

Improved Multi-Domain Image-to-
Image Translation GAN

Jeongik Cho

 This work was supported by "University

Innovation Grant" from the Ministry of

Education and National Research Foundation of

Korea

Abstract

 StarGAN, which uses three important loss

(adversarial loss, classification loss,

reconstruction loss), has shown impressing

performance in image-to-image translation.

However, StarGAN has three important

hyperparameters in loss (adversarial weight,

classification weight, reconstruction weight), so

it takes too much time to search for optimal

hyperparameters. I propose an attribute loss,

improved version of conditional GAN loss,

which is like having multiple GANs, and

simplified reconstruction loss, which uses the

generator only once, to reduce

hyperparameters and improve training speed. I

also suggest image framing, not to distort the

background, and bi-directional progressive-

growing architecture, to improve training speed.

1. Introduction

StarGAN [1] uses an adversarial loss of WGAN-

GP [2], reconstruct on the loss of CycleGAN [3]

and classification loss of conditional GAN [4] to

transfer the image to target domain without

much distortion.

𝐿𝐷 = −𝐿𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑟

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[−log(𝐷𝑐𝑙𝑠(att|x))]

𝐿𝐺 = 𝐿𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑔

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)[− log(𝐷𝑐𝑙𝑠(𝑎𝑡𝑡

′|𝑥′))]

 In 𝑥, 𝑎𝑡𝑡~𝑃𝑟(𝑥, 𝑎𝑡𝑡), x means real data, and att

is the binary vector that expresses the attribute

of real data. In 𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥
′, 𝑎𝑡𝑡′) , 𝑥′ means

generated data and 𝑎𝑡𝑡′ is the target binary

vector to make 𝑥′ .

 In the conditional GAN, adversarial loss trains

model well because there are well known the

loss such as LSGAN [5] or WGAN-GP that can

produce meaningful gradients even if real data

distribution and generated data distribution are

far from each other. However, classification loss

of conditional GAN, which is using cross-

entropy is hard to produce meaningful

gradients because of cross-entropy measures

only the KL-divergence.

Real B

Generated B

Generated A

Real A

Fig1. Data distribution at the beginning of

training

 In the above figure, the circle containing Real

A and Real B is the distribution of the real data,

and the circle containing Generated A and

Generated B is the distribution of the generated

data. Real A is real data with attribute A and

Generated A is data generated by the generator

with condition A. In the early stage of learning,

the classification loss does not produce

meaningful gradients because the distance

between the real data distribution and the

generated data distribution is far. Only

adversarial loss produces meaningful gradients.

Intuitively, when GAN generates only noise-like

images at the beginning of the training,

reducing classification loss will not help GAN to

train.

Real B

Generated A

Generated B

Real A

Fig2. After long training

 As the learning progresses to some extent, the

actual data distribution and the generated data

distribution are somewhat similar, and

classification loss starts to produce meaningful

gradients when each conditional data

distribution overlap (Real A with Generated A,

Real B with Generated B).

 To solve the problem that classification loss

does not have meaning at the beginning of

learning, I propose attribute loss, which is

similar to having many GANs that each GAN

learns only one attribute. Each Generator only

generates data with each attribute. Each

Discriminator determines that it is true only for

the real data with each attribute and that it is a

fake for the data that the generator generates

for each attribute. Attribute loss can replace

adversarial loss and classification loss of

StarGAN.

Fig3. Multi-GAN loss

 Attribute loss is the sum of each GAN loss.

Each GAN has its adversarial loss. Therefore,

using LSGAN loss or WGAN-GP loss for each

GAN can generate meaningful gradients at the

beginning of learning. Since each discriminator

shares all layers except the output layer, and

each generator shares all layers except the

input layer, the training time does not increase

significantly.

 Also, attribute loss can replace adversarial loss

and classification loss. Original StarGAN needs

three important hyperparameters (adversarial

weight, classification weight, reconstruction

weight). Reducing one hyperparameter by

replacing adversarial loss and classification loss

with attribute loss can dramatically reduce the

time to search for optimal hyperparameters

(only need to search for attribute weight and

reconstruction weight).

