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1. Introduction

1.1 Motivation

We introduce a new type of artificial neural network (ANN): the trimmed neural network
(TNN) model. As most ANNs, a TNN is an alternating sequence of linear and nonlinear
vectorial operators. Recall that in usual ANN models, nonlinear functions are independently
applied on each entry of each layer (see e.g. LeCun et al. (2015)). In contrast, we design
TNNs’ nonlinearities as functions of the whole layer: indeed, they are based on sorting all
the layer’s entries. In particular, we focus on the trimming operation which consists in
summing all entries but a certain fraction of the smallest/largest ones. We show that TNNs
enjoy convexity properties useful in various statistical learning contexts.

1.2 Formal Definition

A trimmed neural network (TNN) N : Rd → R with L+ 1 layers (or equivalently L hidden
layers) is characterized by L matrices Ωi ∈ Rpi×qi−1 (with convention q0 = d), L trimming
operators Ti : Rpi → Rqi (1 ≤ i ≤ L) and the last layer’s coefficients ω ∈ RqL . We define Ti
as follows: for all v ∈ Rpi , Tiv = v′ = (v′1, . . . , v

′
qi) with

∀1 ≤ j ≤ qi, v′j = mix(i)
a∈[0,1]pi ,||a||1/pi=τi,j

aᵀv,

where mix = (mix(1), . . . ,mix(L)) ∈ {min,max}L and τi,j ∈ [0, 1]. If mix(i) = min (resp.
mix(i) = max), then v′j is the sum of the τi,jpi smallest (resp. largest) components of v.
Observe that Ti is a nonlinear mapping as soon as {τi,j , 1 ≤ j ≤ qi} * {0, 1} ; and v 7→ v′j
is concave (resp. convex) in the case mix(i) = min (resp. mix(i) = max). Then,

N = ωᵀTLΩL . . . T1Ω1.

A TNN is said to be a min-TNN (resp. max-TNN), denoted by Nmin (resp. Nmax), if
mix = (min, . . . ,min) (resp. mix = (max, . . . ,max)). We denote by N = Nmin +Nmax the
sum of min/max-TNNs.

Remark 1 We point out that the subsequent analysis of TNNs straightforwardly extends
to more general trimming operators: Tiv = (v′1, . . . , v

′
qi) with v′j = mix(i)a∈Ai,j

aᵀv, where

Ai,j is a compact subset of Rpi+ for 1 ≤ j ≤ qi.
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1.3 Convexity Properties

Min and max-TNNs satisfy the following convexity properties.

Proposition 2 Let Nmin = ωᵀTLΩL . . . T1Ω1 and Nmax = ω′ᵀT ′L′Ω′L′ . . . T ′1Ω′1 be min/max-
TNNs with respective number of hidden layers L and L′. Assume nonnegative matrices Ωi ∈
Rpi×qi−1
+ and Ω′j ∈ R

p′j×q′j−1

+ for all i ∈ {2, . . . , L} and j ∈ {2, . . . , L′} and nonnegative last

layers coefficients ω ∈ RqL+ and ω′ ∈ R
q′
L′
+ . Let x ∈ Rd, i ∈ {1, . . . , L} and j ∈ {1, . . . , L′}.

Then,

(i) Ωi 7→ Nmin(x) is concave on Rpi×qi−1,

(ii) Ω′j 7→ Nmax(x) is convex on Rp
′
j×q′j−1.

2. Learning TNNs

In this section, we analyse learning properties of sums of min/max-TNNs N = Nmin+Nmax.

2.1 Least Squares Regression

The least squares regression loss of N for a pair (x, y) ∈ Rd × R is

`LS(N , (x, y)) = (N (x)− y)2 = {(N (x)− y)−}2 + {(N (x)− y)+}2,

where for all z ∈ R, (z)− (resp. (z)+) denotes the negative (resp. positive) part of z. Notice
that this decomposition of `LS into negative/positive parts combined with Proposition 2
provides the following result.

Proposition 3 Consider the same notations and nonnegativity assumptions as in Propo-
sition 2. Let (x, y) ∈ Rd × R, i ∈ {1, . . . , L} and j ∈ {1, . . . , L′}. Then,

(i) Ωi 7→ {(N (x)− y)−}2 is convex on Rpi×qi−1,

(ii) Ω′j 7→ {(N (x)− y)+}2 is convex on Rp
′
j×q′j−1.

It follows from Proposition 3 that N can be learned by coordinate descent (see e.g.
Wright (2015)). More precisely, for i ∈ {1, . . . , L} and j ∈ {1, . . . , L′} the matrices Ωi and
Ω′j can be learned by respectively minimizing the negative and positive part terms of the
least squares error.

2.2 Classification

Hinge Loss. The hinge loss of N for a pair (x, y) ∈ Rd × {−1,+1} is

`H(N , (x, y)) = (1− yN (x))+ = I{y = −1}(1 +N (x))+ + I{y = +1}(1−N (x))+.

This two-terms decomposition of `H combined with Proposition 2 yields the following con-
vexity properties.
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Proposition 4 Consider the same notations and nonnegativity assumptions as in Propo-
sition 2. Let (x, y) ∈ Rd × {−1,+1}, i ∈ {1, . . . , L} and j ∈ {1, . . . , L′}. Then,

(i) Ωi 7→ I{y = +1}(1−N (x))+ is convex on Rpi×qi−1,

(ii) Ω′j 7→ I{y = −1}(1 +N (x))+ is convex on Rp
′
j×q′j−1.

From Proposition 4, N can be learned by minimizing the positive (resp. negative) label
term with respect to Ωi (resp. Ω′j) for any i ∈ {1, . . . , L} (resp. j ∈ {1, . . . , L′}).
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