Abstract: We evaluate the first motivational example, before mutual exclusion of multiple trains, for states and transitions as defined. The conjectured model is not tautologous, refutes rewriting logic for compositional specification, and forming a non tautologous fragment of the universal logic $VŁ4$.

We assume the method and apparatus of Meth8/VŁ4 with \top as tautology as the designated proof value, \bot as contradiction, \mathbb{N} as truthity (non-contingency), and \mathbb{C} as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

LET \neg, \lor, \vee, \cup; $\neg\lor$; \land, \land, \cap, \cdot, \otimes; $\neg\land$; \Rightarrow, \rightarrow, \Rightarrow, \rightarrow; \lessdot Not Imply, less than, ε, ε, ε, ε; \nvdash Not Equivalent, \neq, \oplus; \exists possibility, for one or some, \exists, \diamond, M; \forall necessity, for every or all, \forall, \Box, L; $z=z$ \top as tautology, \top, ordinal 3; $z\neq z$ \bot as contradiction, \bot, Null, \bot, zero; $z\neq z$ \mathbb{N} as non-contingency, Δ, ordinal 1; $z\neq z$ \mathbb{C} as contingency, ∇, ordinal 2;

$\neg(y < x)$ $(x \leq y)$, $(x \leq y)$, $(x \leq y)$; $(A=B)$ $(A\sim B)$.

Note for clarity, we usually distribute quantifiers onto each designated variable.

Abstract Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples.

2 Motivation, goals, and choices
2.1 First motivational example: mutual exclusion
Think of a train, a very simple model of a train, that goes round a closed railway in which there is a station and a crossing with another railway. There are three points of interest in the railway, that we use as the states of our model. There are three transitions for moving between the three states.
In Maude-like notation:

\[
\begin{align*}
rl \ [\text{goingToCrossing}] &: \text{atStation} \Rightarrow \text{beforeCrossing} . \\
rl \ [\text{crossing}] &: \text{beforeCrossing} \Rightarrow \text{afterCrossing} . \\
rl \ [\text{goingToStation}] &: \text{afterCrossing} \Rightarrow \text{atStation} .
\end{align*}
\]

The keyword \textit{rl} introduces a rewrite rule. The identifier in square brackets is the label of the rule. Rules describe transitions between states. To the left of the arrow (\(\Rightarrow\)) is the origin state; to the right is the destination state.

\[
\text{LET} \quad u, v, w: \quad \text{[states]} \quad \text{station, before_crossing, after_crossing}; \\
\quad x, y, z: \quad \text{[transitions]} \quad \text{to_crossing, crossing, to_station}.
\]

\textbf{Remark 12.1:} We write the modeled conjecture to mean the circular states of \((u>v>w>u)\) imply the transition definitions of \((x\&y\&z)\). \hfill (12.1.0)

\[
(((x>y)>(z>x))\&(u>v)>(w>u)))\Rightarrow(((x=(u>v))\&(y=(v>w)))\&(z=(w>u))) ; \\
\text{FFFF FFFF FFFF FFFF (8) } \}
\text{TTTT TTTT TTTT TTTT (2) } \times 2 \times 4 \\
\text{FFFF FFFF FFFF FFFF (2) } \}
\text{TTTT TTTT TTTT TTTT (16) } \\
\text{FFFF FFFF FFFF FFFF (4) } \\
\text{TTTT TTTT TTTT TTTT (6) } \\
\text{FFFF FFFF FFFF FFFF (2) } \\
\text{TTTT TTTT TTTT TTTT (2) } \\
\text{FFFF FFFF FFFF FFFF (2) } \\
\text{TTTT TTTT TTTT TTTT (18) } \\
\text{FFFF FFFF FFFF FFFF (6) } \\
\text{TTTT TTTT TTTT TTTT (2) } \\
\text{FFFF FFFF FFFF FFFF (2) } \\
\text{TTTT TTTT TTTT TTTT (4) } \}
\]

\textbf{Eq. 12.1.2 is \textit{not} tautologous.} This denies the first motivational example, before mutual exclusion is invoked for multiple trains, and hence refutes the conjecture of rewriting logic for compositional specification.