 In the original StarGAN paper uses

reconstruction loss from CycleGAN.

𝐿𝑟𝑒𝑐 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[||𝐺(𝐺(𝑥, 𝑎𝑡𝑡
′), 𝑎𝑡𝑡) − 𝑥||1]

In 𝑥, 𝑎𝑡𝑡~𝑃𝑟(𝑥, 𝑎𝑡𝑡), att is the original attribute

of real image x, and 𝑎𝑡𝑡′ is the target attribute.

Generally, use a random binary vector for

training.

Fig4. Original reconstruction loss of StarGAN

 To ensure that the generated data is not too

different from the original data, StarGAN uses

the Reconstruction loss of CycleGAN.

Reconstructed data should be similar to original

data.

 However, since the original image and the

generated image need only be somewhat

similar, the real data does not have to go

through the generator twice.

Real B

Generated B

Generated A

Real A

Generator

Generator

Real Data

Fake Data

Target
Attributes

Real
Attribute

Reconstructed
Data

Reconstruction
Loss

Fig5. Simplified content loss

 The amount of computation can be reduced

by simplifying the reconstruction loss as fig5.

2. Improved Star GAN

First, it is assumed that attribute information is

matched with real data.

2.1 Loss

Overall Loss is as follows.

𝐿𝐷 = 𝐿𝑎𝑡𝑡
𝐷

𝐿𝐺 = 𝐿𝑎𝑡𝑡
𝐺 + 𝛾𝑐𝑛𝑡𝐿𝑐𝑛𝑡

Attribute Loss

 Attribute loss is as follows.

𝐿𝑎𝑡𝑡
𝐷 = ∑𝐿𝑐

𝐷

𝑎𝑡𝑡

𝑐

𝐿𝑎𝑡𝑡
𝐺 = ∑𝐿𝑐

𝐺

𝑎𝑡𝑡

𝑐

𝐿𝑐
𝐷 = 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[(𝐷𝑐(𝑥) − 1)2]

+ 𝐸𝑥′~𝑃𝐺𝑐(𝑥
′,1)[𝐷𝑐(𝑥

′)2]

𝐿𝑐
𝐺 = 𝐸𝑥~𝑃𝑟(𝑥)[(𝐷𝑐(𝐺𝑐(𝑥, 1)) − 1)2]

 c means one specific attribute among several

attributes. 𝐿𝑐
𝐷 and 𝐿𝑐

𝐺 are the losses of one

discriminator and one generator that

discriminate against a particular attribute c. 𝐿𝑎𝑡𝑡
𝐷

is the sum of the attribute losses of all

discriminators and 𝐿𝑎𝑡𝑡
𝐺 is the sum of the

attribute losses of all generators.

 𝐺𝑐 is a generator that converts an image x to

have an attribute c when the image x and

binary value 1 are received as inputs. 𝐺𝑐 tries

to trick 𝐷𝑐 only if binary value 1 is entered with

x, and does not care if 0 is entered (not learn).

 𝐷𝑐 determines only about attribute c. 𝐷𝑐

discriminates real only for real data with

attribute c and doesn’t care about real data

without attribute c and determines fake when

received the fake image from 𝐺𝑐 that receives

real image x and 1.

𝐿𝑎𝑡𝑡
𝐷 is the sum of each discriminator. Each

discriminator shares all layers with other

discriminators except the output layer. By

considering a set of discriminators as one

discriminator, the loss can be changed like

below.

𝐿𝑎𝑡𝑡
𝐷 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[(𝐷(𝑥)− 1)2 ∙ 𝑎𝑡𝑡]

+𝐸𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)[𝐷(𝑥

′)2 ∙ 𝑎𝑡𝑡′]

In 𝑥, 𝑎𝑡𝑡~𝑃𝑟(𝑥, 𝑎𝑡𝑡), x is the real image, and att

is attribute binary vector. ‘ ∙ ’ means inner

product.

