Cutting the Gordian Knot of Theoretical Physics
(The Unification of Gravitational and Maxwellian Fields)

Rolf Warnemünde
Abstract

It concerns the unification of Maxwell-Field and Gravitational-Field without compromise consisting of:

1. A derivation of the general equations of continuously differentiable fluctuating 3-dimensional vector fields turning out to be generalized Maxwell-Equations
2. Identifying the Einstein-Space as the result of deforming an Euclidean Space,
3. Identifying the fluctuating hypersurface of the Einstein-Space as gravitational wave propagating with the velocity of light seen from an observer space or rather coordinate space,

This leads to

1. the quantitative unification of Maxwell-Field and Gravitational-Field,
2. the facilitation of quantizing gravitational fields,
3. considerations of general gravitational waves from a new perspective.

With the described unification electromagnetism is directly led back to the most fundamental terms of physics, space and time. Last but not least the importance of the Einstein-Equations for microphysics is proved.
Contents

1. Introduction

2. Stochastic and deterministic general vector fields
 2.1 The Transition: stochastic theory \leftrightarrow deterministic theory
 2.2 The deterministic fluctuation-equations
 2.2.1 The vacuum Maxwell Equations
 2.3 Surfacinge deformation-fluctuations in 3-dimensional space
 2.4 1-dimensional deformation-fluctuations in 3-dimensional space

3. Space-Time-fluctuations in General Relativity
 3.1 Space-Time of General Relativity and its Riemannian hypersurface
 3.2 The Ricci Tensor in the origin of a local inertial-system
 3.3 The Ricci Tensor of the Einstein Space in dependence of temporal fluctuations of its Riemannian hypersurface

4. Unification of Maxwell Field and gravitational field
 4.1 Gravitational waves corresponding to electromagnetic Fluctuations
 4.2 The energy-momentum-tensor of the electromagnetic field
 4.3 The quantitative relation of electromagnetic and gravitational waves
 4.4 Summary

Bibliography
1 Introduction

In this treatise gravitational and electrodynamic field are unified not forces as is wished from an elementary particle physics perspective. The unification of physically different fields requires a uniform mathematical description. This is for the gravitational and the electromagnetic field not evident. The gravitational field is seen as the consequence of the curved Space-Time characterized by nonlinear differential geometric formulations. The electromagnetic field satisfies the requirements for the linear Maxwell-Equations. In physics it is rated as sure knowledge that nonlinear and linear fields are assessed totally differently. On the other hand electrodynamic fields are suggestive of being properties of Space-Time itself. How to cut this Gordian knot proceeds as follows:

At first, it is searched for fluctuation equations of general 3-dimendional sufficiently often continuously differentiable vector fields. This is achieved by finding out the connection of a stochastic ensemble consideration of an unlimited number of existent deterministic fluctuating continuum fields with the deterministic consideration of a single ensemble system resulting in quasi-linear generalized Maxwell Equations. Requiring constant propagation speed the linear vacuum Maxwell Equations are found. The mentioned Gordian knot is cut considering the movements of the Riemannian hypersurface of the Einstein-Space as deformation fluctuations of a suitable Euclidean observer space. As these fluctuations proceed with light velocity the fluctuations are described by the usual Maxwell Equations. So there are the following results:

1. the quantitative unification of Maxwell-Field and Gravitational-Field,
2. the facilitation of quantizing gravitational fields,
3. considerations of general gravitational waves from a new perspective.

With the described unification electromagnetism is directly led back to the most fundamental terms of physics, space and time.

Last but not least the importance of the Einstein-Equations for microphysics is proved.
2 Stochastic and deterministic general vector fields

\[f_t(\vec{x}, t, \vec{E}, \vec{B}) = \int \int W_t(\vec{x}, t, \vec{E}, \vec{B}, \vec{E}', \vec{B}') \cdot f_t(\vec{x} - \Delta \vec{x}, t - t_e, \vec{E}', \vec{B}') d\vec{E}' d\vec{B}' \]

\[\begin{align*}
\frac{\partial}{\partial t} \vec{B} - \vec{\nabla} \times \vec{E} &= 0 \\
\frac{\partial}{\partial t} \left(\frac{B^2}{E^2} \cdot \vec{E} \right) + \vec{\nabla} \times \vec{B} &= 0
\end{align*} \]

Subsequently continuum fluctuations of general 3 dimensional vector fields \(\vec{A}(\vec{x}, t) \) with \(\vec{\nabla} \times \vec{A} \neq 0 \) are analysed. They have to be sufficiently often continuously differentiable. Defining the vector fields \(\vec{E} \) and \(\vec{B} \) by

\[\begin{align*}
\vec{E} &= \frac{\partial \vec{A}}{\partial t} \neq 0 \\
\vec{B} &= \vec{\nabla} \times \vec{A} \neq 0
\end{align*} \]

(2.1)

and owing to the exchangeability of the operators \(\partial/\partial t \) und \(\vec{\nabla} \times \)

\[\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times \vec{E} \]

(2.2)

follows. This is a necessary consequence of the condition of the continuous differentiability of \(\vec{A}(\vec{x}, t) \). This relation is known according to the Maxwell Equations. The for this purpose dual equation is subsequently being looked for. A stochastic continuum process in the frame of an ensemble theory is formulated such that according to a deterministic theory the already known as well as the related dual equation arise with fluctuating quantities \(\vec{E} \) und \(\vec{B} \).
2 Stochastic and deterministic general vector fields

2.1 The Transition: stochastic theory \leftrightarrow deterministic theory

Every space-time-point (\bar{x}, t) a continuously differentiable distribution density f_{t_ϵ} is assigned to the motion quantities $\vec{E}_{t_\epsilon} = \partial \vec{A}_{t_\epsilon} / \partial t$ and $\vec{B}_{t_\epsilon} = \nabla \times \vec{A}_{t_\epsilon}$ with

$$f_{t_\epsilon} = f_{t_\epsilon}(\bar{x}, t, \vec{E}, \vec{B}).$$ (2.3)

In the with t_ϵ or ϵ indexed functions f_{t_ϵ} it is automatically assumed that the included motion quantities (\vec{E}, \vec{B}) are assigned to a t_ϵ-measurement accuracy. The indexing of the motion quantities may be omitted in functions appropriately indexed themselves.

After the execution of a $\lim_{t_\epsilon \to 0}$-process

$$\lim_{t_\epsilon \to 0} f_{t_\epsilon}(\bar{x}, t, \vec{E}, \vec{B}) = f(\bar{x}, t, \vec{E}, \vec{B})$$ (2.4)

f and (\vec{E}, \vec{B}) are understood in the sense of an exact measurement process.

The stochastic transport of the fluctuation quantities

$$\left(\vec{E}_{t_\epsilon}(\bar{x} - \Delta \bar{x}, t - t_\epsilon), \vec{B}_{t_\epsilon}(\bar{x} - \Delta \bar{x}, t - t_\epsilon) \right) \rightarrow \left(\vec{E}_{t_\epsilon}(\bar{x}, t), \vec{B}_{t_\epsilon}(\bar{x}, t) \right)$$

happens by the transition probability density $W_{t_\epsilon} = W_{t_\epsilon}(\bar{x}, t, \vec{E}, \vec{B}, \vec{E}', \vec{B}')$ with

$$\lim_{t_\epsilon \to 0} W_{t_\epsilon} = \delta(\vec{E}, \vec{B}; \vec{E}', \vec{B}')$$

$$f_{t_\epsilon}(\bar{x}, t, \vec{E}, \vec{B}) = \int_{\vec{B}' \cdot \vec{E}'} \int_{\vec{B}' \cdot \vec{E}'} W_{t_\epsilon}(\bar{x}, t, \vec{E}, \vec{B}, \vec{E}', \vec{B}') \cdot f_{t_\epsilon}(\bar{x} - \Delta \bar{x}, t - t_\epsilon, \vec{E}', \vec{B}') d\vec{E}' d\vec{B}'$$

$$\Delta \bar{x} = t_\epsilon \cdot \vec{E}' \times \frac{\vec{B}'}{B'^2} \quad \text{and} \quad \vec{E}' \times \frac{\vec{B}'}{B'^2} = \text{velocity of propagation.}$$ (2.5)

