
CASL-GAN: multi-domain image-to-image translation GAN

JeongIk Cho

Konkuk University

Note: Conditional activation GAN was

separated from this paper and written as a

separate paper

(http://vixra.org/abs/1912.0204).

Abstract

 StarGAN, which has impressive performance in

multi-domain image-to-image translation.

Reconstruction loss of StarGAN requires

reconstructed data from generated data, which

means to get reconstruction loss, need to use

the generator once more. Simplified content

loss uses already generated data, reduces the

amount of computation and memory usage.

Also, propose image framing to prevent

background distortion.

1. Introduction

 StarGAN [1] is a multi-domain image-to-image

translation GAN that uses three losses:

adversarial loss to the generated image looks

real, classification loss to the generated image

has target attributes, reconstruct loss to the

generated image changes only target attributes,

not other hidden attributes.

 In this study, used conditional activation GAN

[2] loss instead of auxiliary classifier GAN [3]

loss of starGAN to reduce hyperparameter and

improve training speed.

 An image consists of attributes. The StarGAN

uses reconstruction loss (cycle consistency loss

for StarGAN) to ensure the generated image

change only target attributes, not other hidden

attributes. If the generator changes the hidden

attributes of input data, for example, in face

expression change GAN, generated face

becomes the face of a different person to input

person. However, not want to change any

attributes other than the target attributes, do

not have to use cycle consistency loss.

Proposing simplified content loss is a difference

between real data and generated data that is

generated by a generator with the real data and

target attributes. Simplified content loss can

use already generated data for other losses:

conditional GAN losses or conditional activation

GAN losses, while reconstruction loss requires a

reconstructed data from generated data, thus

reduce memory usage and computation

amount.

 In StarGAN, since adversarial loss and

classification loss (or conditional activation loss)

focus only on the face, not background, cause

background distortion. Although high

reconstruction loss weight (or simplified

content loss weight) can prevent background

distortion, there can be a problem that the

generated image hardly changes. Instead of

raising reconstruction loss weight (or simplified

content loss weight), image framing can

prevent background distortion. As image

completion GAN [4] implies, pasting frame of

the real image to the generated image while

training makes generated image match frame

of the real image. And the easiest way to

generate a background that matches the frame

of the real image for the generator is not

distorting the background.

2. CASL-GAN

2.1 Simplified Content Loss

 The original StarGAN paper uses

reconstruction loss (cycle consistency loss for

StarGAN) to ensure generator change only

target attributes, not hidden attributes.

𝐿 = 𝐸௫,௧௧~ೝ(௫,௧௧)[‖𝐺(𝐺(𝑥, 𝑎𝑡𝑡ᇱ), 𝑎𝑡𝑡) − 𝑥‖ଵ]

 In 𝑥, 𝑎𝑡𝑡~𝑃(𝑥, 𝑎𝑡𝑡), 𝑎𝑡𝑡 is the real attribute of

real image 𝑥, and 𝑎𝑡𝑡ᇱ is the target attribute to

change image.

Fig1. Reconstruction loss of StarGAN

 However, not want to change any attribute

other than the target attribute, do not have to

use cycle consistency loss.

Fig2. Simplified content loss

 I suggest simplified content loss that is

difference between generated data and real

data.

𝐿௦ = 𝐸
𝑥′,𝑎𝑡𝑡′~𝑃𝑔ቀ𝑥′,𝑎𝑡𝑡′ቁ

[‖𝑥ᇱ − 𝑥‖ଵ]

 Since simplified content loss uses already

generated data for other losses: conditional

GAN losses or conditional activation GAN loss,

the calculation amount and memory usage can

be reduced. For example, if simplified content

loss uses generated data for conditional

activation GAN, the generator loss formula is as

follows.

Generator

Generator

Real Data

Generated
Data

Target
Attributes

Real
Attribute

Reconstructed
Data

Reconstruction
Loss

Generator

Real Data Target
Attribute

Generated
Data

Simplified
Content Loss

𝐿
ீ + 𝛾௦𝐿௦ = 𝐸

𝑥′,𝑎𝑡𝑡′~𝑃𝑔ቀ𝑥′,𝑎𝑡𝑡′ቁ
ቂ൫𝐷൫𝑥′൯ − 1൯

ଶ
∙ 𝑎𝑡𝑡ᇱ

+ 𝛾௦‖𝑥ᇱ − 𝑥‖ଵቃ

𝐿
ீ is conditional activation loss for generator

and 𝐿௦ is simplified content loss. 𝛾௦ is

simplified content loss weight.

