩ K+

N , which follows from
definitions. As for the second assertion, this follows from SN ⊂ BN , S+

N ⊂ B+
N . �
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As a conclusion, the diagonal torus T ⊂ G is usually a quite interesting object, but
for certain quantum groups like the bistochastic ones, or the quantum permutation group
ones, this torus collapses to {1}, and so it cannot be of use in the study of G.

In order to deal with this issue, the idea, from [9], [32], will be that of using:

Proposition 10.6. Given a closed subgroup G ⊂ U+
N and a matrix Q ∈ UN , we let

TQ ⊂ G be the diagonal torus of G, with fundamental representation spinned by Q:

C(TQ) = C(G)
/〈

(QuQ∗)ij = 0
∣∣∣∀i 6= j

〉
This torus is then a group dual, TQ = Λ̂Q, where ΛQ =< g1, . . . , gN > is the discrete group
generated by the elements gi = (QuQ∗)ii, which are unitaries inside C(TQ).

Proof. This follows indeed from Proposition 2.18, because, as said in the statement, TQ is
by definition a diagonal torus. Equivalently, since v = QuQ∗ is a unitary corepresentation,
its diagonal entries gi = vii, when regarded inside C(TQ), are unitaries, and satisfy:

∆(gi) = gi ⊗ gi
Thus C(TQ) is a group algebra, and more specifically we have C(TQ) = C∗(ΛQ), where

ΛQ =< g1, . . . , gN > is the group in the statement, and this gives the result. �

Summarizing, associated to any closed subgroup G ⊂ U+
N is a whole family of tori,

indexed by the unitaries U ∈ UN . We use the following terminology:

Definition 10.7. Let G ⊂ U+
N be a closed subgroup.

(1) The tori TQ ⊂ G constructed above are called standard tori of G.
(2) The collection of tori T =

{
TQ ⊂ G

∣∣Q ∈ UN} is called skeleton of G.

This might seem a bit awkward, but in view of various results, examples and coun-
terexamples, to be presented below, this is perhaps the best terminology.

As a first general result regarding these tori, we have:

Theorem 10.8. Any torus T ⊂ G appears as follows, for a certain Q ∈ UN :

T ⊂ TQ ⊂ G

In other words, any torus appears inside a standard torus.

Proof. Given a torus T ⊂ G, we have an inclusion T ⊂ G ⊂ U+
N . On the other hand, we

know from Proposition 3.24 that each torus T = Λ̂ ⊂ U+
N , coming from a discrete group

Λ =< g1, . . . , gN >, has a fundamental corepresentation as follows, with Q ∈ UN :

u = Qdiag(g1, . . . , gN)Q∗

But this shows that we have T ⊂ TQ, and this gives the result. �

Let us do now some computations. In the classical case, the result is as follows:
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Proposition 10.9. For a closed subgroup G ⊂ UN we have

TQ = G ∩ (Q∗TNQ)

where TN ⊂ UN is the group of diagonal unitary matrices.

Proof. This is indeed clear at Q = 1, where Γ1 appears by definition as the dual of the
compact abelian group G ∩ TN . In general, this follows by conjugating by Q. �

In the group dual case now, we have the following result:

Proposition 10.10. Given a discrete group Γ =< g1, . . . , gN >, consider its dual compact

quantum group G = Γ̂, diagonally embedded into U+
N . We have then

ΛQ = Γ/ < gi = gj|∃k,Qki 6= 0, Qkj 6= 0 >

with the embedding TQ ⊂ G = Γ̂ coming from the quotient map Γ→ ΛQ.

Proof. Assume indeed that Γ =< g1, . . . , gN > is a discrete group, with Γ̂ ⊂ U+
N coming

via u = diag(g1, . . . , gN). With v = QuQ∗, we have:∑
s

Q̄sivsk =
∑
st

Q̄siQstQ̄ktgt =
∑
t

δitQ̄ktgt = Q̄kigi

Thus vij = 0 for i 6= j gives Q̄kivkk = Q̄kigi, which is the same as saying that Qki 6= 0
implies gi = vkk. But this latter equality reads:

gi =
∑
j

|Qkj|2gj

We conclude from this that Qki 6= 0, Qkj 6= 0 implies gi = gj, as desired. As for the
converse, this is elementary to establish as well. �

According to the above results, we can expect the skeleton T to encode various algebraic
and analytic properties of G. We first have the following result:

Theorem 10.11. The following results hold, both over the category of compact Lie groups,
and over the category of duals of finitely generated discrete groups:

(1) Injectivity: the construction G→ T is injective, in the sense that G 6= H implies
TQ(G) 6= TQ(H), for some Q ∈ UN .

(2) Monotony: the construction G → T is increasing, in the sense that passing to a
subgroup H ⊂ G decreases at least one of the tori TQ.

(3) Generation: any closed quantum subgroup G ⊂ U+
N has the generation property

G =< TQ|Q ∈ UN >. In other words, G is generated by its tori.

Proof. In the classical case, where G ⊂ UN , the proof is elementary, based on standard
facts from linear algebra, and goes as follows:

(1) Injectivity. This follows from the generation statement, explained below.
(2) Monotony. Once again, this follows from the generation statement.
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(3) Generation. We use the following formula, established above:

TQ = G ∩Q∗TNQ
Since any group element U ∈ G is diagonalizable, U = Q∗DQ with Q ∈ UN , D ∈ TN ,

we have U ∈ TQ for this value of Q ∈ UN , and this gives the result.
Regarding now the group duals, here everything is trivial. Indeed, when the group duals

are diagonally embedded we can take Q = 1, and when the group duals are embedded by
using a spinning matrix Q ∈ UN , we can use precisely this matrix Q. �

Generally speaking, going beyond Theorem 10.11 is a difficult question, because the
above properties are quite abstract. So, let us discuss now a number of more concrete
results, relating the skeleton T to the various algebraic and analytic properties of G.

In the classical case, G ⊂ UN , the use of the maximal tori traditionally requires G to
be connected. So, we are in need of a quantum extension of this notion. We have:

Proposition 10.12. For a closed subgroup G ⊂ U+
N the following conditions are equiva-

lent, and if they are satisfied, we call G connected:

(1) There is no finite quantum group quotient G→ F 6= {1}.
(2) The algebra < vij > is infinite dimensional, for any corepresentation v 6= 1.

In the classical case, G ⊂ UN , we recover in this way the usual notion of connectedness.

For the group duals, G = Γ̂, this is the same as asking for Γ to have no torsion.

Proof. The above equivalence comes from the fact that a quotient G→ F must correspond
to an embedding C(F ) ⊂ C(G), which must be of the form C(F ) =< vij >.

In the classical case, G ⊂ UN , it is well-known that F = G/G1 is a finite group, where
G1 is the connected component of the identity 1 ∈ G, and this gives the result.

As for the group dual case, G = Γ̂, here the irreducible corepresentations are 1-
dimensional, corresponding to the group elements g ∈ Γ, and this gives the result. �

We will be interested in conjectures about characters, amenability and growth. The
notion of growth is something that we have not introduced yet, as follows:

Proposition 10.13. Given a closed subgroup G ⊂ U+
N , with 1 ∈ u = ū, consider the

series whose coefficients are the ball volumes on the corresponding Cayley graph,

f(z) =
∑
k

bkz
k , bk =

∑
l(v)≤k

dim(v)2

and call it growth series of Ĝ. Then, in the group dual case, G = Γ̂, we obtain in this
way the usual growth series of Γ. Also, polynomial growth implies amenability.

Proof. We recall from Proposition 6.6 above that the Cayley graph of Ĝ has by definition
the elements of Irr(G) as vertices, and the distance is as follows:

d(v, w) = min
{
k ∈ N

∣∣∣1 ⊂ v̄ ⊗ w ⊗ u⊗k
}
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By taking w = 1 and by using Frobenius reciprocity, the lenghts are given by:

l(v) = min
{
k ∈ N

∣∣∣v ⊂ u⊗k
}

Thus, we have indeed an extension of the usual notions of length, and growth.
Regarding now the last assertion, by Peter-Weyl we have a decomposition as follows,

where Bk is the ball of radius k, and mk(v) ∈ N are certain multiplicities:

u⊗k =
∑
v∈Bk

mk(v) · v

By using Cauchy-Schwarz, we obtain the following inequality:

m2k(1)bk =
∑
v∈Bk

mk(v)2
∑
v∈Bk

dim(v)2 ≥

(∑
v∈Bk

mk(v) dim(v)

)2

= N2k

But shows that if bk has polynomial growth, then the following happens:

lim sup
k→∞

m2k(1)1/2k ≥ N

Thus, the Kesten type criterion applies, and gives the result. �

With the above conventions made, we have the following result, from [32]:

Theorem 10.14. The following results hold, both over the category of compact Lie groups,
and over the category of duals of finitely generated discrete groups:

(1) Characters: if G is connected, for any nonzero P ∈ C(G)central there exists Q ∈ UN
such that P becomes nonzero, when mapped into C(TQ).

(2) Amenability: a closed subgroup G ⊂ U+
N is coamenable if and only if each of the

tori TQ is coamenable, in the usual discrete group sense.

(3) Growth: assuming G ⊂ U+
N , the discrete quantum group Ĝ has polynomial growth

if and only if each the discrete groups T̂Q has polynomial growth.

Proof. In the classical case, where G ⊂ UN , the proof goes as follows:
(1) Characters. We can take here Q ∈ UN to be such that QTQ∗ ⊂ TN , where T ⊂ UN

is a maximal torus for G, and this gives the result.
(2) Amenability. This conjecture holds trivially in the classical case, G ⊂ UN , due to

the fact that these latter quantum groups are all coamenable.
(3) Growth. This is something nontrivial, well-known from the theory of compact Lie

groups, and we refer here for instance to [53].
Regarding now the group duals, here everything is trivial. Indeed, when the group duals

are diagonally embedded we can take Q = 1, and when the group duals are embedded by
using a spinning matrix Q ∈ UN , we can use precisely this matrix Q. �
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The above result complements quite well Theorem 10.11, and so we have a beginning
of theory here. As explained in [32], it is possible to go beyond the above verifications,
notably with some results regarding the half-classical and the free cases. However, there
is no serious idea so far, in order to deal with the general case. See [32].

Let us focus now on the generation property, from Theorem 10.11 (3), which is perhaps
the most important. In order to discuss the general case, we will need:

Proposition 10.15. Given a closed subgroup G ⊂ U+
N and a matrix Q ∈ UN , the corre-

sponding standard torus and its Tannakian category are given by

TQ = G ∩ TQ , CTQ =< CG, CTQ >

where TQ ⊂ U+
N is the dual of the free group FN =< g1, . . . , gN >, with the fundamental

corepresentation of C(TQ) being the matrix u = Qdiag(g1, . . . , gN)Q∗.

Proof. The first assertion comes from the well-known fact that given two closed subgroups
G,H ⊂ U+

N , the corresponding quotient algebra C(U+
N )→ C(G∩H) appears by dividing

by the kernels of both the quotient maps C(U+
N )→ C(G) and C(U+

N )→ C(H).
Indeed, the construction of TQ from Proposition 10.6 amounts precisely in performing

this operation, with H = TQ, and so we obtain TQ = G ∩ TQ, as claimed.
As for the Tannakian category formula, this follows from this, and from the general

duality formula CG∩H =< CG, CH > from section 5 above. �

We have the following Tannakian reformulation of the toral generation property:

Theorem 10.16. Given a closed subgroup G ⊂ U+
N , the subgroup G′ =< TQ|Q ∈ UN >

generated by its standard tori has the following Tannakian category:

CG′ =
⋂

Q∈UN

< CG, CTQ >

In particular we have G = G′ when this intersection reduces to CG.

Proof. Consider indeed the subgroup G′ ⊂ G constructed in the statement. We have:

CG′ =
⋂

Q∈UN

CTQ

Together with the formula in Proposition 10.15, this gives the result. �

The above result can be used for investigating the toral generation conjecture, but the
combinatorics is quite difficult, and there are no results yet, along these lines.

Let us further discuss now the toral generation property, with some modest results,
regarding its behaviour with respect to product operations. We first have:

Proposition 10.17. Given two closed subgroups G,H ⊂ U+
N , and Q ∈ UN , we have:

< TQ(G), TQ(H) >⊂ TQ(< G,H >)

Also, the toral generation property is stable under the operation < ,>.
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Proof. The first assertion can be proved either by using Theorem 10.16, or directly. For
the direct proof, which is perhaps the simplest, we have:

TQ(G) = G ∩ TQ ⊂< G,H > ∩TQ = TQ(< G,H >)

TQ(H) = H ∩ TQ ⊂< G,H > ∩TQ = TQ(< G,H >)

Now since A,B ⊂ C implies < A,B >⊂ C, this gives the result.
Regarding now the second assertion, we have the following computation:

< G,H > = << TQ(G)|Q ∈ UN >,< TQ(H)|Q ∈ UN >>

= < TQ(G), TQ(H)|Q ∈ UN >

= << TQ(G), TQ(H) > |Q ∈ UN >

⊂ < TQ(< G,H >)|Q ∈ UN >

Thus the quantum group < G,H > is generated by its tori, as claimed. �

We have as well the following result:

Proposition 10.18. We have the following formula, for any G,H and R, S:

TR⊗S(G×H) = TR(G)× TS(H)

Also, the toral generation property is stable under usual products ×.