These equations define stochastic continuum fluctuations of the quantities \vec{E} und \vec{B} in the sense of an ensemble-theory and represent a Markov Process of natural causality. The test-functions of distribution theory obtain by this formulation of a transition probability density W_{t_ϵ} an immediate physical meaning.
$f_{t\epsilon}$ is developed until the 1st order about $(\vec{x}, t) \implies$

$$f_{t\epsilon}(t - t\epsilon, \vec{x} - \Delta \vec{x}, \vec{E}', \vec{B}') = f'_{t\epsilon} - \frac{\partial f'_{t\epsilon}}{\partial t} \cdot t\epsilon - \Delta \vec{x} \cdot \vec{\nabla} f'_t + O(t_{\epsilon}^2)$$

(2.6)

und one gets

$$f'_{t\epsilon} = f_{t\epsilon}(\vec{x}, t, \vec{E}', \vec{B}')$$

By the process $t_{\epsilon} \to 0$ $W_{t\epsilon}$ degenerates to a δ-function:

$$\lim_{t_{\epsilon} \to 0} W_{t\epsilon} = \delta(\vec{E}, \vec{B}; \vec{E}', \vec{B}')$$

(2.8)

lim $t_{\epsilon} \to 0$ applied leads to

$$\frac{\partial f}{\partial t} + \vec{E} \times \vec{B} \cdot \vec{\nabla} f = \lim_{t_{\epsilon} \to 0} \frac{\int_{\vec{E}} \int_{\vec{B}} W_{t\epsilon} f'_{t\epsilon} d\vec{E}' d\vec{B}' - f_{t\epsilon}}{t_{\epsilon}}.$$

(2.9)

Recovering equation (2.2) after the transition to deterministic consideration the exchange term has to vanish, in this case.

$$\lim_{t_{\epsilon} \to 0} \frac{\int_{\vec{B}} \int_{\vec{E}} W_{t\epsilon} f'_{t\epsilon} d\vec{E}' d\vec{B}' - f_{t\epsilon}}{t_{\epsilon}} = 0.$$

(2.10)

This link is an integral part of the considered stochastic process.

Limiting ourselves to one system of the ensemble the function $f(\vec{x}, t, \vec{E}, \vec{B})$ in the space-time-point (\vec{x}, t) degenerates to a δ–function

$$f(\vec{x}, t, \vec{E}, \vec{B}) \longrightarrow \delta(\vec{E}(\vec{x}, t); \vec{B}(\vec{x}, t); \vec{E}, \vec{B})$$-function.

(2.11)
From equation (2.9) arises the key-equation
\[
\frac{\partial}{\partial t} \delta + \bar{E}(\bar{x},t) \times \frac{\bar{B}(\bar{x},t)}{B^2(\bar{x},t)} \cdot \nabla \delta = 0 . \tag{2.12}
\]

The \(\Xi[...] \)-operator is inserted as follows

\[
\Xi \left[\int_{\bar{E}} \int_{\bar{B}} \delta(\bar{B}(\bar{x},t), \bar{E}(\bar{x},t), \bar{B}, \bar{E}) \bar{B}d\bar{B}d\bar{E} \right] = \Xi[\bar{B}(\bar{x},t)] = \bar{B}(\bar{x},t) \tag{2.13}
\]

or

\[
\Xi \left[\int_{\bar{E}} \int_{\bar{B}} \delta(\bar{B}(\bar{x},t), \bar{E}(\bar{x},t), \bar{B}, \bar{E}) \bar{B}d\bar{B}d\bar{E} \right] = \Xi[\bar{E}(\bar{x},t)] = \bar{E}(\bar{x},t) \tag{2.14}
\]

developing the deterministic equations from the key equation.

2.2 The deterministic fluctuation-equations

The key-equation (2.12) represents the interface for the transition of stochastic to deterministic consideration. From the perspective of statistics over the states of movement of the parallelly assumed deterministic processes in the respective point \((\bar{x}, t)\) one is confined to a single system and such to a single state of motion \((\bar{E}(\bar{x}, t), \bar{B}(\bar{x}, t))\).

In this situation the vectors of the motion quantities may be pushed before and behind the differential operators

\[
\bar{E}(\bar{x},t) \times \frac{\bar{B}(\bar{x},t)}{B^2(\bar{x},t)} \cdot \nabla \delta = - \frac{\bar{B}(\bar{x},t)}{B^2(\bar{x},t)} \times \bar{E}(\bar{x},t) \cdot \nabla \delta
\]

\[= - \frac{\bar{B}(\bar{x},t)}{B^2(\bar{x},t)} \cdot \nabla \times \bar{E}(\bar{x},t) \delta
\]
Further more there is
\[\frac{\partial}{\partial t} \left(\frac{\vec{B}(\vec{x},t) \cdot \vec{B}(\vec{x},t)}{B^2(\vec{x},t)} \delta \right) - \frac{\vec{B}(\vec{x},t) \cdot \vec{\nabla} \times (\vec{E}(\vec{x},t) \delta)}{B^2(\vec{x},t)} = 0 \]
\[\Rightarrow \frac{\vec{B}(\vec{x},t)}{B^2(\vec{x},t)} \cdot \left[\frac{\partial}{\partial t} (\vec{B}(\vec{x},t) \delta) - \vec{\nabla} \times (\vec{E}(\vec{x},t) \delta) \right] = 0 \]
\[\Rightarrow \frac{\partial}{\partial t} (\vec{B}(\vec{x},t) \delta) - \vec{\nabla} \times (\vec{E}(\vec{x},t) \delta) = 0. \]
(2.15)

Now the vector fields of the motion quantities \((\vec{E}(\vec{x},t), \vec{B}(\vec{x},t))\) of the one determinstic system are created about the point \((\vec{x}, t)\) and such the transition to the deterministic equations of the one system has succeeded.

One obtains
\[\Xi \left[\int \vec{B} \int \vec{E} \left[\frac{\partial}{\partial t} (\vec{B}(\vec{x},t) \delta) - \vec{\nabla} \times (\vec{E}(\vec{x},t) \delta) = 0 \right] d\vec{E} d\vec{B} \right]. \]
(2.16)

As integration and differentiation are exchangeable \(\Rightarrow\)
\[\frac{\partial}{\partial t} \Xi[\vec{B}(\vec{x},t)] - \vec{\nabla} \times \Xi[\vec{E}(\vec{x},t)] = 0 \]
(2.17)

and it results in the 1.st of the dual fluctuation equations
\[\frac{\partial}{\partial t} \vec{B} - \vec{\nabla} \times \vec{E} = 0. \]
(2.18)

Hereby the stochastic-deterministic connection is established.

Back to the key-equation (2.12)
\[\frac{\partial}{\partial t} \delta + \vec{E}(\vec{x},t) \times \vec{B}(\vec{x},t) \cdot \vec{\nabla} \delta = 0 \]

one obtains by simple conversion
\[\frac{\partial}{\partial t} \left(\frac{\vec{E}(\vec{x},t) \cdot \vec{E}(\vec{x},t) \delta}{E^2(\vec{x},t)} \right) + \vec{E}(\vec{x},t) \cdot \vec{\nabla} \times \left(\frac{\vec{B}(\vec{x},t) \delta}{B^2(\vec{x},t)} \right) = 0 \]
\[\Rightarrow \frac{\partial}{\partial t} \left(\frac{B^2(\vec{x},t)}{E^2(\vec{x},t)} \cdot \vec{E}(\vec{x},t) \delta \right) + \vec{\nabla} \times (\vec{B}(\vec{x},t) \delta) = 0 \]
(2.19)
and

\[\Xi \left[\int_B \left(\frac{B^2_{(\mathbf{x},t)}}{E^2_{(\mathbf{x},t)}} \cdot E_{(\mathbf{x},t)} \delta \right) + \nabla \times (\mathbf{B}_{(\mathbf{x},t)} \delta) \right] d\mathbf{E} d\mathbf{B} = 0 \] (2.20)

respectively

\[\frac{\partial}{\partial t} \Xi \left[\frac{B^2_{(\mathbf{x},t)}}{E^2_{(\mathbf{x},t)}} \cdot E_{(\mathbf{x},t)} \right] + \nabla \times \Xi [\mathbf{B}_{(\mathbf{x},t)}] = 0. \] (2.21)

So we have the second of the two dual equations

\[\frac{\partial}{\partial t} \left(\frac{B^2}{E^2} \cdot \mathbf{E} \right) + \nabla \times (\mathbf{B}) = 0. \] (2.22)

The result is recapitulated by the following equation system:

\[\frac{\partial}{\partial t} \mathbf{B} - \nabla \times \mathbf{E} = 0 \\
\frac{\partial}{\partial t} \left(\frac{B^2}{E^2} \cdot \mathbf{E} \right) + \nabla \times \mathbf{B} = 0 \] (2.23)

with \(|\mathbf{E} \times \mathbf{B}| \leq |\mathbf{E}| \cdot |\mathbf{B}| \). I.e. \(\frac{E^2}{B^2} \) is not the quadratic propagation speed. Interestingly, this only becomes clear after the involvement of the stochastic ensemble theory.

