Spinning Sphere Theory Neutrino Masses

1.0 Abstract

In 2015 a method was proposed that predicts the mass of the electron to the neutron, this number was found to be $5.438\,673\,4446\times10^{-4}$. In 2017 this prediction was updated to $5.438\,673\,44424\times10^{-4}$. The new 2018 CODATA value is $5.438\,673\,4424(26)\times10^{-4}$. The predicted values are within about .8 sigma. It was shown that the electron could be broken up into three, six component parts. The author postulates these six component parts to be two-dimensional rings. A factor for calculating this mass is shown in Abstract A of this paper to be 1.000000779229966. These papers are saying that the electron can be broken up into 18 parts and that there is a relativistic portion to the electron. We are proposing that this relativistic portion is related to the neutrino masses. The basic unit of the electron neutrino would be $(1.0000007799229966-1)$ multiplied by the mass of the electron divided by 18. Which yields about .022 electron volts. It is proposed that the neutrino masses would be some multiple of .022 electron volts. The article “Mysterious Neutrinos Get New Mass Estimate” [8] in Scientific American, it states the maximum mass of the electron neutrino is .086 electron volts and the maximum mass for the combination of the neutrinos is 0.26 electron volts. The .022 electron volts of this article is in line with these results.

2.0 Calculations and Discussion

In 2015 a method was proposed that predicts the mass of the electron to the neutron, this number was found to be $5.438\,673\,4446\times10^{-4}$. In 2017 this prediction was updated to $5.438\,673\,44424\times10^{-4}$. The new 2018 CODATA value is $5.438\,673\,4424(26)\times10^{-4}$. The predicted values are within about .8 sigma. It was shown that the electron could be broken up into three, six component parts. The author postulates these six component parts to be two-dimensional rings. A factor for calculating this mass is shown in Abstract A of this paper to be 1.000000779229966. These papers are saying that the electron can be broken up into 18 parts and that there is a relativistic portion to the electron. We are proposing that this relativistic portion is related to the neutrino masses. The basic unit of the electron neutrino would be $(1.0000007799229966-1)$ multiplied by the mass of the electron divided by 18. Which yields about .022 electron volts. It is proposed that the neutrino masses would be some multiple of .022 electron volts.

The six component, or toroid structure of the electron is shown in Appendix A of this paper. The multiple of three components of the electron and proton are shown in “Gravity Most Related to the Proton Mass, Charge Most Related to the Electron Mass”[7] Therefore, for the electron, it would be made of three toroids. Nevertheless it is proposed that the neutrino masses, electron, muon, and tau neutrinos, are some multiple of the .022 electron volts.
Appendix A

Abstract

It was shown in “Mathematical Geometric Origin of Masses of Particles Proton and Electron” (1), that the mass ratio of the proton to neutron and electron to neutron could be well approximated with an integrated polynomial equation. This equation could predict the mass ratio of the proton to the neutron within 8 digits. The mass ratio of the electron to the neutron was only accurate to 5 digits. In this paper it is shown that the mass ratio of the electron can be improved to 9 digits and within the Codata one sigma limits by proposing that the electron is contained within 6 equal units and including a relativistic component and using the Lorentz transformation.

2.0 Calculations Electron Neutron

2.1 Electron/Neutron Mass Ratio

In “Mathematical Geometric Origin of Masses of Particles Proton and Electron” (1) the following equation was used to model a mass ratio of the Proton to the Neutron.

Equation 1 \[P(1 - P) = \frac{\sqrt{3}}{2} \int_{0}^{1} x^4 (1 - x)^4 \, dx \] (1)

This yields the following two solutions.

Where \(P_x \sim 0.998623461644084 \) and \(P_y \sim 0.00137653835591585 \)

Compared to the Codata proton neutron mass ratio of

| proton-neutron mass ratio \(m_p/m_n \) |
|----------------|----------------|
| Value | 0.998 623 478 44 |
| Standard uncertainty | 0.000 000 000 51 |
In Bergman’s “Observations of the Properties of Physical Entities Part 2 —Shape & Size of Electron, Proton & Neutron” (3) shows references to shapes of particles from his calculations. Although the magnetic moment shows that the size of the electron toroid proposed by Bergman, in “Spinning Charge Ring Model of Elementary Particles,” (4), it is also well known that this size electron toroid, on the order of 10^{-12} meters, requires the electron to be spinning faster than the speed of light. It will be shown in the future that the magnetic moment of the electron can also be achieved by summing many components of the electron at Planck length and Planck frequency scales. Regardless, Bergman’s toroid shape, could have significance.