Generator

Real Data
Real

Attribute

Constructed
Data

Content Loss

 In 𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥
′, 𝑎𝑡𝑡′) , 𝑥′ is generated

image and 𝑎𝑡𝑡′ is a binary attribute vector

input generator to make 𝑥′.

 Since each generator also shares all layers

except the input layer, 𝐿𝑎𝑡𝑡
𝐺 can be written as

the following by considering a set of generators

as one.

𝐿𝑎𝑡𝑡
𝐺 = 𝐸𝑥~𝑃𝑟(𝑥)[(𝐷(𝐺(𝑥, 𝑎𝑡𝑡

′)) − 1)
2
∙ 𝑎𝑡𝑡′]

𝑎𝑡𝑡′ is a binary vector representing the

attribute you want to change in the real image

x. Use random binary vectors for training.

 This is an example of using the least square

loss as an adversarial loss. Wasserstein-GP or

other adversarial loss can be used for attribute

loss.

 Incidentally, 𝐺𝑐(𝑥, 0) does not convert x to 𝑥′

that doesn’t have attribute c but simply disables

𝐺𝑐 . Therefore, if you want to remove attribute c

from image x, you need to add the attribute

‘not c’ while training.

Fig6. Discriminator output of StarGAN example

Fig7. Discriminator output with attribute loss

example

(Assume P(Black Hair) + P(Blond Hair) + P(Bald)

= 1, P(Male) + P(Not Male) = 1)

Content Loss

The original reconstruction loss of StarGAN is

as follows.

𝐿𝑟𝑒𝑐 = 𝐸𝑥~𝑃𝑟(𝑥)[||𝐺(𝐺(𝑥, 𝑎𝑡𝑡
′), 𝐷(𝑥)) − 𝑥||1]

In 𝑥~𝑃𝑟(𝑥) , x is the real image. 𝑎𝑡𝑡′ is a

random binary attribute vector.

 To calculate original reconstruction loss of

StarGAN, original data should pass generator

two times. I used simplified content loss, which

is a simplified version of reconstruction loss to

reduce calculation.

𝐿𝑐𝑛𝑡 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[||(𝐺(𝑥, 𝑎𝑡𝑡)) − 𝑥||1]

In 𝑃𝑟(𝑥, 𝑎𝑡𝑡) , x is real image. att is binary

attribute vector of real image x.

Bald
Blond
Hair

Black
Hair

Male

SigmoidSoftmax

Real/
Fake

Leaky
Relu

Node Node Node Node

Bald
Blond
Hair

Black
Hair

Male
Not
Male

Leaky
Relu

Leaky
Relu

Leaky
Relu

Leaky
Relu

Leaky
Relu

Node Node Node Node

Image Framing

 As image completion imply [10], while training,

framing the generated image with the original

image makes generated image match to the

background of the original image.

Fig8. Image Framing

2.2 Architecture

Generator

Fig9. Generator Architecture

 In generator architecture, AdaIN module and

embedder of Style-based generator [6], mask of

CAGAN [7], and convolution block attention

module of CBAM [8] was used. There is no

batch normalization in generator.

 To improve the learning speed, I suggest a bi-

directional progressive growing generator,

which grows in both input and output

directions, not just in one direction.

Generator

Real Image
Target

Attribute

Generated
Image

Generated
Image

With Real
Image Frame

Discriminator

Real Image
Frame

Attribute Vector

Residual
Spatial Attention

Convolution

Residual
Spatial Attention

Convolution

Residual
Spatial Attention

Convolution

Average Pooling
Convolution

Upscaling
Convolution

Average Pooling
Convolution

Mask

Style Vector

AdaIN

AdaIN

AdaIN

AdaIN

AdaIN

From Image

AdaIN

AdaIN

Original Image

Upscaling
Convolution

AdaIN

Progressive
Growing

Progressive
Growing

Target Image

MLP

Segment Imagex

+

Discriminator

Fig10. Discriminator Architecture

 Discriminator has attribute outputs that each

output discriminates whether real image with

each attribute or generated image with each

attribute. Batch normalization was applied

between each layer.