The equation system (2.23) is in such general terms that the physical significance depends on the interpretation of the starting field \(\mathbf{A} \), the boundary conditions as well as on the initial conditions. Hereunder, a deformation vector field, the velocity vector field of turbulence motions or the fluctuations of any other continuously differentiable vector field may be understood. These equations possess with boundary- and suitable initial conditions exactly one solution after the theorem of Cauchy-Kowalewskaja [2]. This statement is at first restricted to the calculation of the fields \(\mathbf{E} \) and \(\mathbf{B} \). Calculating the field \(\mathbf{A} \) with the mere knowledge of

\[\frac{\partial \mathbf{A}}{\partial t} = \mathbf{E} \] (2.24)
is not possible in all cases. A negative example is the calculation of \(\mathbf{v} \) with the knowledge of \(\frac{\partial \mathbf{v}}{\partial t} \) related to turbulent velocity fluctuations.

2.2.1 The vacuum Maxwell Equations

The propagation speed having the constant amount of light velocity one obtains the known equations of vacuum-electrodynamics in the coordinate system of the observer:

\[
\begin{align*}
\frac{\partial}{\partial t} \mathbf{B} - \mathbf{\nabla} \times \mathbf{E} &= 0 \\
\frac{1}{c^2} \frac{\partial}{\partial t} \mathbf{E} + \mathbf{\nabla} \times \mathbf{B} &= 0 \quad \text{mit} \quad \mathbf{E} \perp \mathbf{B} \\
\mathbf{E} \times \frac{\mathbf{B}}{B^2} = \mathbf{c} = \text{propagation speed of light}. \\
\end{align*}
\]

So the electrodynamic equations of vacuum are generally derived, too. Usually, they are seen in the above equations with \(-\mathbf{E}\). It is more than pure supposition, that they describe properties of space-time without a unification of General Relativity and electromagnetic field in vacuum having succeeded, though many physicists not least Einstein [3], Jordan [5] and many others having endeavoured.

There is still the explanation of the associated initial field \(\mathbf{A} \) it generally happening in the frame of vector potential considerations, without recognizing \(\mathbf{A} \) as definite physical object. Only by a direct comprehension of the vector potential the electromagnetic field may be explained without means of mechanical quantities.\(^1\)

2.3 Surfacelike deformation-fluctuations in 3-dimensional space

Let \(\mathbf{d} \) be a continuously differentiable deformation vector field defining an area and \(\mathbf{b} \) und \(\mathbf{e} \) the derived fields

\[
\mathbf{e} = \frac{\partial}{\partial t} \mathbf{d}, \quad \mathbf{b} = \mathbf{\nabla} \times \mathbf{d}
\]

\(^1\)Electrodynamics is introduced in physics via mechanical effects.
Then the deformation is without loss of generality seen as deformation of the \(x-y\)-area. The equations of motion formally equal the equations of 3-dimensional fluctuations

\[
\frac{\partial \vec{b}}{\partial t} - \vec{\nabla} \times \vec{e} = 0 \\
\frac{\partial}{\partial t} \left(\frac{b^2}{e^2} \cdot \vec{e} \right) + \vec{\nabla} \times \vec{b} = 0 \\
\vec{e} \times \frac{\vec{b}}{b^2} = \text{propagation speed,}
\]

only, the operator \(\vec{\nabla} \times\) corresponds to

\[
\vec{\nabla} \times \vec{d} = \begin{pmatrix} \frac{\partial d_z}{\partial y} \\ -\frac{\partial d_z}{\partial x} \\ \frac{\partial d_y}{\partial x} - \frac{\partial d_x}{\partial y} \end{pmatrix}.
\]

The solution uniquely succeeds by the initial conditions \(\vec{b}(x, y, t_0)\) and \(\vec{e}(x, y, t_0)\) according to the theorem of Cauchy-Kowalewskaya [2]. The solution for this area corresponds to a partial solution of a 3-dimensional complete solution. Physical material properties are not explicitly included in these equations. They have to be implicitly considered by initial and boundary conditions. Sole precondition is that the appropriate materials act continuously. It also means that the physical process has to be clarified enabling the corresponding initial and border conditions.
2.4 1-dimensional deformation-fluctuations in 3-dimensional space

Let \(\mathbf{d} \) be a continuously differentiable deformation vector field defining a trajectory and \(\mathbf{b} \) and \(\mathbf{e} \) the derived fields

\[
\mathbf{e} = \frac{\partial}{\partial t} \mathbf{d}, \quad \mathbf{b} = \nabla \times \mathbf{d}
\]
(2.30)

with

\[
\mathbf{d}(x, t) = (d_x(x, t), d_y(x, t), d_z(x, t))
\]
\[
\mathbf{e}(x, t) = (e_x(x, t), e_y(x, t), e_z(x, t))
\]
\[
\mathbf{b}(x, t) = (b_x(x, t), b_y(x, t), b_z(x, t))
\]
(2.31)

Then the deformation is without loss of generality seen as deformation of the \(x \)-coordinate. The equations of motion formally equal the equations of 3-dimensional fluctuations

\[
\frac{\partial}{\partial t} \mathbf{b} - \nabla \times \mathbf{e} = 0
\]
\[
\frac{\partial}{\partial t} \left(\frac{b^2}{e^2} \mathbf{e} \right) + \nabla \times \mathbf{b} = 0
\]
(2.32)

\[
\mathbf{e} \times \frac{\mathbf{b}}{b^2} = \text{propagation speed},
\]

only, the operator \(\nabla \times \) corresponds to

\[
\nabla \times \mathbf{d} = \begin{pmatrix}
0 \\
- \frac{\partial d_z}{\partial x} \\
\frac{\partial d_y}{\partial x}
\end{pmatrix}.
\]
(2.33)

This leads to the component equations

\[
\frac{\partial b_y}{\partial t} = - \frac{\partial e_z}{\partial x}
\]
\[
\frac{\partial b_z}{\partial x} = \frac{\partial e_y}{\partial x}
\]
\[
\frac{\partial [(b^2/e^2) \cdot e_y]}{\partial t} = - \frac{\partial b_z}{\partial x}
\]
\[
\frac{\partial [(b^2/e^2) \cdot e_z]}{\partial t} = \frac{\partial b_y}{\partial x}
\]
(2.34)

\[
\mathbf{e} \times \frac{\mathbf{b}}{b^2} = \text{propagation speed}.
\]
The x-component remains constant. The solution uniquely results from the initial conditions \(\mathbf{b}(x, t_0) \) and \(\mathbf{e}(x, t_0) \) according to the theorem of Cauchy-Kowalewskaya [2]. The solution for this 1-dimensional trajectory corresponds to a partial solution of a 3-dimensional complete solution. Physical material properties are not explicitly included in these equations. They have to be implicitly considered by initial and boundary conditions. Sole precondition is that the appropriate materials act continuously. It also means that the physical process has to be clarified enabling the corresponding initial and border conditions.
3 Space-Time-fluctuations in General Relativity

\[R_{\mu\nu} = 8\pi \cdot G_N \left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T \right) \]

Electrodynamics with its Maxwell Equations is the only field theory of classical physics students of physics are generally faced with in the frame of theoretical physics (at least in Germany). The Maxwell Equations above are shown formally being a limiting case of classical continuum physics. Because of the constant velocity of light they were the reason for setting up the Einsteinian Special Relativity. The adjustment of the electrodynamic field to Space-Time caused many physicists including Albert Einstein to try an identification of these fields with Space-Time fluctuations. Obviously, electromagnetic fluctuations are properties of Space-Time itself, though a prove is missing.

