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Abstract. Is it possible to detect a feature in an image without ever
looking at it? Images are known to have sparser representation in Wavelets
and other similar transforms. Compressed Sensing is a technique which
proposes simultaneous acquisition and compression of any signal by taking
very few random linear measurements (M). The quality of reconstruction
directly relates with M , which should be above a certain threshold for
a reliable recovery. Since these measurements can non-adaptively recon-
struct the signal to a faithful extent using purely analytical methods like
Basis Pursuit, Matching Pursuit, Iterative thresholding, etc., we can be
assured that these compressed samples contain enough information about
any relevant macro-level feature contained in the (image) signal. Thus if
we choose to deliberately acquire an even lower number of measurements
- in order to thwart the possibility of a comprehensible reconstruction,
but high enough to infer whether a relevant feature exists in an image -
we can achieve accurate image classification while preserving its privacy.
Through the print error detection problem, it is demonstrated that such
a novel system can be implemented in practise.

Keywords: Compressive Sensing · Smashed filters · Privacy Preserving
Algorithms · Single Pixel Camera · Data Compression · Reprography ·
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1 Introduction

1.1 The Print error detection problem

Printing errors are a very pervasive problem in large scale printing mills. Generally
any conspicuously erroneous material is reprinted while innocuous ones are left
as it is. But when the data being printed is sensitive (mathematical equations,
numbers, encryption keys, etc.) or if the user is cautious about aesthetics, a
single ambiguity in reading can impair an entire document. The cost of reprinting
is usually infinitesimal in comparison to the jeopardy caused by an unusable
copy. Thus a system to proofread every sheet of every document is imperative
in such cases. In general, this can be easily automated by training standard
classifiers over a large dataset. The critical issue is, many users do not want
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their classified data to be digitised. From cyberattacks to system compatibility,
there are many reasons why organisations avoid digitisation of sensitive material.
Thus proofreading in such cases needs to be done manually. This is expensive in
terms of human resources, time, et cetera. This seemingly makes the problem
impossible to automate unless there could be a system which can detect these
errors without digitally ’looking’ at the data.

1.2 Compressed Sensing

Compressed sensing has been a prolific research topic over the last few years.
Basics of compressed sensing can be found in studies by Candes,Romberg, Tao
[1] and Donoho [2]. Readers may refer to [3] as an excellent introductory tutorial.
A very brief introduction is as follows.

A typical signal acquisition process conventionally begins with sampling the
signal in spatial or time domain at a frequency much higher than the Nyquist
sampling rate [4]. Most of the signals (specially images) have a lot of redundancy
at this stage. As a practical and pertinent example, a 10 megapixel RGB camera
with a bitdepth of 16 bits per pixel should produce a 20 MB image. But the
JPEG file format compresses the image to about a tenth of its size, if not more.
For almost all practical purposes, this compressed file is as good as the raw image
with the added convenience of portability. This depicts an innate inefficiency in
the system wherein we first deploy expensive hardware to acquire data at a high
sampling frequency and subsequently discard most of the samples.

Compressed sensing proposes that if the signal is sparse in some domain
(natural images are sparse in wavelets, DCT) then a sufficient number of inco-
herent linear non-adaptive measurements of the signal can be used to recover
the signal as accurately as done by any conventional sampling system. This
simplifies the acquisition process and greatly reduces the hardware complexity.
The reconstruction however, is more computationally expensive.

Essentially, we are simply trying to obtain the sparsest possible representation
of our signal. This can be mathematically expressed as:

minimize
x

||x||0
subject to y = φx

Where y ∈ RM is the obtained compressed sample vector, x ∈ RN is the
original sparse signal and φ ∈ RM×N is called as the sensing matrix (M <<
N). Here ||.||0 denotes the l0-norm which is equal to the number of non-zero
components in a vector. This is known to be an NP-hard problem [2]. The real
genius of compressive sensing lies in proving that under certain conditions of
noise and sparsity, this problem is equivalent to its convex relaxation:

minimize
x

||x||1
subject to y = φx
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This problem has been termed as Basis Pursuit. More practical version of
the problems like Basis Pursuit Denoising (BPDN) and LASSO are also popular
in literature. Readers are advised to refer to [5] for more details on its variants.

Often x is not sparse in the original domain but has a sparse representation
in a transformed domain like wavelets, etc. In that case, x is replaced with ψ′x
where ψ is the transformation matrix of the domain in which x is sparse.