Mixed data training

 Recently, using batch normalization has

become orthodox. However, using batch

normalization in discriminator could be

dangerous because the attribute distribution of

generated data and real data could be different.

Suppose the ratio of attribute A and attribute

not A in real data is 3:7. If the ratio of attribute

A and not-A is 5:5 in the target attribute for the

generator, the generator will be trained to

generate the ratio of attribute A and not A

become 3:7 if there is batch normalization in

the discriminator. This means some generated

data with target attribute A input could have

attribute not-A. To avoid this problem, I suggest

using a mixed batch of real data and fake data

entered into the discriminator.

3. Experiments

 Used celeb_a [9] training dataset (162,770

pictures with attribute label) while training.

Used celeb_a test dataset (19,962 pictures with

attribute label) for test.

Model was trained almost four hours on two

rtx2080ti. Resolution of all image is 72 by 88.

All left pictures are original pictures and right

pictures are generated pictures

Target Attribute: black hair, mouth slightly open,

smiling.

Target attribute: black hair, not mouth slightly

open, smiling

Residual
Convolution

Average Pooling
Convolution

Average Pooling
Convolution

From Image

Image

Progressive
Growing

Residual
Convolution

Residual
Convolution

Attribute Vector

Target attribute: blond hair, mouth slightly open,

smiling

Target attribute: black hair, mouth slightly open,

smiling

Target attribute: black hair, not mouth slightly

open, smiling

References

[1] Yunjey Choi, Minje Choi, Munyoung Kim,

Jung-Woo Ha, Sunghun Kim, Jaegul Choo

StarGAN: Unified Generative Adversarial

Networks for Multi-Domain Image-to-Image

Translation

https://arxiv.org/abs/1711.09020

[2] Ishaan Gulrajani, Faruk Ahmed, Martin

Arjovsky, Vincent Dumoulin, Aaron Courville

Improved Training of Wasserstein GANs

https://arxiv.org/abs/1704.00028

[3] Jun-Yan Zhu, Taesung Park, Phillip Isola,

Alexei A. Efros

Unpaired Image-to-Image Translation using

Cycle-Consistent Adversarial Networks

https://arxiv.org/abs/1703.10593

[4] Mehdi Mirza, Simon Osindero

Conditional Generative Adversarial Nets

https://arxiv.org/abs/1411.1784

[5] Xudong Mao, Qing Li, Haoran Xie, Raymond

Y.K. Lau, Zhen Wang, Stephen Paul Smolley

Least Squares Generative Adversarial Networks

https://arxiv.org/abs/1611.04076

[6] Tero Karras, Samuli Laine, Timo Aila

A Style-Based Generator Architecture for

Generative Adversarial Networks

https://arxiv.org/abs/1812.04948

[7] Nikolay Jetchev, Urs Bergmann

The Conditional Analogy GAN: Swapping

Fashion Articles on People Images

http://openaccess.thecvf.com/content_ICCV_20

17_workshops/papers/w32/Jetchev_The_Conditi

onal_Analogy_ICCV_2017_paper.pdf

[8] Sanghyun Woo, Jongchan Park, Joon-Young

Lee, In So Kweon

CBAM: Convolutional Block Attention Module

https://arxiv.org/abs/1807.06521

[9] Ziwei Liu Ping Luo Xiaogang Wang

Xiaoou Tang

Large-scale CelebFaces Attributes (CelebA)

Dataset

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.ht

ml

[10] Satoshi Iizuka, Edgar Simo-Serra, Hiroshi

Ishikawa

Globally and locally consistent image

completion

https://dl.acm.org/citation.cfm?id=3073659

https://arxiv.org/abs/1711.09020
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1611.04076
https://arxiv.org/abs/1812.04948
http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w32/Jetchev_The_Conditional_Analogy_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w32/Jetchev_The_Conditional_Analogy_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w32/Jetchev_The_Conditional_Analogy_ICCV_2017_paper.pdf
https://arxiv.org/abs/1807.06521
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://dl.acm.org/citation.cfm?id=3073659