In chapter 2 continuum fluctuations of general vector fields are discussed. Now we consider deformation vector fields \(\vec{d}(\vec{x}, t) \) with \(\vec{\nabla} \times \vec{d} \neq 0 \). They are sufficiently often continuously differentiable. Defining \(\vec{e} \) und \(\vec{b} \) by

\[
\vec{e} = \frac{\partial \vec{d}}{\partial t} \neq 0 \\
\vec{b} = \vec{\nabla} \times \vec{d} \neq 0
\]

and interchanging the sequence of the operators \(\partial/\partial t \) and \(\vec{\nabla} \times \)

\[
\frac{\partial \vec{b}}{\partial t} = \vec{\nabla} \times \vec{e}
\]

directly follows. So this equation is a necessary consequence of the continuous differentiability of \(\vec{d}(\vec{x}, t) \). The hereto dual equation is found according to chapter 2.
with
\[\frac{\partial}{\partial t} \vec{b} - \vec{\nabla} \times \vec{e} = 0 \]
\[\frac{\partial}{\partial t} \left(\frac{b^2}{e^2} \cdot \vec{e} \right) + \vec{\nabla} \times \vec{b} = 0 \] \hspace{1cm} (3.3)
\[\vec{e} \times \frac{\vec{b}}{b^2} = \text{propagation speed} \]

Assuming the constant speed of light the Maxwell Equations of vacuum\(^1\) are obtained:
\[\frac{\partial}{\partial t} \vec{b} - \vec{\nabla} \times \vec{e} = 0 \]
\[\frac{1}{c^2} \frac{\partial}{\partial t} \vec{e} + \vec{\nabla} \times \vec{b} = 0 \] \hspace{1cm} (3.4)
\[\vec{e} \times \frac{\vec{b}}{b^2} = \vec{c} = \text{propagation speed of light} \]

3.1 Space-Time of General Relativity and its Riemannian hypersurface

First, the Riemannian hypersurface of Space-Time is considered as deformation of an Euclidian space. For a precise mathematical definition of the Riemannian space [7] is noted.

The Riemannian space is generally defined by a manifold, which consists of a point set, charts or coordinate systems and a symmetrical metric tensor field. Riemannian space and a suitable Euclidian space are one to one linked by the coordinate system. The according mapping is in mathematics not explicitly used as all considerations are abstractly concerned with the connections of the Riemannian space itself not interesting what kind of picture succeeds in the observational coordinate space. The metric tensor arises in the point \(P(\vec{x}) \in M \) with \(\vec{x} \in E \) (Euclidian space) by scalar products of the tangential vectors \(\vec{g}_i \).

\[g_{ij}(P(\vec{x})) = \vec{g}_i(P(\vec{x})) \cdot \vec{g}_j(P(\vec{x})) \] \hspace{1cm} (3.5)

By free choice of the coordinate system \(g_{ij}(P(\vec{x})) \) may be determined in one point \(P(\vec{x}) \). But this does not simultaneously hold for the neighborhood of this point.

\(^1\)The Maxwell Equations are usually presented by \(\vec{e} \rightarrow -\vec{e} \)
The isomorphic mapping from Euclidian space into the Riemannian hypersurface is brought to physical life when interpreted as deformation of the Euclidian space, both spaces, Euclidian and Riemannian space, tangentially merging in one point. Here the deformation vector field $\vec{d} = \vec{d}(\vec{x}, t)$ vanishes. These time dependent mappings can be interpreted as gravitational waves. The Riemannian hypersurface arises from

$$\vec{y}(\vec{x}, t) = \vec{d}(\vec{x}, t) + \vec{x}.$$ \hfill (3.6)

The gradient on the deformed field is described by

$$\nabla \vec{y} = \left(\partial_i y_j \right)$$ \hfill (3.7)

and detailed

$$\left(\partial_i y_j \right) = \begin{pmatrix} \partial_1 y_1 & \partial_1 y_2 & \partial_1 y_3 \\ \partial_2 y_1 & \partial_2 y_2 & \partial_2 y_3 \\ \partial_3 y_1 & \partial_3 y_2 & \partial_3 y_3 \end{pmatrix} \quad i, j = 1, 2, 3.$$ \hfill (3.8)

Defining the spatially tangential vector \vec{t}_i with

$$\vec{t}_i = \partial_i \vec{y} = \left(\partial_i y_1, \partial_i y_2, \partial_i y_3 \right),$$ \hfill (3.9)

one obtains the spatial metric tensor $t_{ij} = \vec{t}_i \cdot \vec{t}_j$ by

$$\left(t_{ij} \right) = \left(\partial_i y_j \right) \cdot \left(\partial_i y_j \right)^T$$ \hfill (3.10)

and

$$t_{ij} = \partial_i y_1 \cdot \partial_j y_1 + \partial_i y_2 \cdot \partial_j y_2 + \partial_i y_3 \cdot \partial_j y_3.$$ \hfill (3.11)

as part of the metric tensors of Space-Time

$$\begin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \\ g_{10} & t_{11} & t_{12} & t_{13} \\ g_{20} & t_{21} & t_{22} & t_{23} \\ g_{30} & t_{31} & t_{32} & t_{33} \end{pmatrix} \quad \mu, \nu = 0, 1, 2, 3.$$ \hfill (3.12)
The metric-tensor elements t_{ij} of the spatial hypersurface are components of the metric-tensor element set $g_{\mu\nu}$ of Space-Time. The corresponding statement does not hold for the Ricci Curvature Tensor. The Ricci Tensor elements r_{ij} of the Riemannian hypersurface as subspace of Space-Time are not part of the Ricci Tensor element set $R_{\mu\nu}$ of the overall space.

\[
\left(R_{\mu\nu} \right) = \begin{pmatrix}
R_{00} & R_{01} & R_{02} & R_{03} \\
R_{10} & R_{11} & R_{12} & R_{13} \\
R_{20} & R_{21} & R_{22} & R_{23} \\
R_{30} & R_{31} & R_{32} & R_{33}
\end{pmatrix} \neq \begin{pmatrix}
R_{00} & R_{01} & R_{02} & R_{03} \\
R_{10} & r_{11} & r_{12} & r_{13} \\
R_{20} & r_{21} & r_{22} & r_{23} \\
R_{30} & r_{31} & r_{32} & r_{33}
\end{pmatrix}
\]

i.e. $r_{ij} \neq R_{ij}$ \quad $i, j = 1, 2, 3$

Initially, it is the plan to express the Ricci Tensor of Space Time by the Ricci Tensor of the spatial hypersurface and its time dependent metric tensor

\[
R_{ij} = R_{ij}(r_{ij}, t_{ij}) \quad i, j = 1, 2, 3.
\]

Formulating the energy momentum tensor of the right side of the Einstein equations

\[
R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi \cdot G_N T_{\mu\nu} \quad \mu, \nu = 0, 1, 2, 3
\]

by the related deformation fluctuations using its electromagnetic interpretation the unification of gravitational and electromagnetic field is outlined in the following chapter.