Proof. The product formula in the statement is clear from definitions. Regarding now the
second assertion, we have the following computation:

< TQ(G×H)|Q ∈ UMN > ⊃ < TR⊗S(G×H)|R ∈ UM , S ∈ UN >

= < TR(G)× TS(H)|R ∈ UM , S ∈ UN >

= < TR(G)× {1}, {1} × TS(H)|R ∈ UM , S ∈ UN >

= < TR(G)|R ∈ UM > × < TG(H)|H ∈ UN >

= G×H
Thus the quantum group G×H is generated by its tori, as claimed. �

In order to get beyond this, let us discuss now some weaker versions of the generation
property, which are partly related to the classification program from section 9:

Definition 10.19. A closed subgroup GN ⊂ U+
N , with classical version Gc

N , is called:

(1) Weakly generated by its tori, when GN =< Gc
N , (TQ)Q∈UN >.

(2) A diagonal liberation of Gc
N , when GN =< Gc

N , T1 >.

According to our various results above, the first property is satisfied for the groups, for
the group duals, and is stable under generations, and direct products.

Regarding now the second property, this is something quite interesting, which takes us
away from our original generation questions. The idea here, from [48] and subsequent
papers, is that such things can be usually proved by recurrence on N ∈ N.
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In order to discuss this, let us start with:

Proposition 10.20. Assume that G = (GN) is weakly uniform, let n ∈ {2, 3, . . . ,∞} be
minimal such that Gn is not classical, and consider the following conditions:

(1) Strong generation: GN =< Gc
N , Gn >, for any N > n.

(2) Usual generation: GN =< Gc
N , GN−1 >, for any N > n.

(3) Initial step generation: Gn+1 =< Gc
n+1, Gn >.

We have then (1) ⇐⇒ (2) =⇒ (3), and (3) is in general strictly weaker.

Proof. All the implications and non-implications are elementary, as follows:
(1) =⇒ (2) This follows from Gn ⊂ GN−1 for N > n, coming from uniformity.
(2) =⇒ (1) By using twice the usual generation, and then the uniformity, we have:

GN =< Gc
N , GN−1 >=< Gc

N , G
c
N−1, GN−2 >=< Gc

N , GN−2 >

Thus we have a descent method, and we end up with the strong generation condition.
(2) =⇒ (3) This is clear, because (2) at N = n+ 1 is precisely (3).
(3) 6=⇒ (2) In order to construct counterexamples here, simplest is to use group duals.

Indeed, with GN = Γ̂N and ΓN =< g1, . . . , gN >, the uniformity condition tells us that
we must be in a projective limit situation, as follows:

Γ1 ← Γ2 ← Γ3 ← Γ4 ← . . . , ΓN−1 = ΓN/ < gN = 1 >

Now by assuming for instance that Γ2 is given and not abelian, there are many ways of
completing the sequence, and so the uniqueness coming from (2) can only fail. �

Let us introduce now a few more notions, as follows:

Proposition 10.21. Assume that G = (GN) is weakly uniform, let n ∈ {2, 3, . . . ,∞} be
as above, and consider the following conditions, where IN ⊂ GN is the diagonal torus:

(1) Strong diagonal liberation: GN =< Gc
N , In >, for any N ≥ n.

(2) Technical condition: GN =< Gc
N , IN−1 > for any N > n, and Gn =< Gc

n, In >.
(3) Diagonal liberation: GN =< Gc

N , IN >, for any N .
(4) Initial step diagonal liberation: Gn =< Gc

n, In >.

We have then (1) =⇒ (2) =⇒ (3) =⇒ (4).

Proof. Our claim is that when assuming that G = (GN) is weakly uniform, so is the family
of diagonal tori I = (IN). Indeed, we have the following computation:

IN ∩ U+
N−1 = (GN ∩ T+

N) ∩ U+
N−1

= (GN ∩ U+
N−1) ∩ (T+

N ∩ U
+
N−1)

= GN−1 ∩ T+
N−1

= IN−1

Thus our claim is proved, and this gives the various implications in the statement. �
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We can now formulate a key theoretical observation, as follows:

Theorem 10.22. Assuming that G = (GN) is weakly uniform, and with n ∈ {2, 3, . . . ,∞}
being as above, the following conditions are equivalent, modulo their initial steps:

(1) Generation: GN =< Gc
N , GN−1 >, for any N > n.

(2) Strong generation: GN =< Gc
N , Gn >, for any N > n.

(3) Diagonal liberation: GN =< Gc
N , IN >, for any N ≥ n.

(4) Strong diagonal liberation: GN =< Gc
N , In >, for any N ≥ n.

Proof. Our first claim is that generation plus initial step diagonal liberation imply the
technical diagonal liberation condition. Indeed, the recurrence step goes as follows:

GN =< Gc
N , GN−1 >=< Gc

N , G
c
N−1, IN−1 >=< Gc

N , IN−1 >

In order to pass now from the technical diagonal liberation condition to the strong
diagonal liberation condition itself, observe that we have:

GN =< Gc
N , GN−1 >=< Gc

N , G
c
N−1, IN−1 >=< Gc

N , IN−1 >

With this condition in hand, we have then as well:

GN =< Gc
N , GN−1 >=< Gc

N , G
c
N−1, IN−2 >=< Gc

N , IN−2 >

This procedure can be of course be continued. Thus we have a descent method, and
we end up with the strong diagonal liberation condition.

In the other sense now, we want to prove that we have GN =< Gc
N , GN−1 > at N ≥ n.

At N = n+ 1 this is something that we already have. At N = n+ 2 now, we have:

Gn+2 =< Gc
n+2, In >=< Gc

n+2, G
c
n+1, In >=< Gc

n+2, Gn+1 >

This procedure can be of course be continued. Thus, we have a descent method, and
we end up with the strong generation condition. �

It is possible to prove that many interesting quantum groups have the above properties,
and hence appear as diagonal liberations, but the whole subject is quite technical. Here
is however a statement, collecting most of the known results on the subject:

Theorem 10.23. The basic quantum unitary and reflection groups are as follows:

(1) O∗N , U
∗
N appear via diagonal liberation.

(2) O+
N , U

+
N appear via diagonal liberation.

(3) H∗N , K
∗
N appear via diagonal liberation.

(4) H+
N , K

+
N do not appear via diagonal liberation.

In addition, B+
N , C

+
N , S

+
N do not appear either via diagonal liberation.

Proof. All this is very technical, and is a matter of ongoing research. However, since the
result is very important, in connection with the other considerations in this book, we have
preffered to state is as a “theorem”, as above, the idea being as follows:
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(1) The quantum groups O∗N , U
∗
N are not uniform, and cannot be investigated with the

above techniques. However, these quantum groups can be studied by using the technology
in [14], [43], [44], which will be briefly discussed in section 12 below, and this leads to
O∗N =< ON , T

∗
N >, as well as to U∗N =< UN , T

∗
N >, which implies U∗N =< UN ,T∗N >.

(2) The quantum groups O+
N , U

+
N are uniform, and a quite technical computation, from

[45], [46], [48], [49], shows that the generation conditions from Theorem 10.22 are satisfied
for O+

N . Thus we obtain O+
N =< ON , T

+
N >, and from this we can deduce via the results

in [16] that we have U+
N =< UN , T

+
N >, which implies U+

N =< UN ,T+
N >. See [49].

(3) The situation for H∗N , K
∗
N is quite similar to the one for O∗N , U

∗
N , explained above.

Indeed, the technology in [14], [43], [44] applies, and this leads to H∗N =< HN , T
∗
N >, as

well as to K∗N =< KN , T
∗
N >, which implies K∗N =< KN ,T∗N >. In fact, these results are

stronger than the above ones for O∗N , U
∗
N , via some standard generation formulae.

(4) This is something subtle as well, coming from the quantum groups H
[∞]
N , K

[∞]
N from

[78], discussed in Theorem 8.19. Indeed, since the relations gigigj = gjgigi are trivially
satisfied for real reflections, the diagonal tori of these quantum groups coincide with those

for H+
N , K

+
N . Thus, the diagonal liberation procedure “stops” at H

[∞]
N , K

[∞]
N .

Finally, regarding the last assertion, here B+
N , C

+
N , S

+
N do not appear indeed via diagonal

liberation, and this because of a trivial reason, namely T = {1}. �

Summarizing, all this is extremely technical, and working out a full proof of Theorem
10.23, or rather of the positive results there, which is uniform in nature, say based on
computations with partitions, remains an open problem, subject to ongoing research.

Regardless of these technical difficulties, and of the various positive results on the
subject, the notion of diagonal liberation is, obviously, not exactly the good one.

In order to fix this problem, and come up with a better notion of “toral liberation”, let
us first discuss the quantum permutation groups. Following [42], we have:

Proposition 10.24. Given a closed subgroup G ⊂ S+
N , with standard coordinates denoted

uij ∈ C(G), the following defines an equivalence relation on {1, . . . , N},

i ∼ j ⇐⇒ uij 6= 0

that we call orbit decomposition associated to the action Gy {1, . . . , N}. In the classical
case, G ⊂ SN , this is the usual orbit equivalence coming from the action of G.

Proof. We first check the fact that we have indeed an equivalence relation:
(1) i ∼ i follows from ε(uij) = δij, which gives ε(uii) = 1, and so uii 6= 0, for any i.
(2) i ∼ j =⇒ j ∼ i follows from S(uij) = uji, which gives uij 6= 0 =⇒ uji 6= 0.
(3) i ∼ j, j ∼ k =⇒ i ∼ k follows from ∆(uik) =

∑
j uij⊗ujk. Indeed, in this formula,

the right-hand side is a sum of projections, so assuming uij 6= 0, ujk 6= 0 for a certain
index j, we have uij ⊗ ujk > 0, and so ∆(uik) > 0, which gives uik 6= 0, as desired.

In the classical case now, G ⊂ SN , the standard coordinates are the characteristic
functions uij = χ(σ ∈ G|σ(j) = i). Thus the condition uij 6= 0 is equivalent to the
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existence of an element σ ∈ G such that σ(j) = i, and this means precisely that i, j must
be in the same orbit under the action of G, as claimed. �

Generally speaking, the theory from the classical case extends well to the quantum
group setting, and we have in particular the following result, of analytic flavor:

Proposition 10.25. For a closed subgroup G ⊂ S+
N , the following are equivalent:

(1) G is transitive.
(2) Fix(u) = Cξ, where ξ is the all-one vector.
(3)

∫
G
uij = 1

N
, for any i, j.

Proof. This is well-known in the classical case. In general, the proof is as follows:
(1) ⇐⇒ (2). We use the fact that Fix(u) is the fixed point algebra of the standard

coaction α : CN → C(G)⊗ CN , given by α(δi) =
∑

j uij ⊗ δj, in the sense that:

Fix(u) =
{
ξ ∈ CN

∣∣α(ξ) = 1⊗ ξ
}

On the other hand, as explained for instance in [42], via the standard identification
CN = C(1, . . . , N), this latter fixed point algebra can be written as:

Fix(u) =
{
ξ ∈ C(1, . . . , N)

∣∣i ∼ j =⇒ ξ(i) = ξ(j)
}

In particular, the transitivity condition corresponds to Fix(u) = Cξ, as stated.
(2) ⇐⇒ (3) This is clear from the general properties of the Haar integration. �

As a comment here, we should mention that the whole theory of quantum group orbits
and transitivity, originally developed in [42], has an interesting extension into a theory of
quantum group orbitals and 2-transitivity, recently developed in [69].

Now back to the tori, we have the following key result, from [42]:

Theorem 10.26. Consider a quotient group as follows, with N = N1 + . . .+Nk:

ZN1 ∗ . . . ∗ ZNk → Γ

We have then Γ̂ ⊂ S+
N , and any group dual subgroup of S+

N appears in this way.

Proof. The fact that we have a subgroup as in the statement follows from:

Γ̂ ⊂ ̂ZN1 ∗ . . . ∗ ZNk = ẐN1 ∗̂ . . . ∗̂ ẐNk
' ZN1 ∗̂ . . . ∗̂ZNk ⊂ SN1 ∗̂ . . . ∗̂SNk
⊂ S+

N1
∗̂ . . . ∗̂S+

Nk
⊂ S+

N

Conversely, assume that we have a group dual subgroup Γ̂ ⊂ S+
N . By Theorem 10.8,

the corresponding magic unitary must be of the following form, with U ∈ UN :

u = Udiag(g1, . . . , gN)U∗
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Now if we denote by N = N1 + . . . + Nk the orbit decomposition for Γ̂ ⊂ S+
N , coming

from Proposition 10.24, we conclude that u has a N = N1 + . . . + Nk block-diagonal
pattern, and so that U has as well this N = N1 + . . .+Nk block-diagonal pattern.