The sensing matrix φ is very crucial to the concept here. It describes how the
linear measurements are obtained from x. The number of columns in φ should be
equal to the length of the signal x(= N) while the number of rows of φ determine
the number of compressed samples (M) the user wants. Higher the M better the
reconstruction accuracy. Two important properties are associated with the sensing
matrix: Incoherence and Restricted Isometry Property (RIP). Simply stated, they
ensure that the sensing matrix takes incoherent (well-spread) measurements, and
disparate signals should not map to similar measurement values. This sensing
matrix is expected to be maximally incoherent with the transformation matrix
ψ. It was found that random matrices like Gaussian, Bernoulli matrix satisfy
both the aforementioned properties with a very high probability. Here binary
Gaussian matrix has been used for reasons better described in 1.3.

Greedy algorithms like Orthogonal Matching pursuit [6] and many of its
variants like ROMP [7], StOMP [8], CoSaMP [9], are also used to recover the
sparse signal. They are much faster than Basis Pursuit methods but have poor
theoretical guarantees. Since the objective of the paper is to ensure minimal
signal recovery in the worst possible case, I adhered to evaluating the recovered
signals via Basis Pursuit only.

1.3 Single Pixel Camera and Smashed Filters

The first practical implementation of compressed sensing was demonstrated by
Duarte, et al. when they created a single pixel camera (SPC) [10]. They used a
Digital Micromirror Device (DMD) which is an array of small mirrors which can
be digitally aligned along two binary states (-10°or +10°from the axis). It is set
in a way that one of the states aligns with the single photon detector while other
reflects away from it. This essentially simulates a binary matrix. Since the system
proposed in this work proposes this hardware, hence only binary matrix was
chosen for all the experimentation in this paper. The reader may refer to [10] for
a more elaborate understanding of the working of the model device. In a similar
work, Davenport et al. introduced the concept of smashed filters [11]. Therein the
authors posit that operations like target classification can be performed on the
compressed samples themselves by applying maximum likelihood classifier. This
has been one of the primary motivation for this work. More on this in Section 2.

1.4 Dataset

No pre-existing digital repertoire of common print errors could be found. So
the experiments here have been conducted on simulated print errors. They have
broadly been binned into three major types of errors as shown in Fig. 1. These
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artifacts have been chosen to be just big enough to cause an ambiguity in the text.
The text images were generated using the Python Imaging Library (PIL). All
possible 3 letter words were made as grayscale images of pixel dimension 35×100.
Arial bold font was used. They were labelled as ‘good’ images. The three types
of errors were distributed equally on the entire dataset of 17576(= 26× 26× 26)
images. These were labelled as bad images.

(a) Text: AXP. Blot errors
caused by ink splats.

(b) Text: RYN. Line error
caused by printhead drags.

(c) Text: PKC. Line errors
caused by printhead slips.

Fig. 1: The 3 major type of print errors found in printing press. Other types of errors
in most part are subsumed in either of these categories. Note that these are simulations
of zoomed-in scans of text segments. A typical sheet may contain more than 500 such
words. In terms of pixel ratio, each word shown here is about 0.1% of the full sheet.

1.5 Paper Layout

Section 2 discusses similar works which have preceded this paper. Sections
3,4 explain how the data was compressed and reconstructed (only for testing)
respectively. Section 5 discusses the chosen models for classification and compares
their performance. Section 6 describes other groundbreaking applications where
this concept should be tested.

1.6 A Note on Terminology

The words compression and encryption are used interchangeably throughout the
text. To be technically precise, the concept is to draw inference from a heavily
(lossy) compressed data. But the novel idea of this work is the application of
such a system to data privacy. Thus - although not technically accurate - a more
application oriented description of the work would be the idea to draw inference
from a severely encrypted data.

– Key ≡ sensing matrix (φ).

– Encryption ≡ compression (x→ φx = y)

– Decryption ≡ Reconstruction (φx = y → x)

A similar terminology has also been described in [12] (II-C).
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2 Previous Work

Probably the first work to demonstrate Compressive Sensing’s capabilities in
target classification was the Single Pixel Camera developed by Davenport et al.
[11]. Their results bespeak that effective classification could be achieved from
compressed samples without any need of reconstruction. Therein the authors
introduce smashed filters which uses maximum likelihood for classification (MLE)1.
The concept is demonstrated on images of toy tanker, school bus and truck and
the accuracy results are caculated using leave-one-out validation2. Since there
were not privacy concern in their objective, hence there is no analysis in that
regard. In fact there have been several other demonstrations of the application
of smashed fiters in different domains ([13–15] to cite a few) but none seem to
have designed or evaluated a system with privacy concerns as priority.
Compressed sensing has been extensively studied from an encryption system
standpoint. [16] was the first work where it was analysed as a symmetric encryption
system. The authors prove that it does not provide information theoretic secrecy
but argue that it is computationally secure, as long as the sensing matrix is
used only once. Authors of [12] assert its effectiveness as an obfuscation layer
in a cryptosystem. In [17], the authors prove the computational security of
CS against a systematic search of the sensing matrix, even when the signal
sparsity is known. A practical CS system with two confidentiality levels based on
Bernoulli sensing matrices has been proposed and analyzed in [18], [19] and its
security has been additionally investigated in [20]. In all such analyses the sensing
matrix is considered to be available for the intended receiver and the data needs
to be recovered reliably. It should be noted that both these assumptions are
inconsequential here as we intentionally crumble the data to ensure its unusability.
Another noteworthy contribution has been made by Zhou [21] where the authors
use compressed sensing as a matrix masking [22] tool on an entire statistical
dataset to achieve “privacy preserving regression analysis”. To the best of my
knowledge, this is the first work to demonstrate the simultaneous efficacy of
compressed sensing in ensuring image security and high accuracy in image
classification.