Originating from the Einstein equations

\[
R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi \cdot G_N T_{\mu\nu}
\] \hspace{1cm} (3.15)

one obtains by contraction

\[
\text{trace} \left(R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right) = g^{\mu\mu} \left(R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right) = -R = 8\pi \cdot G_N T_\mu = 8\pi \cdot G_N T
\] \hspace{1cm} (3.16)

an alternative form of the Einstein Equations

\[
R_{\mu\nu} = 8\pi \cdot G_N \left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T \right).
\] \hspace{1cm} (3.17)
3 Space-Time-fluctuations in General Relativity

3.2 The Ricci Tensor in the origin of a local inertial-system

The Riemannian curvature tensor $R_{\nu\alpha\beta}^{\mu}$ is described in any coordinate system by the Christoffel symbols

$$\Gamma_{\nu\alpha}^{\mu} = \left\{ \begin{array}{c} \mu \\ \nu \\ \alpha \end{array} \right\} = \frac{1}{2} g^{\mu\lambda} \left[\partial_{\nu} g_{\alpha\lambda} + \partial_{\alpha} g_{\nu\lambda} - \partial_{\lambda} g_{\nu\alpha} \right] \quad (3.18)$$

$$R_{\nu\alpha\beta}^{\mu} = \frac{\partial \Gamma_{\nu\beta}^{\mu}}{\partial x^{\alpha}} - \frac{\partial \Gamma_{\nu\alpha}^{\mu}}{\partial x^{\beta}} + \Gamma_{\rho\beta}^{\mu} \Gamma_{\nu\alpha}^{\rho} - \Gamma_{\rho\alpha}^{\mu} \Gamma_{\nu\beta}^{\rho} \quad (3.19)$$

In the origin \vec{x}_0 of a local inertial system [1] the partial derivatives with respect to coordinates of the metric tensor $g_{\alpha\nu}$ vanish such that

$$\Gamma_{\nu\alpha}^{\mu}(\vec{x}_0) = 0 \quad (3.20)$$

and

$$R_{\nu\alpha\beta}(\vec{x}_0) = \frac{\partial \Gamma_{\nu\beta}^{\mu}}{\partial x^{\alpha}} - \frac{\partial \Gamma_{\nu\alpha}^{\mu}}{\partial x^{\beta}} \quad (3.21)$$

In the origin of the coordinate system the metric tensor itself equals the Minkowski tensor.

$$g_{\mu\nu}(\vec{x}_0) = \eta_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad (3.22)$$

Written out one obtains

$$R_{\nu\alpha\beta}(\vec{x}_0) = \frac{1}{2} \eta^{\mu\lambda} \left[\partial_{\lambda} g_{\beta\alpha} + \partial_{\beta} g_{\lambda\alpha} - \partial_{\alpha} g_{\lambda\beta} \right] - \frac{1}{2} \eta^{\mu\lambda} \left[\partial_{\beta} g_{\alpha\lambda} + \partial_{\lambda} g_{\nu\alpha} - \partial_{\lambda} g_{\nu\alpha} \right] \quad (3.23)$$

$$\implies$$

$$R_{\nu\alpha\beta}(\vec{x}_0) = \frac{1}{2} \eta^{\mu\lambda} \left[\partial_{\alpha} \partial_{\beta} g_{\lambda\nu} + \partial_{\beta} \partial_{\alpha} g_{\lambda\nu} - \partial_{\lambda} \partial_{\alpha} g_{\beta\nu} \right] - \frac{1}{2} \eta^{\mu\lambda} \left[\partial_{\beta} \partial_{\nu} g_{\alpha\lambda} + \partial_{\lambda} \partial_{\nu} g_{\alpha\beta} - \partial_{\beta} \partial_{\lambda} g_{\alpha\nu} \right] \quad (3.24)$$
3 Space-Time-fluctuations in General Relativity

\[R_{\mu\nu\alpha\beta}(\vec{x}_0) = \frac{1}{2} \eta^{\mu\lambda} \left[\partial_\alpha \partial_\beta g_{\gamma\lambda} + \partial_\beta \partial_\lambda g_{\nu\alpha} - \partial_\alpha \partial_\lambda g_{\nu\beta} - \partial_\beta \partial_\nu g_{\alpha\lambda} \right] \] (3.25)

\[R_{\mu\nu}(\vec{x}_0) = \frac{1}{2} \left[\partial_\mu \partial_\nu g_{\alpha\alpha} + \partial_\nu \partial_\mu g_{\alpha\alpha} - \partial_\mu \partial_\alpha g_{\nu\alpha} - \partial_\nu \partial_\alpha g_{\mu\alpha} \right] \] (3.26)

After contraction there is the associated Ricci Tensor

\[R_{\mu\nu}(\vec{x}_0) = \frac{1}{2} \left[\partial_\mu \partial_\nu g_{\alpha\alpha} + \partial_\nu \partial_\mu g_{\alpha\alpha} - \Box g_{\mu\nu} - \partial_\mu \partial_\nu g_{\alpha\alpha} \right] \] (3.28)

This result may be obtained by linearization of the Riemannian curvature tensor, too. Choosing point \((\vec{x}_0)\) as the origin of a local inertial system, linearization is not necessary.

3.3 The Ricci Tensor of the Einstein Space in dependence of temporal fluctuations of its Riemannian hypersurface

The following relations correspond to [4] Landau Lifschitz volume 2 page.308-309. A time orthogonal coordinate system is always possible. In contrary to [4], we do not equate the velocity of light with 1.

\[z_{ij} = \frac{\partial g_{ij}}{\partial (cT)} \] (3.29)

\(z_{ij} \) means the Ricci Tensor of the Riemannian hypersurface.
\[R_{00} = -\frac{1}{2} \frac{\partial x_i^i}{\partial (ct)} - \frac{1}{4} x_i^i x_j^j \]
\[R_{0i} = \frac{1}{2} \left(x_{ij}^i - x_{ji}^j \right) \]
\[R_{ij} = r_{ij} + \frac{1}{2} \frac{\partial x_{ij}}{\partial (ct)} + \frac{1}{4} \left(x_{ij} x_k^k - 2 x_i^k x_{jk} \right) \]

\[i, j, k \text{ pass through } 1, 2, 3. \]
\[^{;} \] means partial derivation, here.

Thus the geometry of Space-Time may be opened up from geometrodynamics of space. Gravitational waves existing the energy momentum tensor \(T_{\mu\nu} \neq 0 \) is given in the considered Space-Time area even if there is no matter. ²

²In contrary to Penrose [6] page 467 “The energy-momentum tensor in empty space is zero.”
4 Unification of Maxwell Field and gravitational field

Figure 4.1: Maybe, Einstein would have had fun at this theory

4.1 Gravitational waves corresponding to electromagnetic Fluctuations

The deformation fluctuations of space and its as electromagnetic fluctuations noticed phenomena are subsequently faced to each other in a limited volume area as fourier developments. The considerations are performed based on treatments of natural vibrations of the electromagnetic field in vacuum in accordance to [4]. The usual electric field \vec{E} is replaced by $-\vec{E}$, without loss of generality. An explicit dependency of the viewed overall volume in the canonical variables and such in the resulting energy density and the electromagnetic fields is avoided by modified normalisation of the canonical variables, in contrast to [4].

In pure field theories energy densities and accelerations should occur as primary quantities not energies and forces. The energy in one point (\bar{x}, t) is always zero but not the energy density. Analogically, the same is true for the relation of acceleration and force.
From
\[\dddot{\vec{d}} = \text{deformation vectorfield} \]
\[\frac{\partial}{\partial t} \vec{b} - \nabla \times \vec{e} = 0 \]
\[\frac{1}{c^2} \dddot{\vec{e}} + \nabla \times \vec{b} = 0 \]
and
\[\dddot{\vec{e}} = \frac{\partial \vec{d}}{\partial t} \neq 0 \]
\[\dddot{\vec{b}} = \nabla \times \vec{d} \neq 0 \]

one obtains
\[\frac{1}{c^4} \frac{\partial^4 \vec{d}}{\partial t^4} = \Delta \vec{d} \]

Deformation field and according vector potential field are formally described by
\[\vec{d} = \sum_k \vec{d}_k = \sum_k (\vec{a}_k e^{ikr} + \vec{a}_k^* e^{-ikr}) \quad \vec{A} = \sum_k \vec{A}_k = \sum_k (\vec{a}_k e^{ikr} + \vec{a}_k^* e^{-ikr}) \]

and it follows
\[\dddot{\vec{d}}_k + c^2 k^2 \vec{d}_k = 0 \quad \dddot{\vec{A}}_k + c^2 k^2 \vec{A}_k = 0 \]

with
\[\vec{e} = \dddot{\vec{d}} = \sum_k \dddot{\vec{d}}_k = \sum_k (\dddot{\vec{a}}_k e^{ikr} + \dddot{\vec{a}}_k^* e^{-ikr}) \quad \vec{E} = \dddot{\vec{A}} = \sum_k \dddot{\vec{A}}_k = \sum_k (\dddot{\vec{a}}_k e^{ikr} + \dddot{\vec{a}}_k^* e^{-ikr}) \]

and
\[\vec{b} = \sum_k \vec{b}_k = -i \sum_k \vec{k} \times (\vec{a}_k e^{ikr} + \vec{a}_k^* e^{-ikr}) \quad \vec{B} = \sum_k \vec{B}_k = -i \sum_k \vec{k} \times (\vec{A}_k e^{ikr} + \vec{A}_k^* e^{-ikr}) \]

The wave vectors are calculated in a sufficiently great volume \(V = L_x \cdot L_y \cdot L_z \).
\[\mathcal{E} = \frac{1}{8\pi} \int_{V_0} (E^2/c^2 + B^2) dV \]
means the energy of the field in volume \(V_0 \).