But this discussion reduces our problem to its k = 1 particular case, with the statement

here being that the cyclic group ZN is the only transitive group dual Γ̂ ⊂ S+
N . The proof

of this latter fact being elementary, we obtain the result. See [42]. �

Here is a related result, from [9], which is useful for our purposes:

Theorem 10.27. For the quantum permutation group S+
N , we have:

(1) Given Q ∈ UN , the quotient FN → ΛQ comes from the following relations:
gi = 1 if

∑
lQil 6= 0

gigj = 1 if
∑

lQilQjl 6= 0

gigjgk = 1 if
∑

lQilQjlQkl 6= 0

(2) Given a decomposition N = N1 + . . .+Nk, for the matrix Q = diag(FN1 , . . . , FNk),
where FN = 1√

N
(ξij)ij with ξ = e2πi/N is the Fourier matrix, we obtain:

ΛQ = ZN1 ∗ . . . ∗ ZNk
(3) Given an arbitrary matrix Q ∈ UN , there exists a decomposition N = N1+. . .+Nk,

such that ΛQ appears as quotient of ZN1 ∗ . . . ∗ ZNk .

Proof. This is something more or less equivalent to Theorem 10.26, and the proof can be
deduced either from Theorem 10.26, or from some direct computations. See [9]. �

Summarizing, in the quantum permutation group case, the standard tori parametrized
by Fourier matrices play a special role. Now let us recall from section 5 that in what
regards the bistochastic groups, which are our second class of examples where the diagonal
liberation procedure does not apply, the Fourier matrices appear there as well.

All this discussion suggests formulating the following definition:

Definition 10.28. Consider a closed subgroup G ⊂ U+
N .

(1) Its standard tori TF , with F = FN1 ⊗ . . . ⊗ FNk , and N = N1 + . . . + Nk being
regarded as a partition, are called Fourier tori.

(2) In the case where we have GN =< Gc
N , (TF )F >, we say that GN appears as a

Fourier liberation of its classical version Gc
N .

We believe that the easy quantum groups should appear as Fourier liberations. With
respect to Theorem 10.23 above, the situation in the free case is as follows:

(1) O+
N , U

+
N are diagonal liberations, so they are Fourier liberations as well.

(2) B+
N , C

+
N are Fourier liberations too, by using Proposition 5.23 above.

(3) S+
N is a Fourier liberation too, being generated by its tori [45], [49].

(4) H+
N , K

+
N remain to be investigated, by using the general theory in [78].
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Finally, as a word of warning here, observe that an arbitrary classical group GN ⊂ UN
is not necessarily generated by its Fourier tori, and nor is an arbitrary discrete group
dual, with spinned embedding. Thus, the Fourier tori, and the related notion of Fourier
liberation, remain something quite technical, in connection with the easy case.

As an application of all this, let us go back to quantum permutation groups, and more
specifically to the quantum symmetry groups of finite graphs, from section 8 above. One
interesting question is whether G+(X) appears as a Fourier liberation of G(X).

Generally speaking, this is something quite difficult, because for the empty graph itself
we are in need of the above-mentioned technical results from [45], [49].

In order to discuss however this question, let us begin with:

Proposition 10.29. The Fourier tori of G+(X) are the biggest quotients

ZN1 ∗ . . . ∗ ZNk → Γ

whose duals act on the graph, Γ̂ y X.

Proof. We have indeed the following computation, at F = 1:

C(T1(G+(X))) = C(G+(X))/ < uij = 0,∀i 6= j >

= [C(S+
N)/ < [d, u] = 0 >]/ < uij = 0,∀i 6= j >

= [C(S+
N)/ < uij = 0, ∀i 6= j >]/ < [d, u] = 0 >

= C(T1(S+
N))// < [d, u] = 0 >

Thus, we obtain the result, with the remark that the quotient that we are interested in
appears via relations of type dij = 1 =⇒ gi = gj. The proof in general is similar. �

An interesting question is whether the “non quantum symmetry” property can be seen
at the level of Fourier tori. In order to comment on this, let us start with:

Proposition 10.30. Consider the following conditions:

(1) We have G(X) = G+(X).
(2) G(X) ⊂ G+(X) is a Fourier liberation.

(3) Γ̂ y X implies that Γ is abelian.

We have then (1) ⇐⇒ (2) + (3).

Proof. This is something elementary, the proof being as follows:
(1) =⇒ (2, 3) Here both the implications are trivial.
(2, 3) =⇒ (1) Assuming G(X) 6= G+(X), from (2) we know that G+(X) has at least

one non-classical Fourier torus, and this contradicts (3). �

With this observation in hand, our question is whether (3) =⇒ (1) holds.
In other words, our conjecture would be that a graph X has no quantum symmetry

if and only if any action Γ̂ y X of a quotient ZN1 ∗ . . . ∗ ZNk → Γ must come from an
abelian quotient ZN1 × . . .× ZNk → Γ. This would be of course something very useful.
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We have the following result, regarding the torus coactions on finite graphs:

Proposition 10.31. For a quotient group ZN1 ∗ . . . ∗ ZNk → Γ, and a graph X having

N = N1 + . . .+Nk vertices, the condition Γ̂ y X is equivalent to

(F ∗dF )ij 6= 0 =⇒ Ii = Ij

where F = diag(FN1 , . . . , FNk), and where I = diag(I1, . . . , Ik) is the diagonal matrix
formed by the elements of the images of ZN1 , . . . ,ZNk .

Proof. We know that with F, I being as in the statement, we have u = FIF ∗. Now with
this formula in hand, we have the following equivalences:

Γ̂ y X ⇐⇒ du = ud

⇐⇒ dFIF ∗ = FIF ∗d

⇐⇒ [F ∗dF, I] = 0

Also, since the matrix I is diagonal, with M = F ∗dF have:

MI = IM ⇐⇒ (MI)ij = (IM)ij

⇐⇒ MijIj = IiMij

⇐⇒ [Mij 6= 0 =⇒ Ii = Ij]

Thus, we obtain the condition in the statement. �

Observe now that in the cyclic case, where F = FN is a usual Fourier matrix, associated
to a cyclic group ZN , we have the following formula, with w = e2πi/N :

(F ∗dF )ij =
∑
kl

(F ∗)ikdklFlj =
∑
kl

wlj−ikdkl =
∑
k∼l

wlj−ik

All this suggests that the random graphs should be “weakly rigid”, in the sense that
there are no group dual actions on them. Indeed, this should follow in principle from
the observation that if d ∈ MN(0, 1) is random, then we will have (F ∗dF )ij 6= 0 almost
everywhere, and so we will obtain Ii = Ij almost everywhere, and so abelianity.

This remains of course to be worked out, and would be a nice complement to the general
work in [79], and to asymptotic no quantum symmetry results from [69].

As a conclusion, the theory of toral subgroups T ⊂ G is probably as interesting in the
compact quantum group case as it is in the compact Lie group case. Among the possible
applications, we have a potential Fourier liberation picture for the easy quantum groups,
which is related to the classification program explained in section 9 above, as well as
various applications to the quantum automorphism groups of finite graphs.
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11. Homogeneous spaces

We have seen that the closed subgroups G ⊂ U+
N can be investigated with a variety of

techniques, for the most belonging to algebraic geometry and probability theory.
Our purpose here is to extend some of these results to certain classes of “quantum

homogeneous spaces”. This is somehow the first step into extending what we have into a
theory of noncommutative geometry, of algebraic and probabilistic nature.

Let us first investigate the real and complex spheres SN−1
R , SN−1

C , and their free ana-
logues SN−1

R,+ , SN−1
C,+ . We have promised on several occasions to study these spheres, but

have not done it yet, and our current knowledge of the subject reduces to:

Proposition 11.1. We have a correspondence spheres/quantum groups as follows,

SN−1
C

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,+

OO

→

UN // U+
N

ON
//

OO

O+
N

OO

given by the construction X → G+(X), with X ⊂ SN−1
C,+ algebraic, as well as embeddings

UN // U+
N

ON
//

OO

O+
N

OO

→

SN
2−1

C
// SN

2−1
C,+

SN
2−1

R
//

OO

SN
2−1

R,+

OO

given by the construction G ⊂ U+
N ⊂ SN

2−1
C,+ , with G ⊂ U+

N closed subgroup.

Proof. The quantum isometry group results are something that we already know, from
Theorem 2.24 above. As for the embedding assertion, this is once again something that
we know, coming from Tannakian duality, as explained in Proposition 4.20 above. �

We should mention here that the above result can be extended to the half-liberations,
and the twists [4], but for simplifying the presentation, we will keep focusing here on the
classical and free cases, and use and try to generalize the above result, as it is.

As a first philosophical conclusion, the noncommutative geometry theory that we are
trying to develop should probably concern certain special classes of algebraic manifolds
X ⊂ SN−1

C,+ , which happen to be homogeneous spaces, of some special type.
All this is of course very vague, so instead of thinking at this, let us further study the

spheres. The main strength of our quantum group theory comes from the knowledge of
the Haar functional, and in what regards the spheres, let us begin with:
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Definition 11.2. We endow each of algebras C(SN−1
× ) with its integration functional∫

SN−1
×

: C(SN−1
× )→ C(U×N )→ C

obtained by composing the morphism given by xi → u1i with the Haar integral of U×N .

Here, and in what follows, we agree to use the symbol × in order to denote the 4 cases
under investigation, namely real and complex, combined with classical and free.

Observe that the morphism C(SN−1
× ) → C(U×N ) is indeed well-defined, because the

variables Xi = u1i satisfy the defining relations for the coordinates of SN−1
× .

In the real and complex classical cases, we obtain in this way the integration with
respect to the uniform measure on SN−1

R , SN−1
C . This is indeed well-known.

In general now, let us first find an abstract characterization of this functional, via
invariance, similar to the one from the classical case. Following [29], we have:

Proposition 11.3. The integration functional of SN−1
× has the ergodicity property(∫

U×N

⊗ id

)
Φ(x) =

∫
SN−1
×

x

where Φ : C(SN−1
× )→ C(U×N )⊗ C(SN−1

× ) is the affine coaction map.

Proof. In the real case, xi = x∗i , it is enough to check the equality in the statement on an
arbitrary product of coordinates, xi1 . . . xik . The left term is as follows:(∫

U×N

⊗ id

)
Φ(xi1 . . . xik) =

∑
j1...jk

∫
U×N

ui1j1 . . . uikjk · xj1 . . . xjk

=
∑
j1...jk

∑
π,σ∈P×2 (k)

δπ(i)δσ(j)WkN(π, σ)xj1 . . . xjk

=
∑

π,σ∈P×2 (k)

δπ(i)WkN(π, σ)
∑
j1...jk

δσ(j)xj1 . . . xjk

Let us look now at the last sum on the right. The situation is as follows:
(1) In the free case we have to sum quantities of type xj1 . . . xjk , over all choices of

multi-indices j = (j1, . . . , jk) which fit into our given noncrossing pairing σ, and just by
using the condition

∑
i x

2
i = 1, we conclude that the sum is 1.

(2) The same happens in the classical case. Indeed, our pairing σ can now be crossing,
but we can use the commutation relations xixj = xjxi, and the sum is again 1.

Thus the sum on the right is 1, in all cases, and we obtain:(∫
U×N

⊗ id

)
Φ(xi1 . . . xik) =

∑
π,σ∈P×2 (k)

δπ(i)WkN(π, σ)
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On the other hand, another application of the Weingarten formula gives:∫
SN−1
×

xi1 . . . xik =

∫
U×N

u1i1 . . . u1ik

=
∑

π,σ∈P×2 (k)

δπ(1)δσ(i)WkN(π, σ)

=
∑

π,σ∈P×2 (k)

δσ(i)WkN(π, σ)

Since the Weingarten function is symmetric in π, σ, this gives the result.
In the complex case the proof is similar, by adding exponents. See [4]. �

We can now formulate an abstract characterization of the integration, as follows:

Theorem 11.4. There is a unique positive unital trace tr : C(SN−1
× )→ C satisfying

(id⊗ tr)Φ(x) = tr(x)1

where Φ is the coaction map of the corresponding quantum isometry group,

Φ : C(SN−1
× )→ C(U×N )⊗ C(SN−1

× )

and this is the canonical integration, as constructed in Definition 11.2.

Proof. First of all, it follows from the Haar integral invariance condition for U×N that the
canonical integration has indeed the invariance property in the statement.

In order to prove now the uniqueness, let tr be as in the statement. We have:

tr

(∫
U×N

⊗ id

)
Φ(x) =

∫
U×N

(id⊗ tr)Φ(x) =

∫
U×N

(tr(x)1) = tr(x)

On the other hand, according to Proposition 11.3, we have as well:

tr

(∫
U×N

⊗ id

)
Φ(x) = tr

(∫
SN−1
×

x

)
=

∫
SN−1
×

x

We therefore conclude that tr equals the standard integration, as claimed. �

Let us compute now some integrals. As a first observation, we have:

Proposition 11.5. We have the Weingarten type formula∫
SN−1
×

xi1 . . . xik dx =
∑

σ∈P×2 (k)

δσ(i)
∑

π∈P×2 (k)

WkN(π, σ)

where WkN = G−1
kN , with GkN(π, σ) = N |π∨σ|, and where δ are Kronecker type symbols.

