The curse of Riemann.
Proof of the Riemann hypothesis

Toshiro Takami*

mmm82889@yahoo.co.jp

Abstract
I treat Riemann hypothesis as a series and proved it.
Up to now, I have tried to expand this equation and prove Riemann hypothesis with the equation of cos, sin, but the proof was impossible.
However, I realized that a simple formula before expansion can prove it.
The real value is 0 only when the real part of s is 1/2. Non-trivial zeros must always have a real value of zero.

key words
Riemann hypothesis, non-trivial zeros, critical line, 1/2

1 introduction
This is clear from $\zeta(s) = \frac{2^s}{2^{s-2}} \omega(s)$, that $\zeta(s) = \zeta(1 - s)$ and $\omega(s) = \omega(1 - s)$ have the same significance.
Both equations are valid only for non-trivial zero values.
In the case of $\omega(s)$, the proof of Riemann hypothesis is completed if it is proved that the value of the non-trivial zeros is taken only when the real part is 1/2.
Define $0 < \Re(s) < 1$

$$\omega(s) = \frac{2^s - 2}{2^s} \zeta(s) = \zeta(s) - \frac{2}{2^s} \zeta(s)$$ (1)

$$\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.25+i4.157}} = -0.7106998802... - 0.0393256547631...i$$

*47-8 kuyamadai, Isahaya-shi, Nagasaki-prefecture, 854-0067 Japan
\[
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.4+14.1347}} = -0.20168483321... - 0.000398657711...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.4+14.1347}} = -0.01791363... - 0.004282038...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.4+14.1347}} = 0.0009413486... - 0.0049571556...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.4+14.1347}} = 0.0009413486... + 0.0049571556...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.4+14.1347}} = 0.17375337127... - 0.01283865007...i \\
\]

\[
\{ \frac{\pi^2}{2n} \}, \{ s = 1/2 + i14.1347 \} = 0.411258... + 0.0913854...i \\
\{ \frac{\pi^2}{2n} \}, \{ s = 1/2 - i14.1347 \} = 0.411258... - 0.0913854...i \\
\{ \frac{\pi^2}{2n} \}, \{ s = 1/2 + i14.1347 \} = 2.31715... - 0.514893...i \\
\{ \frac{\pi^2}{2n} \}, \{ s = 1/2 - i14.1347 \} = 2.31715... + 0.514893...i \\
\]

\[
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.6+14.1347}} = -0.23505068... - 0.12926123561...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.6+14.1347}} = -0.00196549... - 0.00466251514...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.6+14.1347}} = -0.00196549... + 0.00466251514...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.6+14.1347}} = 0.18930834... + 0.08779032048...i \\
\]

\[
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.6+25.01086}} = -0.195508869... + 0.152868555478...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.6+25.01086}} = -0.195508869... - 0.152868555478...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.6+25.01086}} = 0.002605178... - 0.0042652041...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.6+25.01086}} = 0.002605178... + 0.0042652041...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.6+25.01086}} = 0.1667076253... - 0.124423449...i \\
\sum_{n=1}^{10000} \frac{(-1)^{n-1}}{n^{0.6+25.01086}} = 0.1667076253... + 0.124423449...i \\
\]

\[
\{ \frac{\pi^2}{2n} \zeta(s) \}, \{ s = 0.4 + i25.01086 \} = -0.202044... + 0.163593...i \\
\{ \frac{\pi^2}{2n} \zeta(s) \}, \{ s = 1/2 + i25.01086 \} = 3.42656... \times 10^{-6} + 4.41859... \times 10^{-6} i \\
\{ \frac{\pi^2}{2n} \zeta(s) \}, \{ s = 1/2 - i25.01086 \} = 3.42656... \times 10^{-6} - 4.41859... \times 10^{-6} i \\
\{ \frac{\pi^2}{2n} \zeta(s) \}, \{ s = 0.6 + i25.01086 \} = 0.165672... - 0.12272...i \\
\{ \frac{\pi^2}{2n} \zeta(s) \}, \{ s = 0.6 - i25.01086 \} = 0.165672... + 0.12272...i \\
\]

In \(\omega(s) \), even if the plus or minus of the imaginary value of \(s \) is switched, the real value shows the same value, but the plus or minus of the imaginary value is different.
If \(s \) is a non-trivial zeros, both real and imaginary values converge to zero.