 Simplified content loss prevents both target

attributes and hidden attributes from changing.

Thus, high simplified content loss weight can

cause the image not to change. However, using

appropriate simplified content loss weight can

guarantee the immutability of hidden attributes.

2.2 CASL-GAN Loss

 Used conditional activation GAN loss with

LSGAN and simplified content loss to train

multi-domain image-to-image translation GAN.

𝐿 = 𝐿

𝐿ீ = 𝐿
ீ + 𝛾௦𝐿௦

𝐿
 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)ൣ(𝐷(𝑥) − 1)2 ∙ 𝑎𝑡𝑡൧

+𝐸௫ᇲ,௧௧ᇲ~(௫ᇲ,௧௧ᇲ) ቂ൫𝐷(𝑥ᇱ)൯
ଶ

∙ 𝑎𝑡𝑡ᇱቃ

𝐿
ீ + 𝛾௦𝐿௦ = 𝐸

𝑥′,𝑎𝑡𝑡′~𝑃𝑔ቀ𝑥′,𝑎𝑡𝑡′ቁ
ቂ൫𝐷൫𝑥′൯ − 1൯

ଶ
∙ 𝑎𝑡𝑡ᇱ

+ 𝛾௦‖𝑥ᇱ − 𝑥‖ଵቃ

2.3 Image Framing

 In StarGAN, since adversarial loss and

classification loss (or conditional activation loss)

focus only on the face, not background, cause

background distortion. For example, when the

generator changes the hair color of an image

from blond to black, it is easier for the

generator to change the entire image, including

the background, to black rather than just

finding the hair and changing it black. Although

high reconstruction loss weight (or simplified

content loss weight) can prevent background

distortion, there can be a problem that the

entire image hardly changes. Instead of raising

reconstruction loss weight (or simplified

content loss weight), image framing can

prevent background distortion. As image

completion GAN implies, pasting frame of the

real image to the generated image while

training makes generated image match frame

of the real image. And the easiest way to

generate a background that matches the frame

of the real image for the generator is not

distorting the background.

Fig3. Background distortion of StarGAN. Captured from the paper of StarGAN

Fig4. Image Framing

2.4 Architecture

2.4.1 Generator

Fig5. Generator Architecture

 In generator architecture, the AdaIN module

and embedder of Style-based generator [6],

mask of CAGAN [7], and convolution block

attention module of CBAM [8] were used. There

is no batch normalization in the generator.

2.4.2 Discriminator

Fig6. Discriminator Architecture

 Discriminator has attribute outputs that each

output discriminates whether real image with

each attribute or generated image with each

attribute. Batch normalization was applied

between each layer.

3. Material and methods

 Used celeb_a [9] train dataset (162,770

pictures with attribute label) for the train. Used

celeb_a test dataset (19,962 pictures with

attribute label) for the test. Trained 6 attributes:

Generator

Real Image Target
Attribute

Generated
Image

Generated
Image

With Real
Image Frame

Discriminator

Real Image
Frame

Attribute Vector

Residual
Spatial Attention

Convolution

Residual
Spatial Attention

Convolution

Residual
Spatial Attention

Convolution

Average Pooling
Convolution

Upscaling
Convolution

Average Pooling
Convolution

Mask

Style Vector

AdaIN

AdaIN

AdaIN

AdaIN

AdaIN

From Image

AdaIN

AdaIN

Input Image

Upscaling
Convolution AdaIN

Progressive
Growing

Progressive
Growing

Generated Image

MLP

Segment Image

Merge

Residual
Convolution

Average Pooling
Convolution

Average Pooling
Convolution

From Image

Input Image

Progressive
Growing

Residual
Convolution

Residual
Convolution

Attribute Vector

black hair, blond hair, brown hair, smiling,

mouth slightly open, rosy cheeks. Used two

rtx2080ti with Tensorflow 2.0. Image resolution

is 144 by 176.

 Used Adam [10] optimizer. Does not used

progressive-growing generator. However, the

architecture is a four-growth architecture: start

from 9 by 11 resolution.

𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑎𝑛𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟

= 𝑎𝑑𝑎𝑚 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 ൮

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 3𝑒 − 6,
𝛽ଵ = 0.9,

𝛽ଶ = 0.999,
𝑑𝑒𝑐𝑎𝑦 = 0

൲

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑙𝑜𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 = 1

𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑙𝑜𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 = 1𝑒 − 9

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 16 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝐺𝑃𝑈

𝑖𝑚𝑎𝑔𝑒 𝑓𝑟𝑎𝑚𝑒 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 = 4

 Trained 62 epochs for 31 hours.

4. Results and Conclusions

 All first pictures are original pictures, second

pictures are generated pictures, third pictures

are mask images, and fourth pictures are

generated segment images.

4.1 Good cases

 Target attributes: brown hair, mouth slightly open, smiling, not rosy cheeks

Target attributes: brown hair, not mouth slightly open, smiling, not rosy cheeks

Target attributes: black hair, mouth slightly open, smiling, not rosy cheeks

Target attributes: black hair, mouth slightly open, smiling, not rosy cheeks

Target attributes: brown hair, not mouth slightly open, not smiling, not rosy cheeks

Target attributes: brown hair, mouth slightly open, not smiling, rosy cheeks

Target attributes: black hair, not mouth slightly open, not smiling, rosy cheeks

Target attributes: black hair, mouth slightly open, smiling, not rosy cheeks

Target attributes: black hair, mouth slightly open, smiling, rosy cheeks

4.2 Bad cases

4.2.1 Attribute ignored cases

Target attributes: brown hair, not mouth slightly open, not smiling, rosy cheeks

Target attributes: blond hair, not mouth slightly open, not smiling, rosy cheeks

Target attributes: brown hair, mouth slightly open, smiling, rosy cheeks

In these cases, one or more target attributes were ignored

4.2.2 Frame problem cases

Target attributes: black hair, not mouth slightly open, smiling, not rosy cheeks

Target attributes: black hair, mouth slightly open, smiling, rosy cheeks

Target attributes: black hair, not mouth slightly open, smiling, not rosy cheeks

In these cases, because of image framing, the edge of images and surrounding pixels were not

changed.

4.2.3 Unnatural cases

Target attributes: brown hair, not mouth slightly open, not smiling, not rosy cheeks

Target attributes: blond hair, not mouth slightly open, smiling, rosy cheeks

Target attributes: blond hair, mouth slightly open, not smiling, rosy cheeks

In these cases, images do not look natural.

4.2.4 Mistake cases

Target attributes: blond hair, not mouth slightly open, smiling, not rosy cheeks

Target attributes: blond hair, mouth slightly open, not smiling, rosy cheeks

In these cases, the generator misrecognized the part that is not a face.

4.2.5 Corrupted cases

Target attributes: blond hair, mouth slightly open, smiling, rosy cheeks

Target attributes: blond hair, mouth slightly open, smiling, rosy cheeks

Target attributes: blond hair, mouth slightly open, smiling, rosy cheeks

In these cases, the image is completely corrupted.

All generated image uses a four-pixel frame of the original image. Since the generator used image

framing while training, the generator does not generate meaningful edges of generated images.

4.3 Speed comparison

Unit Simplified content loss Reconstruction loss Re-reconstruction loss

Resolution Pixel 176x144 88x72 44x36 176x144 88x72 44x36 176x144 88x72 44x36

Epoch 1 Sec 14.5639 10.0948 7.8109 20.0343 13.4815 9.2857 25.1710 16.2387 11.1615

Epoch 2 Sec 14.8430 10.1875 7.6440 20.1300 13.3820 9.3325 25.6395 16.3295 11.0112

Average Sec 14.7035 10.1412 7.7275 20.0822 13.4318 9.3091 25.4053 16.2841 11.0864

Fig7. Speed comparison table

Used 1% of Celeb_A train dataset. Other hyperparameters are same as in training. Re-reconstruction

loss uses reconstructed image of reconstructed image.

𝐿ି = 𝐸௫,௧௧~ೝ(௫,௧௧)[‖𝐺(𝐺(𝐺(𝑥, 𝑎𝑡𝑡ᇱ), 𝑎𝑡𝑡), 𝑎𝑡𝑡) − 𝑥‖ଵ]

Re-reconstruction loss has no meaning for training but experimented with it for speed comparison.

Also compared the speed when the GAN did not grow completely. As the number of times the

image passes through the generator increases, it can be seen that the training time increases linearly.