The energy density of the field is
\[\mathcal{E} = \frac{1}{8\pi} \sum_k (E_k^2/c^2 + B_k^2) \]
deformation fluctuations

electromagnetic fluctuations

Now, the following vectorial quantities (canonical variables) are defined:

\[
\ddot{q}_k = \sqrt{\frac{1}{4\pi c^2}} (\ddot{a}_k + \ddot{a}_k^*)
\]

\[
\ddot{P}_k = -i\omega_k \sqrt{\frac{1}{4\pi c^2}} (\ddot{a}_k - \ddot{a}_k^*)
\]

\[
\ddot{q}_k \sim \cos(\omega_k t), \quad \ddot{P}_k \sim \sin(\omega_k t)
\]

Obviously, they are real and resolved according to complex quantities they give

\[
\ddot{a}_{kj} = \frac{i}{\hbar} \sqrt{\pi} (\ddot{P}_{kj} - i\omega_{kj}\ddot{Q}_{kj})
\]

\[
\ddot{a}_{kj}^* = -\frac{i}{\hbar} \sqrt{\pi} (\ddot{P}_{kj} + i\omega_{kj}\ddot{Q}_{kj})
\]

Thus one obtains as expansion by characteristic vibrations (in concise presentation):

\[
d = \sqrt{4\pi} \sum_k \frac{1}{\hbar} \left(c k \ddot{q}_k \cos(k \cdot \vec{r}) - \ddot{P}_k \sin(k \cdot \vec{r}) \right)
\]

\[
\ddot{e} = \sqrt{4\pi} \sum_k e \left(c k \ddot{q}_k \sin(k \cdot \vec{r}) + \ddot{P}_k \cos(k \cdot \vec{r}) \right)
\]

\[
\ddot{b} = -\sqrt{4\pi} \sum_k \frac{1}{\hbar} k \times [c k \ddot{q}_k \sin(k \cdot \vec{r}) + \ddot{P}_k \cos(k \cdot \vec{r})]
\]

respectively noted for the single modes:

\[
\ddot{a}_{kj} = \sqrt{4\pi} \frac{1}{\hbar} \left(c k_j \ddot{q}_k \cos(k_j \cdot \vec{r}) - \ddot{P}_{kj} \sin(k_j \cdot \vec{r}) \right)
\]

\[
\ddot{e}_{kj} = \sqrt{4\pi} e \left(c k_j \ddot{q}_k \sin(k_j \cdot \vec{r}) + \ddot{P}_{kj} \cos(k_j \cdot \vec{r}) \right)
\]

\[
\ddot{b}_{kj} = -\sqrt{4\pi} \frac{1}{\hbar} k_j \times [c k_j \ddot{q}_k \sin(k_j \cdot \vec{r}) + \ddot{P}_{kj} \cos(k_j \cdot \vec{r})]
\]

with

\[
\ddot{c}_k = \frac{1}{\hbar} \sum_k \sum_{k_j} \left(E_{kj}^2/c^2 + B_{kj}^2 \right)
\]

\[
\ddot{c}_{kj} = \frac{1}{2} \left(E_{kj}^2/c^2 + B_{kj}^2 \right)
\]

They may formally considered as running waves moving discrete quantities of harmonic oscillators with the Hamilton Functions

\[
H = \sum_k H_k = \sum_k \frac{1}{2} (p_k^2 + \omega_k^2 q_k^2)
\]

\[
\mathcal{H} = \sum_k \mathcal{H}_k = \sum_k \frac{1}{2} (P_k^2 + \omega_k^2 Q_k^2)
\]

and the oscillator equations

\[
\ddot{q}_k + \omega_k^2 q_k = 0, \quad \ddot{Q}_k + \omega_k^2 Q_k = 0
\]
4 Unification of Maxwell Field and gravitational field

\[H = \sum_{k} H_k \quad H_k = \frac{1}{2}(p_k^2 + \omega_k^2 q_k^2), \quad H = \sum_{k} H_k \quad H_k = \frac{1}{2}(p_k^2 + \omega_k^2 q_k^2) \]

(4.3)

4.2 The energy-momentum-tensor of the electromagnetic field

The energy momentum density tensor for the electromagnetic field (generally called Energy momentum tensor) in covariant components [8] is written with the chosen signature \((-1, 1, 1, 1)\)

\[T_{\mu\nu} = \frac{1}{4\pi} \left(F_{\alpha\mu} F_{\alpha\nu} - \frac{1}{4} g_{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \right) \]

(4.4)

It is symmetric: \(T_{\mu\nu} = T_{\nu\mu} \).

One obtains the Faraday-tensor of the electromagnetic field from

\[F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \quad \mu, \nu = 0, 1, 2, 3 \]

(4.5)

and detailed (they are chosen respectively the form of the above Maxwell Equations)

\[F_{0i} = \partial_0 A_i - \partial_i A_0 = E_i/c, \quad i = 1, 2, 3 \]
\[F_{i0} = \partial_0 A_i - \partial_i A_0 = -E_i/c, \quad i = 1, 2, 3 \]
\[F_{12} = \partial_1 A_2 - \partial_2 A_1 = B_3 \]
\[F_{13} = \partial_1 A_3 - \partial_3 A_1 = -B_2 \]
\[F_{23} = \partial_2 A_3 - \partial_3 A_2 = B_1 \]

(4.6)

\[\Rightarrow F_{\mu\nu} = -F_{\nu\mu} \]

\[\partial_\rho F_{\mu\nu} + \partial_\mu F_{\nu\rho} + \partial_\nu F_{\rho\mu} = 0 \]

and in greater detail
4 Unification of Maxwell Field and gravitational field

\[\begin{align*}
\partial_1 F_{23} + \partial_3 F_{12} + \partial_2 F_{31} &= 0 \\
\partial_2 F_{30} + \partial_0 F_{23} + \partial_3 F_{02} &= 0 \\
\partial_3 F_{01} + \partial_1 F_{30} + \partial_0 F_{13} &= 0 \\
\partial_0 F_{12} + \partial_2 F_{01} + \partial_1 F_{20} &= 0
\end{align*} \]

The indices correspond to $0 \rightarrow ct$, $1 \rightarrow x$, $2 \rightarrow y$, $3 \rightarrow z$ complying with the following electrodynamic equations of vacuum:

\[\text{div} \vec{B} = 0 \quad \text{and} \quad \frac{\partial}{\partial t} \vec{B} - \vec{\nabla} \times \vec{E} = 0. \]

The expressions of the covariant and contravariant Faraday-tensors considering the minkowski tensor

\[\eta_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad (4.7) \]

lead to

\[F_{\mu\nu} = \begin{pmatrix} 0 & E_1/c & E_2/c & E_3/c \\ -E_1/c & 0 & B_3 & -B_2 \\ -E_2/c & -B_3 & 0 & B_1 \\ -E_3/c & B_2 & -B_1 & 0 \end{pmatrix} \quad \text{and} \quad F^{\mu\nu} = \begin{pmatrix} 0 & -E_1/c & -E_2/c & -E_3/c \\ E_1/c & 0 & B_3 & -B_2 \\ E_2/c & -B_3 & 0 & B_1 \\ E_3/c & B_2 & -B_1 & 0 \end{pmatrix} \quad (4.8) \]

\[F^\mu_\nu = \begin{pmatrix} 0 & -E_1/c & -E_2/c & -E_3/c \\ -E_1/c & 0 & B_3 & -B_2 \\ -E_2/c & -B_3 & 0 & B_1 \\ -E_3/c & B_2 & -B_1 & 0 \end{pmatrix} \quad (4.9) \]

Thus the covariant components of the electromagnetic energy momentum tensor are written

\[\text{the polarity reversal } \vec{E} \rightarrow -\vec{E} \text{ recognised} \]
The trace of the electromagnetic energy momentum tensors vanishes

\[T = 0 \]

and the Einstein Equations simplify to

\[R_{ij} = 8\pi \cdot G_N T_{ij}. \]