Proof. This follows indeed from the Weingarten formula for the quantum group U×N , via
the identification xi = u1i coming from Definition 11.2 above. �
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A basic probabilistic question regarding the spheres concerns the computation of the
associated hyperspherical laws. We have here the following result, from [4], [29]:

Theorem 11.6. With N →∞, the variables
√
Nxi ∈ C(SN−1

× ) are as follows:

(1) SN−1
R : real Gaussian.

(2) SN−1
R,+ : semicircular.

(3) SN−1
C : complex Gaussian.

(4) SN−1
C,+ : circular.

Proof. We use the Weingarten formula, from Proposition 11.5 above. Since with N →∞
the Gram matrix GkN(π, σ) = N |π∨σ| is asymptotically constant, GkN(π, σ) ' δπ,σN

k/2,
its inverse is asymptotically constant as well, WkN(π, σ) ' δπ,σN

−k/2, and so:∫
SN−1
×

xi1 . . . xik dx ' N−k/2
∑

σ∈P×2 (k)

δσ(i)

With this formula in hand, we can compute the asymptotic moments of each coordinate
xi. Indeed, by setting i1 = . . . = ik = i, all Kronecker symbols are 1, and we obtain:∫

SN−1
×

xki dx ' N−k/2#P×2 (k)

Thus, in the real case, the even asymptotic moments of
√
Nxi are the numbers #P×2 (2l),

which are equal respectively to (2l)!!, 1
l+1

(
2l
l

)
, and this gives the result. In the complex

case the proof is similar, by adding exponents everywhere. See [4], [29]. �

When N ∈ N is fixed, the computations and conclusions are considerably more compli-
cated. We refer to [29] for the formulae in the classical real and half-classical real cases,
and to [23] for the formula in the free real case, which is extremely technical.

Summarizing, the free spheres have some interesting probability theory. We should
mention that, in addition, the free spheres have Laplacians, and some kind of differential
geometry structure in the spirit of [52] as well. We refer here to [29], [50], [54].

In addition to all this, which is already remarkable, we have the following somewhat
bizarre fact, having no classical counterpart, that we know from section 7 above:

Theorem 11.7. The free hypergeometric variable

Xij =
1

n

n∑
a,b=1

uia,jb ∈ C(S+
n2)

has the same law as the squared free hyperspherical variable x2
i ∈ C(SN−1

R,+ ).

Proof. This is something that we know from Theorem 7.13, ultimately coming from the
fact that S+

n2 and PO+
n are related by a cocycle twisting procedure. See [17]. �



QUANTUM GROUPS 169

The variables Xij appearing above have the following generalization:

Definition 11.8. The noncommutative random variable

X(n,m,N) =
n∑
i=1

m∑
j=1

uij ∈ C(S+
N)

is called free hypergeometric, of parameters (n,m,N).

The terminology comes from the fact that the variable X ′(n,m,N), defined as above,
but over the algebra C(Sn), follows a hypergeometric law of parameters (n,m,N).

Here are some basic asymptotic properties of the free hypergeometric laws:

Theorem 11.9. The free hypergeometric laws have the following properties:

(1) Let n,m,N →∞, with nm
N
→ λ ∈ (0,∞). Then the law of X(n,m,N) converges

to the free Poisson law of parameter λ.
(2) Let n,m,N →∞, with n

N
→ ν ∈ (0, 1) and m

N
→ 0. Then the law of S(n,m,N) =

(X(n,m,N)−mν)/
√
mν(1− ν) converges to the semicircle law.

Proof. This proof of this result, from [17], uses the Weingarten formula, along with a
number of technical estimates for Weingarten functions, the idea being as follows:

(1) From the Weingarten formula, we have:∫
X(n,m,N)p =

∑
π,σ∈NC(p)

WNC(p),N(π, σ)n|π|m|σ|

Now, as explained for instance in [27], we have:

WNC(p),N(π, σ) =

{
N−|π| +O(N−|π|−1) if π = σ

O(N |π∨σ|−|π|−|σ|) if π 6= σ

It follows that we have:

WNC(p),N(π, σ)n|π|m|σ| →

{
λ|π| if π = σ

0 if π 6= σ

Thus the p-th moment of X(n,m,N) converges to
∑

π∈NC(p) λ
|π|, which is the p-th

moment of the free Poisson distribution with parameter λ, and we are done.
(2) We need to show here that the free cumulants satisfy:

κ(p)[S(n,m,N), . . . , S(n,m,N)]→

{
1 if p = 2

0 if p 6= 2

The case p = 1 is trivial, so suppose p ≥ 2. We have:

κ(p)[S(n,m,N), . . . , S(n,m,N)] = (mν(1− ν))−p/2κ(p)[X(n,m,N), . . . , X(n,m,N)]
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On the other hand, from the Weingarten formula, we have:

κ(p)[X(n,m,N), . . . , X(n,m,N)]

=
∑

w∈NC(p)

µp(w, 1p)
∏
V ∈w

∑
πV ,σV ∈NC(V )

WNC(V ),N(πV , σV )n|πV |m|σV |

=
∑

w∈NC(p)

µp(w, 1p)
∏
V ∈w

∑
πV ,σV ∈NC(V )

(N−|πV |µ|V |(πV , σV ) +O(N−|πV |−1))n|πV |m|σV |

=
∑

π,σ∈NC(p)
π≤σ

(N−|π|µp(π, σ) +O(N−|π|−1))n|π|m|σ|
∑

w∈NC(p)
σ≤w

µp(w, 1p)

We use now the following standard identity:∑
w∈NC(p)
σ≤w

µp(w, 1p) =

{
1 if σ = 1p
0 if σ 6= 1p

This gives the following formula for the cumulants:

κ(p)[X(n,m,N), . . . , X(n,m,N)] = m
∑

π∈NC(p)

(N−|π|µp(π, 1p) +O(N−|π|−1))n|π|

It follows that for p ≥ 3 we have, as desired:

κ(p)[S(n,m,N), . . . , S(n,m,N)]→ 0

As for the remaining case p = 2, here we have:

κ(2)[S(n,m,N), S(n,m,N)] → 1

ν(1− ν)

∑
π∈NC(2)

ν |π|µ2(π, 12)

=
1

ν(1− ν)

(
ν − ν2)

= 1

Thus, we have obtained the result. See [17]. �

All this is quite interesting, and based on the above-mentioned results from [23] for the
hyperspherical laws, it is possible to work at well N fixed results. We refer here to [17]
and various related papers, part of which were already mentioned in section 7.

As a conclusion now, and getting back to our general noncommutative geometry objec-
tives mentioned before, the free spheres belong to the same circle of ideas as the quantum
groups, having some interesting algebraic geometry and probability theory.

The unification question with the quantum groups appears. This can be done by
considering various classes of homogeneous spaces, generalizing at the same time the
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spheres and the quantum groups themselves. There has been quite some work here,
starting with [34], and then going further with [6], and even further with [7].

In what follows we will describe the formalism in [6], which is quite broad, while re-
maining not very abstract. Let us start with the following definition:

Definition 11.10. Associated to any integers L ≤M ≤ N are the spaces

OL
MN =

{
T : E → F isometry

∣∣∣E ⊂ RN , F ⊂ RM , dimRE = L
}

UL
MN =

{
T : E → F isometry

∣∣∣E ⊂ CN , F ⊂ CM , dimCE = L
}

where the notion of isometry is with respect to the usual real/complex scalar products.

As a first observation, at L = M = N we obtain the groups ON , UN .
Yet another interesting specialization is L = M = 1. Here the elements of O1

1N are the
isometries T : E → R, with E ⊂ RN one-dimensional, and such an isometry is uniquely
determined by the element T−1(1) ∈ RN , which must belong to the sphere SN−1

R . Thus,
we have O1

1N = SN−1
R . Similarly, in the complex case we have U1

1N = SN−1
C .

In general, the most convenient is to view the elements of OL
MN , U

L
MN as rectangular

matrices, and to use matrix calculus for their study:

Proposition 11.11. We have identifications of compact spaces

OL
MN '

{
U ∈MM×N(R)

∣∣∣UU t = projection of trace L
}

UL
MN '

{
U ∈MM×N(C)

∣∣∣UU∗ = projection of trace L
}

with each partial isometry being identified with the corresponding rectangular matrix.

Proof. We can indeed identify the partial isometries T : E → F with their corresponding
extensions U : RN → RM , U : CN → CM , obtained by setting UE⊥ = 0, and then identify
these latter linear maps U with the corresponding rectangular matrices. �

As an illustration, at L = M = N we recover in this way the usual matrix description
of ON , UN . Also, at L = M = 1 we obtain the usual description of SN−1

R , SN−1
C .

Now back to the general case, observe that the isometries T : E → F , or rather their
extensions U : KN → KM , with K = R,C, obtained by setting UE⊥ = 0, can be composed
with the isometries of KM ,KN , according to the following scheme:

KN B∗ // KN U // KM A // KM

B(E) //

OO

E
T //

OO

F //

OO

A(F )

OO
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In other words, the groups OM × ON , UM × UN act respectively on OL
MN , U

L
MN . With

the identifications in Proposition 11.11 made, the statement here is:

Proposition 11.12. We have action maps as follows, which are transitive,

OM ×ON y OL
MN : (A,B)U = AUBt

UM × UN y UL
MN : (A,B)U = AUB∗

whose stabilizers are respectively OL ×OM−L ×ON−L and UL × UM−L × UN−L.

Proof. We have indeed action maps as in the statement, which are transitive. Let us
compute now the stabilizer G of the point U = (1

0
0
0). Since the elements (A,B) ∈ G

satisfy AU = UB, their components must be of the form A = (x0
∗
a), B = (x∗

0
b). Now since

A,B are both unitaries, these matrices follow to be block-diagonal, and we obtain:

G =

{
(A,B)

∣∣∣A =

(
x 0
0 a

)
, B =

(
x 0
0 b

)}
We conclude that the stabilizer of U = (1

0
0
0) is parametrized by triples (x, a, b) belonging

respectively to OL ×OM−L ×ON−L and UL × UM−L × UN−L, as claimed. �

Finally, let us work out the quotient space description of OL
MN , U

L
MN :

Theorem 11.13. We have isomorphisms of homogeneous spaces as follows,

OL
MN = (OM ×ON)/(OL ×OM−L ×ON−L)

UL
MN = (UM × UN)/(UL × UM−L × UN−L)

with the quotient maps being given by (A,B)→ AUB∗, where U = (1
0

0
0).

Proof. This is just a reformulation of Proposition 11.12 above, by taking into account the
fact that the fixed point used in the proof there was U = (1

0
0
0). �

Once again, the basic examples here come from the cases L = M = N and L = M = 1,
where the quotient spaces at right are respectively ON , UN and ON/ON−1, UN/UN−1. In
fact, in the general L = M case we obtain the following spaces, considered in [34]:

OM
MN = (OM ×ON)/(OM ×ON−M) = ON/ON−M

UM
MN = (UM × UN)/(UM × UN−M) = UN/UN−M

The idea now is that we can liberate OL
MN , U

L
MN , as follows:

Definition 11.14. Associated to any integers L ≤M ≤ N are the algebras

C(OL+
MN) = C∗

(
(uij)i=1,...,M,j=1,...,N

∣∣∣u = ū, uut = projection of trace L
)

C(UL+
MN) = C∗

(
(uij)i=1,...,M,j=1,...,N

∣∣∣uu∗, ūut = projections of trace L
)

with the symbol C∗ standing as usual for universal enveloping C∗-algebra.
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Observe that the above universal algebras constructed above are indeed well-defined,
because the trace conditions in the statement read:∑

ij

uiju
∗
ij =

∑
ij

u∗ijuij = L

Thus we have ||uij|| ≤
√
L, and so the universal algebras are well-defined.

As a first illustration for this construction, we have the following result:

Proposition 11.15. At L = M = N we obtain the quantum groups ON , O
+
N , UN , U

+
N .

Proof. We recall that the various quantum groups are constructed as follows, with the
symbol × standing once again for “classical” or “free”:

C(O×N) = C∗×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut = utu = 1
)

C(U×N ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣uu∗ = u∗u = 1, ūut = utū = 1
)

On the other hand, according to Proposition 11.11 and to Definition 11.14 above, we
have the following presentation results:

C(ON×
NN) = C∗×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut = projection of trace N
)

C(UN×
NN ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣uu∗, ūut = projections of trace N
)

We use now the standard fact that if p = aa∗ is a projection then q = a∗a is a projection
too. Together with Tr(uu∗) = Tr(utū) and Tr(ūut) = Tr(u∗u), this gives:

C(ON×
NN) = C∗×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut, utu = projections of trace N
)

C(UN×
NN ) = C∗×

(
(uij)i,j=1,...,N

∣∣∣uu∗, u∗u, ūut, utū = projections of trace N
)

Now observe that, in tensor product notation, and by using the normalized trace, the
conditions at right are all of the form (tr ⊗ id)p = 1, with p = uu∗, u∗u, ūut, utū. We
therefore obtain (tr ⊗ ϕ)(1 − p) = 0 for any faithful state ϕ, and it follows that the
projections p = uu∗, u∗u, ūut, utū must be all equal to the identity, as desired. �

We have the following result:

Proposition 11.16. The spaces UL×
MN have the following properties:

(1) We have an action U×M × U
×
N y UL×

MN , given by uij →
∑

kl aik ⊗ b∗jl ⊗ ukl.
(2) We have a map U×M × U

×
N → UL×

MN , given by uij →
∑

l≤L ail ⊗ b∗jl.