3 Data Encryption

Encrypted data (y ∈ RM ) is achieved by the multiplication of a binary sensing
matrix (φ ∈ {0, 1}M×N ) with the original data (x ∈ RN ). This is a form of
lossy encryption as M << N , thus the data is not likely to be fully recovered.

1 This is a major difference between this work and [11]. In the case of AWGN, the
generalised MLE is equivalent to nearest neighbour classification. We tried using the
same in our problem only to find it sub-par in comparision to other classifiers like
polynomial discriminants and SVMs.

2 All the results mentioned in this work are holdout validation results (the testing
dataset was never used anywhere in evaluating the discriminant) unless stated
otherwise.
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Nevertheless, any level of accurate decryption requires φ to be known exactly,
thus the sensing matrix is essentially the key for this encryption here. For a
successful recovery, we need to choose a basis in which the data is represented
sparsely enough. Daubechies – 10 wavelets [23] gave much better sparsity than
other explored wavelets and DCT bases.
For the sake of clarity and transparency, it should be mentioned that the image
was first transformed to the wavelet domain, and then multiplied with the sensing
matrix. In the hardware implementation however, we obtain φx (i.e. apply the
compression on the original image) as y, we then find an x with minimum l1
norm, subject to y = φψ′x. Both the methods produce the exact same result.
The former was relatively faster and slightly more convenient, thus was chosen
as the preferred way of implementation.
Now comes the critical question of determining the number of compressed sam-
ples to be considered for inference. I simply began reconstructing random ‘good’
images for different values of M starting with M = 1000 (28.6% compression)
and decreasing it with each step. It was realised that even for M = 500 (14.3%
compression) the images were somewhat readable. When M was brought down
to 200 (5.7%), it was seen that the text can no longer be read reliably. Thus the
number of samples were limited to a maximum of 200. The inference results were
then calculated for even lower values. As they began rendering incredible perfor-
mance on a sample set, 50 (1.4%), 20 (0.57%) and 10 (0.28%) were additionally
chosen for experimentation. The reconstruction result for various values of M
can be seen in Fig. 2.

Fig. 2: The top row corresponds to the original image. The second row corresponds
to reconstruction using 500 compressed samples (M = 500, only shown for
reference, not used for classification) where the characters are faintly visible.
The subsequent rows correspond to M = 200, 100, 50, 20, 10 respectively.
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4 Data Decryption

The decryption part is sort of an adversary to the objective of data privacy. In
general, the sensing matrix need never exist mathematically if the user decides not
to note it. But for the sake of assurance they may want to decipher the acquired
data. This would require the exact knowledge of the key i.e. This encryption
itself should be a sufficient level of security for most applications. However, in
the event of an unsolicited disclosure of the key (or simply when the system is
setup by an external agent who we do not trust to have deleted the key), the
user might want to be assured that such decryption efforts are futile.

Since we are considering the worst case scenario, the best possible reconstruc-
tion method should be chosen regardless of the computational complexity. It
is also assumed that the compressed samples have zero error in measurement.
The objective is to ascertain that even with the best resources and maximum
information at hand, the reconstruction will render no meaningful result. Thus
Basis Pursuit was chosen as the sole reconstruction method.

The convex optimisation package CVX [24, 25] was used to solve the Basis
Pursuit problem. A typical reconstruction withM = 1000 took about 200 seconds
while it took <2 seconds for M = 10.

5 Classification Methods and Results Analysis

Fig. 3: Performance of various classification models versus the number of com-
pressed samples. Refer Table 1 for the precise values.