In high resolution, Simplified content loss is almost 32~37% faster than reconstruction loss per

epoch.

5. Discussion and Future works

 Experiments show that Simplified content loss

can replace reconstruction loss. Although

whether the simplified content loss improved

the training speed is not tested, reduction in

training time per epoch was observed. A further

experiment is needed to compare actual

training speed with reconstruction loss and with

simplified content loss.

 Although image framing can prevent

background distortion, there is a problem that

pixels that are in the frame or near frame do

not change properly.

 Some images convert correctly, but some do

not. In particular, when many attributes are

changed, the target attributes are ignored or

generate odd images. Research on how to

correctly convert any image is necessary.

 Unlike progressive-growing GAN [5], used the

bi-directional progressive growing generator to

improve speed. However, this paper did not

experiment whether bi-directional progressive-

growing GAN improves training speed. An

experiment comparing three types of generator:

non-progressive growing, progressive growing,

and bi-directional progressive growing, is

necessary.

6. Funding

 This work was supported by "University

Innovation Grant" from the Ministry of

Education and National Research Foundation of

Korea

7. Appendix

7.1 Generator Architecture

Attribute Vector

Residual
Spatial Attention

Convolution

Residual
Spatial Attention

Convolution

Residual
Spatial Attention

Convolution

Average Pooling
Convolution

Upscaling
Convolution

Average Pooling
Convolution

Mask

Style Vector

AdaIN

AdaIN

AdaIN

AdaIN

AdaIN

From Image

AdaIN

AdaIN

Input Image

Upscaling
Convolution AdaIN

Progressive
Growing

Progressive
Growing

Generated Image

MLP

Segment Image

Merge

Fig8. Generator Architecture

 Generated Image = Input Image * Mask + Segment Image * (1 - Mask). Unlike CAGAN, mask is

three channels.

 Used bi-directional progressive growing generator architecture.

7.1.1 Residual spatial attention convolution

Fig9. Residual spatial attention convolution

 Because the roles of AdaIN and channel attention overlap, AdaIN module replaced channel

attention module in CBAM.

7.2 Discriminator architecture

Fig10. Discriminator architecture

Residual
Convolution

Average Pooling
Convolution

Average Pooling
Convolution

From Image

Input Image

Progressive
Growing

Residual
Convolution

Residual
Convolution

Attribute Vector

8. References

[1] Yunjey Choi, Minje Choi, Munyoung Kim,

Jung-Woo Ha, Sunghun Kim, Jaegul Choo

StarGAN: Unified Generative Adversarial

Networks for Multi-Domain Image-to-Image

Translation

https://arxiv.org/abs/1711.09020

[2] JeongIk Cho

Conditional Activation GAN: Improved Auxiliary

Classifier GAN

http://vixra.org/abs/1912.0204

[3] Augustus Odena, Christopher Olah,

Jonathon Shlens

Conditional Image Synthesis With Auxiliary

Classifier GANs

https://arxiv.org/abs/1610.09585

[4] Satoshi Iizuka, Edgar Simo-Serra, Hiroshi

Ishikawa

Globally and locally consistent image

completion

https://dl.acm.org/citation.cfm?id=3073659

[5] Tero Karras, Timo Aila, Samuli Laine, Jaakko

Lehtinen

Progressive Growing of GANs for Improved

Quality, Stability, and Variation

https://arxiv.org/abs/1710.10196

[6] Tero Karras, Samuli Laine, Timo Aila

A Style-Based Generator Architecture for

Generative Adversarial Networks

https://arxiv.org/abs/1812.04948

[7] Nikolay Jetchev, Urs Bergmann

The Conditional Analogy GAN: Swapping

Fashion Articles on People Images

http://openaccess.thecvf.com/content_ICCV_20

17_workshops/papers/w32/Jetchev_The_Conditi

onal_Analogy_ICCV_2017_paper.pdf

[8] Sanghyun Woo, Jongchan Park, Joon-Young

Lee, In So Kweon

CBAM: Convolutional Block Attention Module

https://arxiv.org/abs/1807.06521

[9] Ziwei Liu Ping Luo Xiaogang Wang

Xiaoou Tang

Large-scale CelebFaces Attributes (CelebA)

Dataset

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.ht

ml

[10] Diederik P. Kingma, Jimmy Ba

Adam: A Method for Stochastic Optimization

https://arxiv.org/abs/1412.6980