\section{Discussion}

from Eq.(1)

\[
\zeta(s) = \omega(s) + \frac{2}{\pi^2} \zeta(s)
\] (2)
and
\[\zeta(1-s) = \omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s) \]
(3)

from \(\zeta(s) = \zeta(1-s) \)
\[[\omega(s) + \frac{2}{2^s} \zeta(s)] - [\omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s)] = 0 \]
(4)

\[[\omega(s) - \omega(1-s)] + [\frac{2}{2^s} \zeta(s) - \frac{2}{2^{1-s}} \zeta(1-s)] = 0 \]
(5)

\[[\omega(s) - \omega(1-s)] + [2^{1-s} \zeta(s) - 2^s \zeta(1-s)] = 0 \]
(6)

As can be seen from Eq.(6), it becomes 0 when \(s=1/2 \) is inserted.
That is, it is not 0 except for \(s=1/2 \).
This can be said to be the end of proof.

from Eq.(4)
\[
\begin{align*}
\{[\omega(s) + \frac{2}{2^s} \zeta(s)] - [\omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s)], & \{s = 0.4 + i16.1347}\} = -0.493359... + 3.65957...i \\
\{[\omega(s) + \frac{2}{2^s} \zeta(s)] - [\omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s)], & \{s = 0.4 - i16.1347}\} = -0.493359... - 3.65957...i \\
\{[\omega(s) + \frac{2}{2^s} \zeta(s)] - [\omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s)], & \{s = 1/2 + i14.1347\}\} = 0.000055107...i \\
\{[\omega(s) + \frac{2}{2^s} \zeta(s)] - [\omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s)], & \{s = 1/2 + i16.1347\}\} = 3.64713...i \\
\{[\omega(s) + \frac{2}{2^s} \zeta(s)] - [\omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s)], & \{s = 0.6 + i16.1347\}\} = 0.493359 + 3.65957...i \\
\{[\omega(s) + \frac{2}{2^s} \zeta(s)] - [\omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s)], & \{s = 0.6 - i16.1347\}\} = 0.493359... - 3.65957...i \\
\{[\omega(s) + \frac{2}{2^s} \zeta(s)] - [\omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s)], & \{s = 1/2 + i17.1347\}\} = 5.39992...i \\
\{[\omega(s) + \frac{2}{2^s} \zeta(s)] - [\omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s)], & \{s = 1/2 + i21.022\}\} = 0.000077614...i \\
\{[\omega(s) + \frac{2}{2^s} \zeta(s)] - [\omega(1-s) + \frac{2}{2^{1-s}} \zeta(1-s)], & \{s = 1/2 + i22.022\}\} = -2.61712...i
\end{align*}
\]

As in these examples, when the real part is 1/2, the real value is 0, but the imaginary value remains.
When the real value of \(s \) is 1/2, the real value is completely 0, but even if the imaginary value is \(i14.1347 \), it is not removed because it contains an error.

\[\zeta(0.4 + i16) = 0.921882... + 1.32365...i \]
\[\zeta(0.4 - i16) = 0.921882... - 1.32365...i \]
\[\zeta(1/2 + i14.1347) = 3.13536... \times 10^{-6} - 0.0000196934...i \]
\[\zeta(1/2 - i14.1347) = 3.13536... \times 10^{-6} + 0.0000196934...i \]
\[\zeta(1/2 + i15) = 0.147109907... + 0.7047522416...i \]
\[\zeta(1/2 - i15) = 0.147109907... - 0.7047522416...i \]
\[\zeta(1/2 + i16) = 0.938545408... + 1.216587815999...i \]
\[\zeta(1/2 - i16) = 0.938545408... - 1.216587815999...i \]
\[\zeta(0.6 + i16) = 0.952627... + 1.11841...i \]
\[\zeta(0.6 - i16) = 0.952627... - 1.11841...i \]

In \(\zeta(s) \) and \(\omega(s) \), even if the imaginary value of \(s \) is changed, the real value shows the same value, but the imaginary value is different between plus and minus.
If the real part of s is 0.4, the real part of s is 0.6 from $\zeta(s) = \zeta(1 - s)$.
Then, the real part value and the imaginary part value also change.
Even if $\zeta(s) = \zeta(1 - s)$ is used in addition to 1/2, the value of the real part is only 1/2.

$s = 1/2$ is the minimum requirement for $\zeta(s) = \zeta(1 - s)$ and $\omega(s) = \omega(1 - s)$.
That is, the minimum condition for the non-trivial zeros is that the real value is 1/2.

The real value is 0 only when the real part of s is 1/2. Non-trivial zeros must always have a real value of zero.

$$\Re(s) = \frac{1}{2} \quad (7)$$

Proof complete.

3 Postscript

These calculations were performed with WolframAlpha.

References

I was finally crazy because of the curse of Riemann.

Please raise the prize money to my little son and daughter who are still young.