Similar results hold for the spaces OL×
MN , with all the ∗ exponents removed.
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Proof. In the classical case, the transpose of the action map UM ×UN y UL
MN and of the

quotient map UM × UN → UL
MN are as follows, where J = (1

0
0
0):

ϕ → ((A,B, U)→ ϕ(AUB∗))

ϕ → ((A,B)→ ϕ(AJB∗))

But with ϕ = uij we obtain precisely the formulæ in the statement. The proof in the
orthogonal case is similar. Regarding now the free case, the proof goes as follows:

(1) Assuming uu∗u = u, with Uij =
∑

kl aik ⊗ b∗jl ⊗ ukl we have:

(UU∗U)ij =
∑
pq

∑
klmnst

aika
∗
qmaqs ⊗ b∗plbpnb∗jt ⊗ uklu∗mnust

=
∑
klmt

aik ⊗ b∗jt ⊗ uklu∗mlumt =
∑
kt

aik ⊗ b∗jt ⊗ ukt = Uij

Also, assuming that we have
∑

ij uiju
∗
ij = L, we obtain:∑

ij

UijU
∗
ij =

∑
ij

∑
klst

aika
∗
is ⊗ b∗jlbjt ⊗ uklu∗st =

∑
kl

1⊗ 1⊗ uklu∗kl = L

(2) Assuming uu∗u = u, with Vij =
∑

l≤L ail ⊗ b∗jl we have:

(V V ∗V )ij =
∑
pq

∑
x,y,z≤L

aixa
∗
qyaqz ⊗ b∗pxbpyb∗jz =

∑
x≤L

aix ⊗ b∗jx = Vij

Also, assuming that we have
∑

ij uiju
∗
ij = L, we obtain:∑

ij

VijV
∗
ij =

∑
ij

∑
l,s≤L

aila
∗
is ⊗ b∗jlbjs =

∑
l≤L

1 = L

By removing all the ∗ exponents, we obtain as well the orthogonal results. �

Let us examine now the relation between the above maps. In the classical case, given
a quotient space X = G/H, the associated action and quotient maps are given by:{

a : G×X → X : (g, g′H)→ gg′H

p : G→ X : g → gH

Thus we have a(g, p(g′)) = p(gg′). In our context, a similar result holds:

Theorem 11.17. With G = GM ×GN and X = GL
MN , where GN = O×N , U

×
N , we have

G×G m //

id×p

��

G

p

��
G×X a // X

where a, p are the action map and the map constructed in Proposition 11.16.
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Proof. At the level of the associated algebras of functions, we must prove that the following
diagram commutes, where Φ, π are morphisms of algebras induced by a, p:

C(X)
Φ //

π

��

C(G×X)

id⊗π

��
C(G)

∆ // C(G×G)

When going right, and then down, the composition is as follows:

(id⊗ π)Φ(uij) = (id⊗ π)
∑
kl

aik ⊗ b∗jl ⊗ ukl =
∑
kl

∑
s≤L

aik ⊗ b∗jl ⊗ aks ⊗ b∗ls

On the other hand, when going down, and then right, the composition is as follows,
where F23 is the flip between the second and the third components:

∆π(uij) = F23(∆⊗∆)
∑
s≤L

ais ⊗ b∗js = F23

(∑
s≤L

∑
kl

aik ⊗ aks ⊗ b∗jl ⊗ b∗ls

)
Thus the above diagram commutes indeed, and this gives the result. �

Let us discuss now the integration over GL
MN . As in the case of the free spheres, the

integration functional is best introduced as follows:

Definition 11.18. The integration functional of GL
MN is the composition∫

GLML

: C(GL
MN)→ C(GM ×GN)→ C

of the representation uij →
∑

l≤L ail ⊗ b∗jl with the Haar functional of GM ×GN .

Observe that in the case L = M = N we obtain the integration over GN . Also, at
L = M = 1 we obtain the integration over the sphere. More generally, at any L = M we
obtain the integration over the corresponding row algebra of GM , discussed in [34].

In the general case now, we first have the following result:

Proposition 11.19. The integration functional has the invariance property(
id⊗

∫
GLMN

)
Φ(x) =

∫
GLMN

x

with respect to the coaction map given by Φ(uij) =
∑

kl aik ⊗ b∗jl ⊗ ukl.
Proof. We restrict the attention to the orthogonal case, the proof in the unitary case being
similar. We must check the following formula:(

id⊗
∫
GLMN

)
Φ(ui1j1 . . . uisjs) =

∫
GLMN

ui1j1 . . . uisjs
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Let us compute the left term. This is given by:

X =

(
id⊗

∫
GLMN

)∑
krlr

ai1k1 . . . aisks ⊗ b∗j1l1 . . . b
∗
jsls ⊗ uk1l1 . . . uksls

=
∑
krlr

∑
mr≤L

ai1k1 . . . aisks ⊗ b∗j1l1 . . . b
∗
jsls

∫
GM

ak1m1 . . . aksms

∫
GN

b∗l1m1
. . . b∗lsms

=
∑
mr≤L

∑
kr

ai1k1 . . . aisks

∫
GM

ak1m1 . . . aksms ⊗
∑
lr

b∗j1l1 . . . b
∗
jsls

∫
GN

b∗l1m1
. . . b∗lsms

By using now the invariance property of the Haar functionals of GM , GN , we obtain:

X =
∑
mr≤L

(
id⊗

∫
GM

)
∆(ai1m1 . . . aisms)⊗

(
id⊗

∫
GN

)
∆(b∗j1m1

. . . b∗jsms)

=
∑
mr≤L

∫
GM

ai1m1 . . . aisms ⊗
∫
GN

b∗j1m1
. . . b∗jsms

=

(∫
GM

⊗
∫
GN

) ∑
mr≤L

ai1m1 . . . aisms ⊗ b∗j1m1
. . . b∗jsms

But this gives the formula in the statement, and we are done. �

The integration formula over GL
MN is as follows:

Theorem 11.20. We have the Weingarten type formula∫
GLMN

ui1j1 . . . uisjs =
∑
πστν

L|σ∨ν|δπ(i)δτ (j)WsM(π, σ)WsN(τ, ν)

where WsM = G−1
sM , with GsM(π, σ) = M |π∨σ|.

Proof. By using the quantum group Weingarten formula for GM , GN , we obtain:∫
GLMN

ui1j1 . . . uisjs =
∑

l1...ls≤L

∫
GM

ai1l1 . . . aisls

∫
GN

b∗j1l1 . . . b
∗
jsls

=
∑

l1...ls≤L

∑
πσ

δπ(i)δσ(l)WsM(π, σ)
∑
τν

δτ (j)δν(l)WsN(τ, ν)

=
∑
πστν

( ∑
l1...ls≤L

δσ(l)δν(l)

)
δπ(i)δτ (j)WsM(π, σ)WsN(τ, ν)

The coefficient on the left being L|σ∨ν|, we obtain the formula in the statement. �

We can now derive an abstract characterization of the integration, as follows:
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Proposition 11.21. The integration functional is the unique positive unital trace

tr : C(GL
MN)→ C

which is invariant under the action of GM ×GN .

Proof. We use the same method as for spheres [29], or as for the spaces considered in [34],
the point being to show that the integration has the following ergodicity property:(∫

GM

⊗
∫
GN

⊗id
)

Φ(x) =

∫
GLMN

x

We restrict the attention to the orthogonal case, the proof in the unitary case being
similar. We must verify that the following holds:(∫

GM

⊗
∫
GN

⊗id
)

Φ(ui1j1 . . . uikjk) =

∫
GLMN

ui1j1 . . . uikjk

By using the Weingarten formula, the left term can be written as follows:

X =
∑
k1...ks

∑
l1...ls

∫
GM

ai1k1 . . . aisks

∫
GN

bj1l1 . . . bjsls · uk1l1 . . . uksls

=
∑
k1...ks

∑
l1...ls

∑
πσ

δπ(i)δσ(k)WsM(π, σ)
∑
τν

δτ (j)δν(l)WsN(τ, ν) · uk1l1 . . . uksls

=
∑
πστν

δπ(i)δτ (j)WsM(π, σ)WsN(τ, ν)
∑
k1...ks

∑
l1...ls

δσ(k)δν(l)uk1l1 . . . uksls

We therefore obtain the following formula:

X =
∑
πστν

L|σ∨ν|δπ(i)δτ (j)WsM(π, σ)WsN(τ, ν)

Now by comparing with the formula in Theorem 11.20, this proves our claim.
Assume now that tr : C(GL

MN)→ C satisfies the invariance condition. We have:

tr

(∫
GM

⊗
∫
GN

⊗ id
)

Φ(x) =

(∫
GM

⊗
∫
GN

⊗tr
)

Φ(x)

=

(∫
GM

⊗
∫
GN

)
(id⊗ tr)Φ(x)

=

(∫
GM

⊗
∫
GN

)
(tr(x)1) = tr(x)

On the other hand, according to the formula established above, we have as well:

tr

(∫
GM

⊗
∫
GN

⊗ id
)

Φ(x) = tr

(∫
GLMN

(x)

)
=

∫
GLMN

x

Thus tr must be the uniform integration, and this finishes the proof. �
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We recall that, at least in the quantum group case, and of course according to our
philosophy, having a “true” liberation requires some Bercovici-Pata results.

Our purpose now will be that of establishing such liberation results, in the present
homogeneous space setting. Let us begin with some preliminary computations:

Proposition 11.22. For a sum of following type,

χE =
∑

(ij)∈E

uij

with the coordinates (ij) being non-overlapping, we have∫
GLMN

χsE =
∑
πστν

K |π∨τ |L|σ∨ν|WsM(π, σ)WsN(τ, ν)

where K = |E| is the cardinality of the indexing set.

Proof. In terms of K = |E|, we can write E = {(α(i), β(i))}, for certain embeddings
α : {1, . . . , K} ⊂ {1, . . . ,M} and β : {1, . . . , K} ⊂ {1, . . . , N}. In terms of these maps
α, β, the moment in the statement is given by:

Ms =

∫
GLMN

(∑
i≤K

uα(i)β(i)

)s

By using the Weingarten formula, we can write this quantity as follows:

Ms =

∫
GLMN

∑
i1...is≤K

uα(i1)β(i1) . . . uα(is)β(is)

=
∑

i1...is≤K

∑
πστν

L|σ∨ν|δπ(α(i1), . . . , α(is))δτ (β(i1), . . . , β(is))WsM(π, σ)WsN(τ, ν)

=
∑
πστν

( ∑
i1...is≤K

δπ(i)δτ (i)

)
L|σ∨ν|WsM(π, σ)WsN(τ, ν)

Now since the coefficient on the left in the last formula equals K |π∨τ |, we obtain the
formula in the statement. �

We can now formulate our liberation result, as follows:

Theorem 11.23. In the context of the liberation operations OL
MN → OL+

MN , UL
MN → UL+

MN ,
the laws of the sums of non-overlapping coordinates,

χE =
∑

(ij)∈E

uij

are in Bercovici-Pata bijection, in the |E| = κN,L = λN,M = µN,N →∞ limit.
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Proof. This result, from [6], extends some previous findings from [34], which in turn extend
some previous findings from [29], in the sphere case, explained above.

We use the general theory in [20], [35]. According to Proposition 11.22 above, in terms
of K = |E|, the moments of the variables in the statement are given by:

Ms =
∑
πστν

K |π∨τ |L|σ∨ν|WsM(π, σ)WsN(τ, ν)

We use now two standard facts, namely the fact that in the N → ∞ limit the
Weingarten matrix WsN is concentrated on the diagonal, and the fact that we have

|π ∨ σ| ≤ |π|+|σ|
2

, with equality precisely when π = σ. See [20]. In the regime K =
κN,L = λN,M = µN,N →∞ from the statement, we therefore obtain:

Ms '
∑
πτ

K |π∨τ |L|π∨τ |M−|π|N−|τ |

'
∑
π

K |π|L|π|M−|π|N−|π|

=
∑
π

(
κλ

µ

)|π|
In order to interpret this formula, we use general theory from [76], [89]:
(1) For GN = ON/O

+
N , the above variables χE follow to be asymptotically Gauss-

ian/semicircular, of parameter κλ
µ

, and hence in Bercovici-Pata bijection.

(2) For GN = UN/U
+
N the situation is similar, with χE being asymptotically complex

Gaussian/circular, of parameter κλ
µ

, and in Bercovici-Pata bijection. �

Summarizing, the liberation operations OL
MN → OL+

MN and UL
MN → UL+

MN discussed here
are in tune with the liberation operation from probability theory [32].

As a first comment, there are several possible extensions of the above result, for instance
by using quantum reflection groups instead of unitary quantum groups, and by using
twisting operations as well. We refer here to [6], and to [34] as well, for a number of
supplementary results, which can be obtained by using the stronger formalism there.