If we use the second solution to equation (1) $P_y=0.00137653835591585$ above, calculate a Lorentz transformation, and some dimensional corrections, we have the following Lorentz transformation.

$$\frac{1}{\left(1-\left(\frac{\pi \cdot P_y}{12^{0.5}}\right)^2\right)^{0.5}} = \alpha = 1.00000077922996619330$$

If we use the first solution to the equation (1) of $y=0.998623461644084$ and the Lorentz transformation in equation 2 above of 1.00000077922996619330 we can develop the following equation.

$$\text{Equation 3 } (E)(1-E) = \frac{\alpha}{6P_x} \left(\frac{(\sqrt{2})^8}{(\sqrt{3})^7}\int_0^1 x^4(1-x)^4 dx\right)$$

Equation 3 gives the solutions for z of

$$E_x = 0.0000906445574284686867$$

If we propose that the electron is contained in six structures of $E_x=0.0000906445574284686867$ Then we can multiply E_x by 6 in Equation 4
Spinning Sphere Theory Neutrino Masses

Equation 4 \(E_x \times 6 = \frac{M_e}{M_n} = 0.000090644557428468667 \times 6 = 0.00054386734446 \)

\(\frac{M_e}{M_n} = 5.438 \ 673 \ 4446 \times 10^{-4} \)

Compare this to Codata Electron/Neutron mass ratio of

<table>
<thead>
<tr>
<th>electron-neutron mass ratio (m_e / m_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
</tr>
<tr>
<td>Standard uncertainty</td>
</tr>
<tr>
<td>Relative standard uncertainty</td>
</tr>
<tr>
<td>Concise form</td>
</tr>
</tbody>
</table>

2.2 Neutron-Electron/Neutron Mass ratios

One can also use the other result from equation 3.0 of \(E_y = 0.999909355442571531 \) to calculate a mass ratio of the (Neutron Mass-Electron Mass)/Neutron Mass. If one uses the following equation

Equation 2.2.1 Using Equation 3 results.

\(\frac{M_n - M_e}{M_n} = 1 - (1 - E_y) \times 6 = 1 - (1 - 0.999909355442571531) \times 6 = 0.999456132655 \)
Spinning Sphere Theory Neutrino Masses

Equation 2.2.2 Using Codata values

\[1 - \frac{M_e}{M_n} = 1 - 5.4386734428(27) \times 10^{-4} = 0.999456132655 \]

Note that both Methods give identical results to 12 digits

3.0 Discussion

It is clear that the Value of \(5.4386734446 \times 10^{-4} \) for the mass ratio of the electron-neutron is within one sigma of the codata value of the electron-neutron mass ratio. This does not prove that equation 1 or equation 3 is correct, but it does show that it is building on a possible model for the aether. It is the only model, of which I am aware, that can use a consistent idea to predict ratios of masses of elementary particles. Apparently string theory has ideas of how this might be done, but, I believe, there are more calabi-yau possibilities than there are particles of mass in the universe. It is likely that String Theory, M-Theory, Super String Theory, Quantum Foam Theory, are all shadows of the Aether. The Polynested Spinning Sphere Aether, is beginning to become much less shadowy.

It appears that the electron, possibly being made of a Toroidal shape of 6 containment spheres, may be emerging. That Equation 2.2.1 gives a mass ratio of the mass ratio of the mass of the neutron minus the mass of electron all over the mass of the neutron indicates that this may be an important number in quantum mechanics as well.

References

1) http://vixra.org/pdf/1502.0193v2.pdf
2) http://physics.nist.gov/cgi-bin/cuu/Value?mpsmn
3) http://www.commonsensescience.org/pdf/articles/nature_of_the_physical_world_p2_fos_v7n2.pdf
5) http://physics.stackexchange.com/questions/126986/where-does-the-electron-get-its-high-magnetic-moment-from
6) http://physics.nist.gov/cgi-bin/cuu/Value?mesmn|search_for=electron+neutron+mass+ratio
Spinning Sphere Theory Neutrino Masses