For further considerations the following eigenwave is chosen:

\[E_2 = E_3 = B_1 = B_3 = 0, \quad E_1 \neq 0, \quad B_2 \neq 0. \]

\[\Rightarrow \]

\[T_{00} = \frac{1}{8\pi} \left(\frac{E_1^2}{c^2} + B_2^2 \right), \quad T_{01} = T_{02} = 0, \quad T_{03} = \frac{1}{4\pi} \left(\frac{E_1}{c} \times \vec{B}_2 \right) \]

\[T_{ik} = 0 \quad \text{für } i \neq k \quad i, k = 1, 2, 3 \]

\[T_{11} = \frac{-1}{8\pi} \left(\frac{E_1^2}{c^2} - B_2^2 \right), \quad T_{22} = \frac{1}{8\pi} \left(\frac{E_1^2}{c^2} - B_2^2 \right) \]

\[T_{33} = \frac{1}{8\pi} \left(\frac{E_1^2}{c^2} + B_2^2 \right) \]
4.3 The quantitative relation of electromagnetic and gravitational waves

The quantitative connection is achieved via the Einstein Equations

\[R_{\mu\nu} = 8\pi \cdot G_N T_{\mu\nu}. \]

The description of a natural oscillation takes place using deformation interpretation by

\[
\begin{align*}
\vec{d}_k & = \sqrt{4\pi} \frac{1}{k} \left(c k_i \vec{q}_k \cos(\vec{k}_i \cdot \vec{r}) - \vec{p}_{k_i} \sin(\vec{k}_i \cdot \vec{r}) \right) \\
\vec{e}_k & = \sqrt{4\pi} c \left(c k_i \vec{q}_{k_i} \sin(\vec{k}_i \cdot \vec{r}) + \vec{p}_{k_i} \cos(\vec{k}_i \cdot \vec{r}) \right) \\
\vec{b}_k & = -\sqrt{4\pi} \frac{1}{k} \vec{k}_i \times \left[c k_i \vec{q}_{k_i} \sin(\vec{k}_i \cdot \vec{r}) + \vec{p}_{k_i} \cos(\vec{k}_i \cdot \vec{r}) \right],
\end{align*}
\]

and using the electromagnetic field interpretation by

\[
\begin{align*}
\vec{A}_k & = \sqrt{4\pi} \frac{1}{k} \left(c k_i \vec{Q}_{k_i} \cos(\vec{k}_i \cdot \vec{r}) - \vec{P}_{k_i} \sin(\vec{k}_i \cdot \vec{r}) \right) \\
\vec{E}_k & = \sqrt{4\pi} c \left(c k_i \vec{Q}_{k_i} \sin(\vec{k}_i \cdot \vec{r}) + \vec{P}_{k_i} \cos(\vec{k}_i \cdot \vec{r}) \right) \\
\vec{B}_k & = -\sqrt{4\pi} \frac{1}{k} \vec{k}_i \times \left[c k_i \vec{Q}_{k_i} \sin(\vec{k}_i \cdot \vec{r}) + \vec{P}_{k_i} \cos(\vec{k}_i \cdot \vec{r}) \right],
\end{align*}
\]

with their corresponding energy density and energy in a volume surrounding the coordinate origin \((x_0)\).

\[
\begin{align*}
\mathcal{E}_{k_i} & = \frac{1}{2} \left(\frac{E_{k_i}^2}{c^2} + B_{k_i}^2 \right) \quad \text{Energiedichte} \\
\mathcal{E} & = \frac{1}{2} \int_{V_0} \left(\frac{E_{k_i}^2}{c^2} + B_{k_i}^2 \right) dV \quad \text{Energie}
\end{align*}
\]

The metric tensor of an elementary wave with \(\vec{q}_k \parallel \vec{e}_x, \vec{p}_k \parallel \vec{e}_y\) and \(\vec{k} \parallel \vec{e}_z, \vec{k} \times \vec{q}_k \parallel \vec{e}_y\) is given by the tangential vectors:

\[
\vec{t}_i = \partial_i \vec{y} = (\partial_i y_1, \partial_i y_2, \partial_i y_3), \quad \vec{y} = \vec{d} + \vec{x}
\]
Unification of Maxwell Field and gravitational field

\[\vec{t}_z = \partial_z \vec{y} = (\partial_z, 0, 1). \]

With \(\vec{k} \cdot \vec{r} = k \cdot z = \omega_k / c \cdot z \) one obtains

\[\vec{t}_z = \left(-\sqrt{4\pi \omega_k q_k \sin(\omega_k / c \cdot z)}, -\sqrt{4\pi p_k \cos(\omega_k / c \cdot z)}, 1 \right). \] (4.21)

As searched spatial metric tensor element remains

\[t_{zz} = 4\pi \left(\omega_k^2 q_k^2 \sin^2(\omega_k / c \cdot z) + p_k^2 \cos^2(\omega_k / c \cdot z) \right) + 1 \] (4.22)

with

\[q_k = u_k \cos(\omega_k t), \quad p_k = v_k \sin(\omega_k t). \] (4.23)

The purpose is the evaluation of the equation

\[R_{zz} = 8\pi G N T_{zz}. \] (4.24)

It is appropriate to note, that

\[T_{zz} = \frac{1}{8\pi} \left(\frac{E_x^2}{c^2} + B_y^2 \right) = \frac{E_k}{4\pi}. \] (4.25)

Starting from the Riemannian curvature tensor

\[R^\sigma_{\nu\alpha\beta} = \partial_\alpha \Gamma^\sigma_{\nu\beta} - \partial_\beta \Gamma^\sigma_{\nu\alpha} + \Gamma^\sigma_{\rho\alpha} \Gamma^\rho_{\nu\beta} - \Gamma^\sigma_{\rho\beta} \Gamma^\rho_{\nu\alpha}. \] (4.26)

with

\[\Gamma^\mu_{\nu\alpha} = \frac{1}{2} g^{\rho\lambda} \left[\partial_\nu g_{\alpha\lambda} + \partial_\alpha g_{\nu\lambda} - \partial_\lambda g_{\nu\alpha} \right] \] (4.27)

leads by contraction to the Ricci tensor

\[R_{\mu\nu} = R^\sigma_{\mu\nu\sigma} = \partial_\nu \Gamma^\sigma_{\mu\sigma} - \partial_\sigma \Gamma^\sigma_{\mu\nu} + \Gamma^\sigma_{\rho\sigma} \Gamma^\rho_{\mu\nu} - \Gamma^\sigma_{\rho\nu} \Gamma^\rho_{\mu\sigma}. \] (4.28)

The metric tensor after the deformation by the above elementary wave is used in the time orthogonal coordinate system.

\[\eta_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \] (4.29)
Unification of Maxwell Field and gravitational field

\[g_{\mu\nu}(x_0) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & t_{zz} \end{pmatrix} \]

\[g^{\mu\nu}(x_0) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/t_{zz} \end{pmatrix} \] (4.30)

\[g_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu}, \quad g^{\mu\nu} \approx \eta^{\mu\nu} - h^{\mu\nu} \]

\[|h_{\mu\nu}|, |h^{\mu\nu}| \ll 1 \] (4.31)

The Ricci tensor is typically written in a linear and non-linear proportion with respect to the Christoffel symbols stripped down.

\[R^{(1)}_{\mu\nu}(x_0) = \partial_\nu \Gamma^\sigma_{\mu\sigma} - \partial_\sigma \Gamma^\sigma_{\mu\nu}, \quad R^{(2)}_{\mu\nu}(x_0) = \Gamma^\sigma_{\rho\nu} \Gamma^\rho_{\mu\sigma} - \Gamma^\sigma_{\rho\sigma} \Gamma^\rho_{\mu\nu} \] (4.32)