Let us also mention that the above formalism, from [6], can be further extended, to a
certain class of “affine homogeneous spaces”, which appear as certain special submanifolds
X ⊂ SN−1

C,+ . However, there is still no known axiomatization of the class of noncommuta-
tive algebraic manifolds that we can obtain in this way, at this level. See [7].

In relation with all this, and with noncommutative geometry in general, there are some
interesting projective geometry aspects as well. Indeed, in analogy with the isomorphism
PO+

N = PU+
N , discussed in section 5 above, one can prove that there exists a “free

projective space”, which is unique, at the same time real and complex, PN−1
R,+ = PN−1

C,+ .
This is quite interesting, and the further study here is not developed yet. See [30].
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As a very general comment now, the compact quantum groups are meant to act of
course, but not only on geometric objects. Besides the work regarding the actions of the
compact quantum groups on compact Riemannian manifolds [9], [39], [40], [63], [64], there
has been a lot of work as well concerning the actions on abstract von Neumann algebras
and subfactors [56], and abstract sequences of random variables [27], [68]. There is as well
an emerging differential geometry theory for the compact quantum groups and related
homogeneous spaces, and we refer here to [29], [50], [54], [55], [85].

Getting back now to noncommutative geometry, we believe that the examples of non-
commutative manifolds studied here, which obviously have some Riemannian features, are
not very far from the manifolds of Connes [52], and could eventually fit into an extension
of his theory. To be more precise, one theoretical downside of Connes’ theory is the lack
of an analogue of the Nash embedding theorem [74]. Assuming that this question will be
solved one day, and with the target of the “generalized Nash embeddings” being the free
sphere SN−1

C,+ , the unification problem would be probably solvable.
In short, we believe in the existence of a “Nash-Connes Geometry”, covering most of

the interesting examples of noncommutative manifolds known so far.
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12. Modelling questions

One interesting method for the study of the closed subgroups G ⊂ U+
N , that we have not

tried yet, consists in modelling the standard coordinates uij ∈ C(G) by concrete variables
Uij ∈ B. Indeed, assuming that the model is faithful in some suitable sense, that the
algebra B is something quite familiar, and that the variables Uij are not too complicated,
all questions about G would correspond in this way to routine questions inside B.

Regarding the choice of B, some very convenient algebras are the random matrix ones,
B = MK(C(T )), with K ∈ N, and with T being a compact space. These algebras gen-
eralize indeed the most familiar algebras that we know, namely the matrix ones MK(C),
and the commutative ones C(T ). We are led in this way to:

Definition 12.1. A matrix model for G ⊂ U+
N is a morphism of C∗-algebras

π : C(G)→MK(C(T ))

where T is a compact space, and K ≥ 1 is an integer.

More generally, we can try to model in this way the standard coordinates xi ∈ C(X)
of the various algebraic manifolds X ⊂ SN−1

C,+ . Indeed, these manifolds generalize the

compact matrix quantum groups, which appear as G ⊂ U+
N ⊂ SN

2−1
C,+ , and we have many

other interesting examples, such as the homogeneous spaces discussed in section 11.
However, at this level of generality, not much general theory is available. It is elementary

to show that, under the technical assumption Xc 6= ∅, there exists a universal K × K
model, which factorizes as follows, with X(K) ⊂ X being a certain submanifold:

πK : C(X)→ C(X(K)) ⊂MK(C(TK))

To be more precise, TK appears by imposing to the complexK×K matrices the relations
defining X, and the algebra C(X(K)) is by definition the image of πK . By setting as well
X(∞) = ∪K∈NX(K), we are led in this way to a filtration of X, as follows:

Xc = X(1) ⊂ X(2) ⊂ X(3) ⊂ . . . . . . ⊂ X(∞) ⊂ X

It is possible to say a few non-trivial things about these manifolds X(K), by using
algebraic and functional analytic techniques, and we refer here to [14], [48].

In the compact quantum group case, however, that we are mainly interested in here,
the matrix truncations G(K) ⊂ G are generically not subgroups at K ≥ 2, and so this
theory is a priori not very useful, at least in its basic form presented here.

In order to reach, however, to some results, let us introduce as well:

Definition 12.2. A matrix model π : C(G)→MK(C(T )) is called stationary when∫
G

=

(
tr ⊗

∫
T

)
π

where
∫
T

is the integration with respect to a given probability measure on T .
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Observe that this definition can be extended as well to the algebraic manifold case,
X ⊂ SN−1

C,+ , provided that our manifolds have certain integration functionals
∫
X

. This

is the case for instance with the homogeneous spaces discussed in section 11, where
∫
X

appears as the unique G-invariant trace, with respect to the underlying quantum group
G. However, the axiomatization of such manifolds being not available yet, we will keep
this as a remark, and get back in what follows, until the end, to the quantum groups.

So, back to Definition 12.2, as it is, our first comment concerns the terminology. The
term “stationary” comes from a functional analytic interpretation of all this, with a certain
Cesàro limit being needed to be stationary, and this will be explained later on. Yet another
explanation comes from a certain relation with the lattice models, but this relation is
rather something folklore, not axiomatized yet. We will be back to this later.

As a first result now, the stationarity property implies the faithfulness:

Theorem 12.3. Assuming that G ⊂ U+
N has a stationary model,

π : C(G)→MK(C(T )) ,

∫
G

=

(
tr ⊗

∫
T

)
π

it follows that G must be coamenable, and that the model is faithful.

Proof. Assume that we have a stationary model, as in the statement. By performing
the GNS construction with respect to

∫
G

, we obtain a factorization as follows, which
commutes with the respective canonical integration functionals:

π : C(G)→ C(G)red ⊂MK(C(T ))

Thus, in what regards the coamenability question, we can assume that π is faithful.
With this assumption made, observe that we have embeddings as follows:

C∞(G) ⊂ C(G) ⊂MK(C(T ))

An idea here would be that of lifting the counit of C∞(G) into a linear form over
MK(C(T )), which would restrict into a counit for C(G). However, this is not obvious.

In short, we must ask for help a fellow mathematician. And our colleague will point
out that the GNS construction gives in fact a better embedding, as follows:

L∞(G) ⊂MK(L∞(T ))

Now since the von Neumann algebra on the right is of type I, so must be its subalgebra
A = L∞(G). This means that, when writing the center of this latter algebra as Z(A) =
L∞(X), the whole algebra decomposes over X, as an integral of type I factors:

L∞(G) =

∫
X

MKx(C) dx

In particular, we can see from this that C∞(G) ⊂ L∞(G) has a unique C∗-norm, and so
G is coamenable. Thus we have proved our first assertion, and the second assertion follows
as well, because our factorization of π consists of the identity, and of an inclusion. �
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All this might seem a bit mysterious, but we really need the above result, and have no
simple proof for it. For some background on these questions, which are quite beautiful,
we recommend [90] and the other papers of von Neumann, which are a must-read.

Regarding now the examples of stationary models, we first have:

Proposition 12.4. The following have stationary models:

(1) The compact Lie groups.
(2) The finite quantum groups.

Proof. Both these assertions are elementary, with the proofs being as follows:
(1) This is clear, because we can use here the identity map:

id : C(G)→M1(C(G))

(2) This is clear as well, because we can use here the regular representation:

λ : C(G)→M|G|(C)

To be more precise, if we endow the linear space H = C(G) with the scalar product
< a, b >=

∫
G
ab∗, we have a representation λ : C(G) → B(H) given by a → [b → ab].

Now since we have H ' C|G| with |G| = dimA, we can view λ as a matrix model map,
as above, and the stationarity axiom

∫
G

= tr ◦ λ is satisfied, as desired. �

In order to discuss now the group duals, let us recall that, according to the general
theory of group algebras, the matrix models π : C∗(Γ) → MK(C(T )) must come from
group representations ρ : Γ→ C(T, UK). With this identification made, we have:

Proposition 12.5. An matrix model ρ : Γ ⊂ C(T, UK) is stationary when:∫
T

tr(gx)dx = 0,∀g 6= 1

Moreover, the examples include all the abelian groups, and all finite groups.

Proof. Consider indeed a group embedding ρ : Γ ⊂ C(T, UK), which produces by linearity
a matrix model π : C∗(Γ) → MK(C(T )). By linearity and continuity, it is enough to
formulate the stationarity condition on the group elements g ∈ C∗(Γ). With the notation
ρ(g) = (x→ gx), this stationarity condition reads:∫

T

tr(gx)dx = δg,1

Since this equality is trivially satisfied at g = 1, where by unitality of our representation
we must have gx = 1 for any x ∈ T , we are led to the condition in the statement.

Regarding now the examples, these are both clear. More precisely:
(1) When Γ is abelian we can use the following trivial embedding:

Γ ⊂ C(Γ̂, U1) : g → [χ→ χ(g)]
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(2) When Γ is finite we can use the left regular representation:

Γ ⊂ L(CΓ) : g → [h→ gh]

Indeed, in both cases, the stationarity condition is trivially satisfied. �

In order to further advance, and to come up with some tools for discussing the non-

stationary case as well, let us keep looking at the group duals G = Γ̂. We know that a
model π : C∗(Γ)→MK(C(T )) must come from a group representation ρ : Γ→ C(T, UK).
Now observe that when ρ is faithful, the representation π is in general not faithful, for
instance because when T = {.} its target algebra is finite dimensional. On the other hand,
this representation “reminds” Γ, and so can be used in order to fully understand Γ.

Summarizing, we have a new idea here, basically saying that, for practical purposes,
the faithfuless property can be replaced with something much weaker. This weaker notion
is called “inner faithfulness”, and the theory here, from [12], is as follows:

Definition 12.6. Let π : C(G)→MK(C(T )) be a matrix model.

(1) The Hopf image of π is the smallest quotient Hopf C∗-algebra C(G) → C(H)
producing a factorization of type π : C(G)→ C(H)→MK(C(T )).

(2) When the inclusion H ⊂ G is an isomorphism, i.e. when there is no non-trivial
factorization as above, we say that π is inner faithful.

These constructions work in fact for any C∗-algebra representation π : C(G)→ B, but
here we will be only interested in the random matrix case, B = MK(C(T )).

In the case where G = Γ̂ is a group dual, π must come from a group representation
ρ : Γ → C(T, UK), and the above factorization is simply the one obtained by taking the
image, ρ : Γ→ Λ ⊂ C(T, UK). Thus π is inner faithful when Γ ⊂ C(T, UK).

Also, given a compact group G, and elements g1, . . . , gK ∈ G, we have a representation
π : C(G)→ CK , given by f → (f(g1), . . . , f(gK)). The minimal factorization of π is then
via C(H), with H = < g1, . . . , gK >, and π is inner faithful when G = H.

In general, the existence and uniqueness of the Hopf image comes from dividing C(G)
by a suitable ideal, as explained in [12]. In Tannakian terms, we have:

Theorem 12.7. Assuming G ⊂ U+
N , with fundamental corepresentation u = (uij), the

Hopf image of π : C(G)→MK(C(T )) comes from the Tannakian category

Ckl = Hom(U⊗k, U⊗l)

where Uij = π(uij), and where the spaces on the right are taken in a formal sense.

Proof. Since the morphisms increase the intertwining spaces, when defined either in a
representation theory sense, or just formally, we have inclusions as follows:

Hom(u⊗k, u⊗l) ⊂ Hom(U⊗k, U⊗l)
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More generally, we have such inclusions when replacing (G, u) with any pair producing
a factorization of π. Thus, by Tannakian duality, the Hopf image must be given by the
fact that the intertwining spaces must be the biggest, subject to the above inclusions.

On the other hand, since u is biunitary, so is U , and it follows that the spaces on the
right form a Tannakian category. Thus, we have a quantum group (H, v) given by:

Hom(v⊗k, v⊗l) = Hom(U⊗k, U⊗l)

By the above discussion, C(H) follows to be the Hopf image of π, as claimed. �

The inner faithful models π : C(G)→MK(C(T )) are a very interesting notion, because
they are not subject to the coamenability condition on G, as it was the case with the
stationary models, as explained in Theorem 12.3. In fact, there are no known restrictions
on the class of closed subgroups G ⊂ U+

N which can be modelled in an inner faithful way.
Thus, our modelling theory applies a priori to any compact quantum group.

Regarding now the study of the inner faithful models, a key problem is that of computing
the Haar integration functional. The result here, from [93], is as follows:

Theorem 12.8. Given an inner faithful model π : C(G)→MK(C(T )), we have∫
G

= lim
k→∞

1

k

k∑
r=1

∫ r

G

where
∫ r
G

= (ϕ ◦ π)∗r, with ϕ = tr ⊗
∫
T

being the random matrix trace.

Proof. As a first observation, there is an obvious similarity here with the Woronowicz
construction of the Haar measure, explained in section 3 above. In fact, the above result
holds more generally for any model π : C(G) → B, with ϕ ∈ B∗ being a faithful trace.
With this picture in hand, the Woronowicz construction simply corresponds to the case
π = id, and the result itself is therefore a generalization of Woronowicz’s result.