Once the maximum number of compressed samples was established, the
dataset was bifurcated into training and testing sets. 15000 images from each
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label were chosen for training while 2576 were chosen for testing from each
label. The 30000×M matrix of training data was augmented with a column of
categorical label vector (0 for good, 1 for bad). Several different classification
models were tested with various different parameter values. 5-fold validation
was used to compare the results of the different models. It was realised that
Support Vector Machines were the best performing among all. The choice of
the kernel function and scale significantly affected the performance. In general,
cubic kernel function gave the best performance. The kernel scale varied largely
for different values of M . The performance shown in Fig. 3 and Table 1 can be
considered to have the most optimised parameter values. k-Nearest Neighbour
did not perform as good as other models. Performance by Decision trees and
Ensemble classifiers like Boosted trees, bagged trees, subspace discriminant,
performed relatively sub par as well. Simple classifiers like Linear and Quadratic
discriminant, Logistic Regression, performed exceptionally. Though the difference
was not huge, these later classifiers provide a more intuitive understanding of
how the different categories are separated in the M−dimensional hyperspace.

M Gaussian
SVM

Cubic
SVM

QD LR LD

200 99.9612 99.9612 99.6894 99.9224 99.1654
100 99.9418 99.9806 99.5342 98.6801 97.9814
50 99.1071 99.5342 98.5637 90.5668 90.2368
20 92.7213 94.4099 86.7624 78.0474 77.8339
10 87.2671 74.3012 77.5427 69.5846 69.7011

Table 1: Performance of different classifiers. QD: Quadratic Discrimnator, LD:
Linear Discriminator, LR: Logical Regression. The accuracy’s are in %. Figure 3
is a graphical representation of the table.

Looking at Table 1, the general order of performance would be Cubic SVM
>Gaussian SVM >Quadratic discriminant >Logistic Regression >Linear discrim-
inant. Random subsets of misclassified images were analysed for all these models.
In general the mix contained all types of ‘bad’ images in about equal propor-
tion. Thus we can be assured that the classifier did not fixate on any particular
measurement. However there are two observations that need to be stated. The
most pertaining observation was the consistent asymmetry between the types of
misclassification errors – The bad images were classified as good more often than
vice versa. The chance exception was in the case of the quadratic discriminant for
M = 200 wherein all the erroneous classifications were for ‘good’ images which is
an outstanding aberration. Another odd consistency was regarding the characters
in the misclassified images. Despite all being equal in frequency, the character
‘W’ happened to be in most of them, regardless of the label. Other frequent
characters were ‘N’, ‘M’ and ‘X’. It can be observed that these characters have
the most prominent diagonal segments. But that is merely stating correlations
without establishing causality. A concrete reason for neither of these oddities
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could be established. I heartedly welcome any analysis the reader would like to
share which could shed more light on these observations.

6 Future Work

As and when such a system is designed, using it in detecting print errors would
be the least of its use. While advances in artificial intelligence has increased the
intelligence quotient of our computers, incrementing Emotional intelligence is
still a humongous and very coveted task. Although we now have a plethora of
AI architectures, they all have limited scope of implementation where user/data
privacy is a concern. If we can establish that human emotions can be inferred
from digital portraits with a remarkable accuracy via such limited and incoherent
measurement that the original image can never be reconstructed to reveal the
user identity, it would be landmark in the field of emotion recognition. Having
said that, the face database would be much less cooperative than the one used
here as faces are much more diverse and have relatively small features that help
in accurate detection. This idea can be extended to any field where data privacy
is as important as accurate inference, if not more.

Many crucial analysis were left out in this work for the sake of accentuating
the proof of concept. The SPC modelled Poisson noise in its measurements and
pursued the reconstruction accordingly. Such an addition might affect accuracy or
privacy either favourably or otherwise. Deep learning empowered reconstruction
algorithms like Reconnet [26] Stacked Denoising Auto-encoders (SDAs) [27]
have lately shown remarkable efficacy in reconstructing images from very few
compressed samples (as low as 1%). Testing the data privacy against such
reconstruction algorithms should be an imperative course in the line of its
advancement. On the other hand, deep neural networks are known to be much
“deeper” in understanding the classifier of many datasets which are otherwise
difficult to extricate. Such advancements should invigorate both objectives of
this paper.
There are many successful variants of compressive sensing which make use of
the structure of data to provide even better reconstructions. Among the most
pertaining ones would be block sparsity based reconstruction [28]. Since our data
is clearly block sparse in spatial as well as transformed domain, such an algorithm
is likely to deliver better results than the basic basis pursuit used here.

7 Conclusion

Our mantra in this paper has been to “maximise inference while minimising
acquisition”. We took the print error detection problem in reprography – where the
sensitivity of the print data forbids the digitisation – to demonstrate that using
compressive classification, we can achieve remarkable accuracy in feature detection
while ensuring that the data is practically unaccessed. Even at compression
ratio as low as 0.3% and 0.6%, the results were very satisfactory. We tested
multiple models to achieve the desired classification rate. Kernel SVMs (Cubic
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and Gaussian specifically) turned out to be most efficient in general. It was
observed that even simple linear discriminants provided astounding accuracy
when the compression ratio was relatively higher, but not high enough to provide
meaningful reconstruction.
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