Detailed examination of the Christoffel symbols

\[\Gamma^\sigma_{\mu\sigma} = \frac{1}{2} \sum_\sigma \sum_\rho g^{\sigma\rho} \partial_\sigma g_{\mu\rho} + \frac{1}{2} \sum_\rho g^{\sigma\rho} \partial_\sigma g_{\mu\rho} - \frac{1}{2} \sum_\sigma \sum_\rho g^{\sigma\rho} \partial_\rho g_{\mu\sigma} \] (4.33)

\[\frac{1}{2} \sum_\sigma \sum_\rho g^{\sigma\rho} \partial_\sigma g_{\mu\rho} = \frac{1}{2} g^{00} \partial_0 g_{0\rho} + \frac{1}{2} g^{zz} \partial_z g_{zz} \]

\[\frac{1}{2} \sum_\rho g^{00} \partial_0 g_{0\rho} = \frac{1}{2} g^{00} \partial_0 g_{00} + \frac{1}{2} g^{zz} \partial_z g_{zz} \] (4.34)

\[\frac{1}{2} \sum_\sigma g^{\sigma\rho} \partial_\rho g_{\mu\sigma} = \frac{1}{2} g^{00} \partial_0 g_{00} + \frac{1}{2} g^{zz} \partial_z g_{zz} \]

\[\partial_z \Gamma^\sigma_{zz} = \frac{1}{2} \partial_z g^{zz} \partial_z g_{zz} \] (4.35)

\[\partial_0 \Gamma^\sigma_{zz} = \frac{1}{2} \partial_0 g^{00} \partial_z g_{zz} + \frac{1}{2} \partial_z g^{zz} \partial_0 g_{zz} - \partial_0 g_{zz} \]

\[= -\frac{1}{2} \partial_0^2 g_{zz} + \frac{1}{2} \partial_z g^{zz} \partial_z g_{zz} \] (4.36)
lead for the linear part to

$$R^{(1)}_{zz}(x_0) = \partial_z \Gamma^z_{z\sigma} - \partial_\sigma \Gamma^z_{zz} = + \frac{1}{2} \partial_0^2 g_{zz}. \quad (4.37)$$

The nonlinear part is determined for the considered elementary wave by the following steps

$$R^{(2)}_{zz}(x_0) = \Gamma^z_{\rho z} \Gamma^\rho_{z\sigma} - \Gamma^z_{\rho \sigma} \Gamma^\rho_{zz} \quad (4.38)$$

$$\Gamma^z_{\rho z} = \frac{1}{2} g^{\rho \sigma} \left[\partial_\rho g_{z\sigma} + \partial_z g_{\sigma \rho} - \partial_\sigma g_{\rho z} \right] \quad (4.39)$$

$$\Gamma^\rho_{z \sigma} = \frac{1}{2} g^{\rho \rho} \left[\partial_\rho g_{z \sigma} + \partial_z g_{\sigma \rho} - \partial_\sigma g_{\rho z} \right] \quad (4.40)$$

$$\Gamma^z_{\rho z} \Gamma^\rho_{z \sigma} = \frac{1}{4} g^{\rho \sigma} g^{\rho \rho} \left[\partial_\rho g_{z \sigma} + \partial_z g_{\sigma \rho} - \partial_\sigma g_{\rho z} \right] \left[\partial_\rho g_{z \sigma} + \partial_z g_{\sigma \rho} - \partial_\sigma g_{\rho z} \right]$$

$$= \frac{1}{4} g^{zz} \left[\left(\partial_z g_{zz} \right)^2 + \left(\partial_0 g_{zz} \right) \left(\partial_z g_{zz} \right) + \left(\partial_0 g_{zz} \right)^2 \right] \quad (4.41)$$

$$\Gamma^\rho_{z \sigma} = \frac{1}{2} g^{\rho \rho} \left[\partial_\rho g_{z \sigma} + \partial_z g_{\sigma \rho} - \partial_\sigma g_{\rho z} \right] \quad (4.42)$$

$$\Gamma^\sigma_{\nu \mu} = \frac{1}{2} g^{\sigma \alpha} \left[\partial_\alpha g_{\mu \sigma} + \partial_\mu g_{\sigma \alpha} - \partial_\sigma g_{\alpha \mu} \right] \quad (4.43)$$

$$\Gamma^\rho_{\rho \sigma} \Gamma^\sigma_{zz} = \frac{1}{4} g^{\rho \rho} g^{\sigma \sigma} \left[\partial_\rho g_{\sigma \rho} + \partial_\sigma g_{\rho \rho} - \partial_\sigma g_{\rho \rho} \right] \left[\partial_z g_{zz} + \partial_z g_{\sigma z} - \partial_\sigma g_{zz} \right]$$

$$= \frac{1}{4} g^{zz} \left[\left(\partial_z g_{zz} \right)^2 + \left(\partial_0 g_{zz} \right)^2 \right] \quad (4.44)$$
\[R^{(2)}_{zz}(\vec{x}_0) = \Gamma^\sigma_{\rho z} \Gamma^\rho_{z z} - \Gamma^\sigma_{\rho z} \Gamma^\rho_{z z} = \frac{1}{4} g^{zz} \left(g^{zz}(\partial_z g_{zz})^2 + (\partial_0 g_{zz}) (\partial_z g_{zz} + (\partial_0 g_{zz})^2 \right) - \frac{1}{4} g^{zz} \left(g^{zz}(\partial_z g_{zz})^2 + (\partial_0 g_{zz})^2 \right) \]

(4.45)

\[R^{(2)}_{zz}(\vec{x}_0) = \Gamma^\sigma_{\rho z} \Gamma^\rho_{z z} - \Gamma^\sigma_{\rho z} \Gamma^\rho_{z z} = \frac{1}{4} g^{zz} \left((\partial_0 g_{zz})(\partial_z g_{zz}) \right) \]

(4.46)

The whole tensor element results in \(\Rightarrow \)

\[R_{zz}(\vec{x}_0) = R^{(1)}_{zz}(\vec{x}_0) + R^{(2)}_{zz}(\vec{x}_0) = + \frac{1}{2} \partial^2 g_{zz} + \frac{1}{4} g^{zz} \left((\partial_0 g_{zz})(\partial_z g_{zz}) \right) \]

(4.47)

For the point \(\vec{x}_0 = (0, 0, 0, 0) \) this means

\[\partial_0 g_{zz}(\vec{x}_0) = \partial_z g_{zz}(\vec{x}_0) = 0 \quad \rightarrow \quad R^{(2)}_{zz}(\vec{x}_0) = 0. \]

(4.48)

Thus one gets

\[R_{zz}(\vec{x}_0) = R^{(1)}_{zz}(\vec{x}_0) = \frac{1}{2} \partial^2 g_{zz}(\vec{x}_0). \]

(4.49)

Now using

\[R_{zz} = 8 \pi \cdot G_N T_{zz}. \]

the amplitude of the elementary gravitational wave (electromagnetic wave) gives the quantitative deformation of space by an electrodynamic elementary wave. Such the importance of the Einstein-Equations for microphysics is proved.

\[d_k = \frac{2}{\omega_k^2} \sqrt{\pi \gamma \mathcal{E}_k}. \]

(4.50)

with the constant of gravitation \(\gamma = 6.67 \cdot 10^{-11} m^3 kg^{-1} s^{-2} \) and \(\mathcal{E}_k \) as energy density. In these considerations the light velocity \(c \) does not occur explicitly.

Setting \(\mathcal{E}_k = 1 W sec/m^3 \) and using \(\omega_k^2 = (2\pi \cdot \nu)^2 \) with \(\nu = 50 \) this results in \(d_k = 2.933 \cdot 10^{-10} m \). In comparison, the measured atomic radius of \(H^1 \) is given by \(\approx 2.5 \cdot 10^{-11} m \). Obviously, that effect has to be considered in practice.

As Spin 1 is assigned to photons the same has to be assumed for the graviton. (A photon of giant wavelength from an other perspective, if it is existent.)
The Einstein Equations maybe achieve much more than describing cosmological processes!

4.4 Summary

Until now, electromagnetism is not directly understood. It is described with detours via mechanical effects though for physicists it has manifested in immediate clearness after more than a century of successful handling. With the described unification electromagnetism is directly led back to the most fundamental terms of physics, space and time. The usually discussed gauge transformations are chosen by the observation space respectively the coordinate space. The vector potential achieves an absolute significance.

Establishing the facilitation of quantizing gravitational fields is a trivial statement concerning the Maxwell structure of the gravitational waves identified as deformation waves of an appropriate Euclidian space. This applies accepting the known canonical quantization for the electromagnetic field.
Bibliography