In order to prove now the result, we can proceed as in section 3. If we denote by
∫ ′
G

the limit in the statement, we must prove that this limit converges, and that we have∫ ′
G

=
∫
G

. It is enough to check this on the coefficients of corepresentations, and if we let

v = u⊗k be one of the Peter-Weyl corepresentations, we must prove that we have:(
id⊗

∫ ′
G

)
v =

(
id⊗

∫
G

)
v

We already know, from Theorem 3.18 above, that the matrix on the right is the or-
thogonal projection onto Fix(v). Regarding now the matrix on the left, Proposition 3.16
applied to the linear form ϕπ tells us that this is the orthogonal projection onto the
1-eigenspace of (id⊗ ϕπ)v. Now observe that, if we set Vij = π(vij), we have:

(id⊗ ϕπ)v = (id⊗ ϕ)V
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Thus, we can apply Proposition 3.17, or rather use the same computation as there,
which is only based on the biunitarity condition, and we conclude that the 1-eigenspace
that we are interested in equals Fix(V ). But, according to Theorem 12.7, we have:

Fix(V ) = Fix(v)

Thus, we have proved that we have
∫ ′
G

=
∫
G

, as desired. �

Getting back now to the stationary models, we have the following result:

Theorem 12.9. For π : C(G)→MK(C(T )), the following are equivalent:

(1) Im(π) is a Hopf algebra, and (tr ⊗
∫
T

)π is the Haar integration on it.
(2) ψ = (tr ⊗

∫
X

)π satisfies the idempotent state property ψ ∗ ψ = ψ.
(3) T 2

e = Te, ∀p ∈ N, ∀e ∈ {1, ∗}p, where (Te)i1...ip,j1...jp = (tr ⊗
∫
T

)(U e1
i1j1

. . . U
ep
ipjp

).

If these conditions are satisfied, we say that π is stationary on its image.

Proof. Given a matrix model π : C(G)→MK(C(T )) as in the statement, we can factorize
it via its Hopf image, as in Definition 12.6 above:

π : C(G)→ C(H)→MK(C(T ))

Now observe that the conditions (1,2,3) in the statement depend only on the factorized
representation ν : C(H) → MK(C(T )). Thus, we can assume in practice that we have
G = H, which means that we can assume that π is inner faithful.

With this assumption made, the general integration formula from Theorem 12.8 applies
to our situation, and the proof of the equivalences goes as follows:

(1) =⇒ (2) This is clear from definitions, because the Haar integration on any compact
quantum group satisfies the idempotent equation ψ ∗ ψ = ψ.

(2) =⇒ (1) Assuming ψ ∗ ψ = ψ, we have ψ∗r = ψ for any r ∈ N, and Theorem 12.8
gives

∫
G

= ψ. By using now Theorem 12.3, we obtain the result.
In order to establish now (2)⇐⇒ (3), we use the following elementary formula, which

comes from the definition of the convolution operation:

ψ∗r(ue1i1j1 . . . u
ep
ipjp

) = (T re )i1...ip,j1...jp

(2) =⇒ (3) Assuming ψ ∗ ψ = ψ, by using the above formula at r = 1, 2 we obtain
that the matrices Te and T 2

e have the same coefficients, and so they are equal.
(3) =⇒ (2) Assuming T 2

e = Te, by using the above formula at r = 1, 2 we obtain that
the linear forms ψ and ψ ∗ ψ coincide on any product of coefficients ue1i1j1 . . . u

ep
ipjp

. Now

since these coefficients span a dense subalgebra of C(G), this gives the result. �

As a conclusion, we have now a purely computational criterion for verifying the station-
arity property, which is potentially quite powerful. As a first illustration, we will apply
this criterion to certain models for the quantum groups O∗N , U

∗
N . We first have:
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Proposition 12.10. We have a matrix model as follows,

C(O∗N)→M2(C(UN)) , uij →
(

0 vij
v̄ij 0

)
where v is the fundamental corepresentation of C(UN), as well as a model as follows,

C(U∗N)→M2(C(UN × UN)) , uij →
(

0 vij
wij 0

)
where v, w are the fundamental corepresentations of the two copies of C(UN).

Proof. It is routine to check that the matrices on the right are indeed biunitaries, and
since the first matrix is also self-adjoint, we obtain in this way models as follows:

C(O+
N)→M2(C(UN)) , C(U+

N )→M2(C(UN × UN))

Regarding now the half-commutation relations, this comes from something general,
regarding the antidiagonal 2× 2 matrices. Consider indeed matrices as follows:

Xi =

(
0 xi
yi 0

)
We have then the following computation:

XiXjXk =

(
0 xi
yi 0

)(
0 xj
yj 0

)(
0 xk
yk 0

)
=

(
0 xiyjxk

yixjyk 0

)
Since this quantity is symmetric in i, k, we obtain XiXjXk = XkXjXi. Thus, the

antidiagonal 2× 2 matrices half-commute, and so our models factorize as claimed. �

We can now formulate our first concrete modelling theorem, as folllows:

Theorem 12.11. The above antidiagonal models, namely

C(O∗N)→M2(C(UN)) , C(U∗N)→M2(C(UN × UN))

are both stationary.

Proof. Let us first discuss the case of O∗N . We will use the stationarity criterion in Theorem
12.9 (3) above. Since the fundamental representation is self-adjoint, the various matrices
Te with e ∈ {1, ∗}p are all equal. We denote this common matrix by Tp.

According to the definition of Tp, this matrix is given by:

(Tp)i1...ip,j1...jp =

(
tr ⊗

∫
H

)[(
0 vi1j1
v̄i1j1 0

)
. . . . . .

(
0 vipjp

v̄ipjp 0

)]
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Since when multipliying an odd number of antidiagonal matrices we obtain an atidiag-
onal matrix, we have Tp = 0 for p odd. Also, when p is even, we have:

(Tp)i1...ip,j1...jp =

(
tr ⊗

∫
H

)(
vi1j1 . . . v̄ipjp 0

0 v̄i1j1 . . . vipjp

)
=

1

2

(∫
H

vi1j1 . . . v̄ipjp +

∫
H

v̄i1j1 . . . vipjp

)
=

∫
H

Re(vi1j1 . . . v̄ipjp)

We have T 2
p = Tp = 0 when p is odd, so we are left with proving that we have T 2

p = Tp,
when p is even. For this purpose, we use the following formula:

Re(x)Re(y) =
1

2
(Re(xy) +Re(xȳ))

By using this identity for each of the terms which appear in the product, and multi-
index notations in order to simplify the writing, we obtain:

(T 2
p )ij =

∑
k1...kp

(Tp)i1...ip,k1...kp(Tp)k1...kp,j1...jp

=

∫
H

∫
H

∑
k1...kp

Re(vi1k1 . . . v̄ipkp)Re(wk1j1 . . . w̄kpjp)dvdw

=
1

2

∫
H

∫
H

∑
k1...kp

Re(vi1k1wk1j1 . . . v̄ipkpw̄kpjp) +Re(vi1k1w̄k1j1 . . . v̄ipkpwkpjp)dvdw

=
1

2

∫
H

∫
H

Re((vw)i1j1 . . . (v̄w̄)ipjp) +Re((vw̄)i1j1 . . . (v̄w)ipjp)dvdw

Now since vw ∈ H is uniformly distributed when v, w ∈ H are uniformly distributed,
the quantity on the left integrates up to (Tp)ij. Also, since H is conjugation-stable, w̄ ∈ H
is uniformly distributed when w ∈ H is uniformly distributed, so the quantity on the right
integrates up to the same quantity, namely (Tp)ij. Thus, we have:

(T 2
p )ij =

1

2

(
(Tp)ij + (Tp)ij

)
= (Tp)ij

Summarizing, we have obtained that for any p, the condition T 2
p = Tp is satisfied. Thus

Theorem 12.9 applies, and shows that our model is stationary, as claimed.
As for the proof of the stationarity for the model for U∗N , this is similar. See [21]. �

Summarizing, our notion of stationarity, and the various tools that we developed here,
have some non-trivial applications. We should mention the Theorem 12.11 has many
extensions, to more general half-classical quantum groups, or manifolds, and involving
higher versions of the relations abc = cba as well. We refer here to [14], [21], [43], [44].
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Following [31], let us discuss now some more subtle examples of stationary models,
related to the Pauli matrices, and Weyl matrices, and physics. We first have:

Definition 12.12. Given a finite abelian group H, the associated Weyl matrices are

Wia : eb →< i, b > ea+b

where i ∈ H, a, b ∈ Ĥ, and where (i, b)→< i, b > is the Fourier coupling H × Ĥ → T.

As a basic example, consider the cyclic group H = Z2 = {0, 1}. Here the Fourier
coupling is given by < i, b >= (−1)ib, and so the Weyl matrices act via W00 : eb → eb,
W10 : eb → (−1)beb, W11 : eb → (−1)beb+1, W01 : eb → eb+1. Thus, we have:

W00 =

(
1 0
0 1

)
, W10 =

(
1 0
0 −1

)
, W11 =

(
0 −1
1 0

)
, W01 =

(
0 1
1 0

)
We recognize here, up to some multiplicative factors, the four Pauli matrices.
Now back to the general case, we have the following well-known result:

Proposition 12.13. The Weyl matrices are unitaries, and satisfy:

(1) W ∗
ia =< i, a > W−i,−a.

(2) WiaWjb =< i, b > Wi+j,a+b.
(3) WiaW

∗
jb =< j − i, b > Wi−j,a−b.

(4) W ∗
iaWjb =< i, a− b > Wj−i,b−a.

Proof. The unitary follows from (3,4), and the rest of the proof goes as follows:
(1) We have indeed the following computation:

W ∗
ia =

(∑
b

< i, b > Ea+b,b

)∗
=
∑
b

< −i, b > Eb,a+b

=
∑
b

< −i, b− a > Eb−a,b =< i, a > W−i,−a

(2) Here the verification goes as follows:

WiaWjb =

(∑
d

< i, b+ d > Ea+b+d,b+d

)(∑
d

< j, d > Eb+d,d

)
=

∑
d

< i, b >< i+ j, d > Ea+b+d,d =< i, b > Wi+j,a+b

(3,4) By combining the above two formulae, we obtain:

WiaW
∗
jb = < j, b > WiaW−j,−b =< j, b >< i,−b > Wi−j,a−b

W ∗
iaWjb = < i, a > W−i,−aWjb =< i, a >< −i, b > Wj−i,b−a

But this gives the formulae in the statement, and we are done. �
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Observe that, with n = |H|, we can use an isomorphism l2(Ĥ) ' Cn as to view each
Wia as a usual matrix, Wia ∈Mn(C), and hence as a usual unitary, Wia ∈ Un.

Given a vector ξ, we denote by Proj(ξ) the orthogonal projection onto Cξ.
Now let N = n2, and consider Wang’s quantum permutation algebra C(S+

N), with
standard generators denoted wia,jb, using double indices. We have:

Proposition 12.14. Given a closed subgroup E ⊂ Un, we have a representation

πH : C(S+
N)→MN(C(E)) : wia,jb → [U → Proj(WiaUW

∗
jb)]

where n = |H|, N = n2, and where Wia are the Weyl matrices associated to H.

Proof. The Weyl matrices being given by Wia : eb →< i, b > ea+b, we have:

tr(Wia) =

{
1 if (i, a) = (0, 0)

0 if (i, a) 6= (0, 0)

Together with the formulae in Proposition 12.13, this shows that the Weyl matrices
are pairwise orthogonal with respect to the scalar product < x, y >= tr(x∗y) on Mn(C).
Thus, these matrices form an orthogonal basis of Mn(C), consisting of unitaries:

W =
{
Wia

∣∣∣i ∈ H, a ∈ Ĥ}
Thus, each row and each column of the matrix ξia,jb = WiaUW

∗
jb is an orthogonal basis

of Mn(C), and so the corresponding projections form a magic unitary, as claimed. �

We will need the following well-known result:

Proposition 12.15. With T = Proj(x1) . . . P roj(xp) and ||xi|| = 1 we have

< ξ, Tη >=< ξ, x1 >< x1, x2 > . . . < xp−1, xp >< xp, η >

for any ξ, η. In particular, Tr(T ) =< x1, x2 >< x2, x3 > . . . < xp, x1 >.

Proof. For ||x|| = 1 we have Proj(x)η = x < x, η >, and this gives:

Tη = Proj(x1) . . . P roj(xp)η

= Proj(x1) . . . P roj(xp−1)xp < xp, η >

= Proj(x1) . . . P roj(xp−2)xp−2 < xp−1, xp >< xp, η >

= . . .

= x1 < x1, x2 > . . . < xp−1, xp >< xp, η >

Now by taking the scalar product with ξ, this gives the first assertion. As for the second
assertion, this follows from the first assertion, by summing over ξ = η = ei. �

Now back to the Weyl matrix models, let us first compute Tp. We have:
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Proposition 12.16. We have the formula

(Tp)ia,jb =
1

N
< i1, a1 − a2 > . . . < ip, ap − a1 >< j2, b2 − b1 > . . . < j1, b1 − bp >∫

E

tr(Wi2−i1,a2−a1UWj1−j2,b1−b2U
∗) . . . tr(Wi1−ip,a1−apUWjp−j1,bp−b1U

∗)dU

with all the indices varying in a cyclic way.

Proof. By using the trace formula in Proposition 12.15 above, we obtain:

(Tp)ia,jb =

(
tr ⊗

∫
E

)(
Proj(Wi1a1UW

∗
j1b1

) . . . P roj(WipapUW
∗
jpbp)

)
=

1

N

∫
E

< Wi1a1UW
∗
j1b1

,Wi2a2UW
∗
j2b2

> . . . < WipapUW
∗
jpbp ,Wi1a1UW

∗
j1b1

> dU

In order to compute now the scalar products, observe that we have:

< WiaUW
∗
jb,WkcUW

∗
ld > = tr(WjbU

∗W ∗
iaWkcUW

∗
ld)

= tr(W ∗
iaWkcUW

∗
ldWjbU

∗)

= < i, a− c >< l, d− b > tr(Wk−i,c−aUWj−l,b−dU
∗)

By plugging these quantities into the formula of Tp, we obtain the result. �

Consider now the Weyl group W = {Wia} ⊂ Un, that we already met in the proof of
Proposition 12.14 above. We have the following result, from [31]:

Theorem 12.17. For any compact group W ⊂ E ⊂ Un, the model

πH : C(S+
N)→MN(C(E)) : wia,jb → [U → Proj(WiaUW

∗
jb)]

constructed above is stationary on its image.

Proof. We must prove that we have T 2
p = Tp. We have:

(T 2
p )ia,jb =

∑
kc

(Tp)ia,kc(Tp)kc,jb

=
1

N2

∑
kc

< i1, a1 − a2 > . . . < ip, ap − a1 >< k2, c2 − c1 > . . . < k1, c1 − cp >

< k1, c1 − c2 > . . . < kp, cp − c1 >< j2, b2 − b1 > . . . < j1, b1 − bp >∫
E

tr(Wi2−i1,a2−a1UWk1−k2,c1−c2U
∗) . . . tr(Wi1−ip,a1−apUWkp−k1,cp−c1U

∗)dU∫
E

tr(Wk2−k1,c2−c1VWj1−j2,b1−b2V
∗) . . . tr(Wk1−kp,c1−cpVWjp−j1,bp−b1V

∗)dV
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By rearranging the terms, this formula becomes:

(T 2
p )ia,jb =

1

N2
< i1, a1 − a2 > . . . < ip, ap − a1 >< j2, b2 − b1 > . . . < j1, b1 − bp >∫

E

∫
E

∑
kc

< k1 − k2, c1 − c2 > . . . < kp − k1, cp − c1 >

tr(Wi2−i1,a2−a1UWk1−k2,c1−c2U
∗)tr(Wk2−k1,c2−c1VWj1−j2,b1−b2V

∗)

. . . . . .

tr(Wi1−ip,a1−apUWkp−k1,cp−c1U
∗)tr(Wk1−kp,c1−cpVWjp−j1,bp−b1V

∗)dUdV

Let us denote by I the above double integral. By using W ∗
kc =< k, c > W−k,−c for each

of the couplings, and by moving as well all the U∗ variables to the left, we obtain:

I =

∫
E

∫
E

∑
kc

tr(U∗Wi2−i1,a2−a1UWk1−k2,c1−c2)tr(W
∗
k1−k2,c1−c2VWj1−j2,b1−b2V

∗)

. . . . . .

tr(U∗Wi1−ip,a1−apUWkp−k1,cp−c1)tr(W
∗
kp−k1,cp−c1VWjp−j1,bp−b1V

∗)dUdV

In order to perform now the sums, we use the following formula:

tr(AWkc)tr(W
∗
kcB) =

1

N

∑
qrst

Aqr(Wkc)rq(W
∗
kc)stBts

=
1

N

∑
qrst

Aqr < k, q > δr−q,c < k,−s > δt−s,cBts

=
1

N

∑
qs

< k, q − s > Aq,q+cBs+c,s

If we denote by Ax, Bx the variables which appear in the formula of I, we have:

I =
1

Np

∫
E

∫
E

∑
kcqs

< k1 − k2, q1 − s1 > . . . < kp − k1, qp − sp >

(A1)q1,q1+c1−c2(B1)s1+c1−c2,s1 . . . (Ap)qp,qp+cp−c1(Bp)sp+cp−c1,sp

=
1

Np

∫
E

∫
E

∑
kcqs

< k1, q1 − s1 − qp + sp > . . . < kp, qp − sp − qp−1 + sp−1 >

(A1)q1,q1+c1−c2(B1)s1+c1−c2,s1 . . . (Ap)qp,qp+cp−c1(Bp)sp+cp−c1,sp

Now observe that we can perform the sums over k1, . . . , kp. We obtain in this way a
multiplicative factor np, along with the condition q1 − s1 = . . . = qp − sp. Thus we must
have qx = sx + a for a certain a, and the above formula becomes:

I =
1

np

∫
E

∫
E

∑
csa

(A1)s1+a,s1+c1−c2+a(B1)s1+c1−c2,s1 . . . (Ap)sp+a,sp+cp−c1+a(Bp)sp+cp−c1,sp
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Consider now the variables rx = cx − cx+1, which altogether range over the set Z of
multi-indices having sum 0. By replacing the sum over cx with the sum over rx, which
creates a multiplicative n factor, we obtain the following formula:

I =
1

np−1

∫
E

∫
E

∑
r∈Z

∑
sa

(A1)s1+a,s1+r1+a(B1)s1+r1,s1 . . . (Ap)sp+a,sp+rp+a(Bp)sp+rp,sp

Since for an arbitrary multi-index r we have δ∑
i ri,0

= 1
n

∑
i < i, r1 > . . . < i, rp >, we

can replace the sum over r ∈ Z by a full sum, as follows:

I =
1

np

∫
E

∫
E

∑
rsia

< i, r1 > (A1)s1+a,s1+r1+a(B1)s1+r1,s1

. . . . . .

< i, rp > (Ap)sp+a,sp+rp+a(Bp)sp+rp,sp

In order to “absorb” now the indices i, a, we can use the following formula:

W ∗
iaAWia =

(∑
b

< i,−b > Eb,a+b

)(∑
bc

Ea+b,a+cAa+b,a+c

)(∑
c

< i, c > Ea+c,c

)
=

∑
bc

< i, c− b > EbcAa+b,a+c

Thus we have (W ∗
iaAWia)bc =< i, c− b > Aa+b,a+c, and our formula becomes:

I =
1

np

∫
E

∫
E

∑
rsia

(W ∗
iaA1Wia)s1,s1+r1(B1)s1+r1,s1 . . . (W

∗
iaApWia)sp,sp+rp(Bp)sp+rp,sp

=

∫
E

∫
E

∑
ia

tr(W ∗
iaA1WiaB1) . . . . . . tr(W ∗

iaApWiaBp)

Now by replacing Ax, Bx with their respective values, we obtain:

I =

∫
E

∫
E

∑
ia

tr(W ∗
iaU

∗Wi2−i1,a2−a1UWiaVWj1−j2,b1−b2V
∗)

. . . . . .

tr(W ∗
iaU

∗Wi1−ip,a1−apUWiaVWjp−j1,bp−b1V
∗)dUdV

By moving the W ∗
iaU

∗ variables at right, we obtain, with Sia = UWiaV :

I =
∑
ia

∫
E

∫
E

tr(Wi2−i1,a2−a1SiaWj1−j2,b1−b2S
∗
ia)

. . . . . .

tr(Wi1−ip,a1−apSiaWjp−j1,bp−b1S
∗
ia)dUdV

Now since Sia is Haar distributed when U, V are Haar distributed, we obtain:

I = N

∫
E

∫
E

tr(Wi2−i1,a2−a1UWj1−j2,b1−b2U
∗) . . . tr(Wi1−ip,a1−apUWjp−j1,bp−b1U

∗)dU
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But this is exactly N times the integral in the formula of (Tp)ia,jb, from Proposition
12.16 above. Since the N factor cancels with one of the two N factors that we found in
the beginning of the proof, when first computing (T 2

p )ia,jb, we are done. �

As an illustration for the above result, going back to [22], we have:

Theorem 12.18. We have a stationary matrix model

π : C(S+
4 ) ⊂M4(C(SU2))

given on the standard coordinates by the formula

π(uij) = [x→ Proj(cixcj)]

where x ∈ SU2, and c1, c2, c3, c4 are the Pauli matrices.

Proof. As already explained in the comments following Definition 12.12, the Pauli matrices
appear as particular cases of the Weyl matrices. By working out the details, we conclude
that Theorem 12.17 produces in this case the model in the statement. �

Observe that, since the matrix Proj(cixcj) depends only on the image of x in the
quotient SU2 → SO3, we can replace the model space SU2 by the smaller space SO3,
if we want to. This is something that can be used in conjuction with the isomorphism
S+

4 ' SO−1
3 from section 7 above, and as explained in [11], our model becomes in this

way something quite conceptual, algebrically speaking, as follows:

π : C(SO−1
3 ) ⊂M4(C(SO3))

As a somewhat philosophical conclusion, to this and to some previous findings as well,
no matter what we do, we always end up getting back to SU2, SO3. Thus, we are probably
doing some physics here. This is indeed the case, the above computations being closely
related to the standard computations for the Ising and Potts models. The general relation,
however, between quantum permutations and lattice models, is not axiomatixed yet.

Getting back now to mathematical questions, we have seen so far only examples of
stationary models. Going beyond stationarity is a difficult task, and among the results
here, let us mention the universal modelling questions for quantum permutations and
quantum reflections [31], [45], various results on the flat models for the discrete groups
[19], [28], questions regarding the Hadamard matrix models [12], [18], and the related fine
analytic study on the compact and discrete quantum groups [46], [60], [84], [85].

In what follows we will only discuss the Hadamard models, which are of particular
importance. Let us start with the following well-known definition:

Definition 12.19. A complex Hadamard matrix is a square matrix

H ∈MN(C)

whose entries are on the unit circle, and whose rows are pairwise orthogonal.
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Observe that the orthogonality condition tells us that the rescaled matrix U = H/
√
N

must be unitary. Thus, these matrices form a real algebraic manifold, given by:

XN = MN(T) ∩
√
NUN

The basic example is the Fourier matrix, FN = (wij) with w = e2πi/N . More generally,
we have as example the Fourier coupling of any finite abelian group G, regarded via the

isomorphism G ' Ĝ as a square matrix, FG ∈MG(C):

FG =< i, j >i∈G,j∈Ĝ

Observe that for the cyclic group G = ZN we obtain in this way the above standard
Fourier matrix FN . In general, we obtain a tensor product of Fourier matrices FN .

There are many other examples of Hadamard matrices, some being elementary, some
other fairly exotic, appearing in various branches of mathematics and physics. The idea
is that the complex Hadamard matrices can be though of as being “generalized Fourier
matrices”, and this is where the interest in these matrices comes from. See [81].

In relation with the quantum groups, the starting observation is as follows:

Proposition 12.20. If H ∈MN(C) is Hadamard, the rank one projections

Pij = Proj

(
Hi

Hj

)
where H1, . . . , HN ∈ TN are the rows of H, form a magic unitary.

Proof. This is clear, the verification for the rows being as follows:〈
Hi

Hj

,
Hi

Hk

〉
=
∑
l

Hil

Hjl

· Hkl

Hil

=
∑
l

Hkl

Hjl

= Nδjk

The verification for the columns is similar. �

We can proceed now in the same way as we did with the Weyl matrices, namely by
constructing a model of C(S+

N), and performing the Hopf image construction:

Definition 12.21. To any Hadamard matrix H ∈ MN(C) we associate the quantum
permutation group G ⊂ S+

N given by the fact that C(G) is the Hopf image of

π : C(S+
N)→MN(C) , uij → Proj

(
Hi

Hj

)
where H1, . . . , HN ∈ TN are the rows of H.

Summarizing, we have a construction H → G, and our claim is that this construction
is something really useful, with G encoding the combinatorics of H. To be more precise,
our claim is that “H can be thought of as being a kind of Fourier matrix for G”.
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This is of course quite interesting, philosophically speaking. There are several results
supporting this, with the main evidence coming from the following result, which collects
the basic known results regarding the construction:

Theorem 12.22. The construction H → G has the following properties:

(1) For a Fourier matrix H = FG we obtain the group G itself, acting on itself.
(2) For H 6∈ {FG}, the quantum group G is not classical, nor a group dual.
(3) For a tensor product H = H ′ ⊗H ′′ we obtain a product, G = G′ ×G′′.

Proof. All this material is standard, and elementary, as follows:
(1) In the cyclic group case, H = FN , all the objects involved in the construction

H → G have an obvious cyclic structure, and we obtain from this G = ZN . We can pass
then to the general case by using (3), whose proof is independent of this.

(2) This is something more tricky, needing some general study of the representations
whose Hopf images are commutative, or cocommutative. For details here, along with a
number of supplementary facts on the construction H → G, we refer to [18].

(3) This is elementary, the idea being that the tensor products of matrix models are
matrix models, and that at the level of corresponding Hopf images, under suitable as-
sumptions, the compatibility holds as well. Once again, we refer here to [18]. �

Going beyond the above result is an interesting question, and we refer here to [13], and
to follow-up papers. There are several computations available here, for the most regarding
the deformations of the Fourier models. We believe that the unification of all this with
the Weyl matrix models is a very good question, related to many interesting things.
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