Complex Quantum Teleportation Achieved

Austrian and Chinese scientists have succeeded in teleporting three-dimensional quantum states for the first time. High-dimensional teleportation could play an important role in future quantum computers. [33]

An efficient light-matter interface might constitute the foundation of quantum communication. However, certain structures that are formed during the growth process interfere with the signal. [32]

Physicists at C2N have demonstrated for the first time the direct generation of light in a state that is simultaneously a single photon, two photons, and no photon at all. [31]

A team of researchers from Xiamen University, the University of Ottawa and the University of Rochester has shown that it is possible to entangle photons with correlations between their radial and momentum states. [30]

In a new study, researchers demonstrate creative tactics to get rid of loopholes that have long confounded tests of quantum mechanics. [29]

This is a very interesting quantum phenomenon called "magnon crystallization," in which the magnons are said to be in a "frustrated" state. [28]

In a new paper, Anupama Unnikrishnan, Ian MacFarlane, Richard Yi, Eleni Diamanti, Damian Markham, and Iordanis Kerenidis, from the University of Oxford, MIT, Sorbonne University, the University of Paris and CNRS, have proposed the first practical protocol for anonymous communication in quantum networks. [27]

Researchers from QuTech have achieved a world's first in quantum internet technology. [26]

The achievement represents a major step towards a "quantum internet," in which future computers can rapidly and securely send and receive quantum information. [25]

Scientists have used precisely tuned pulses of laser light to film the ultrafast rotation of a molecule. [24]

Recently, researchers have been investigating how these quantum fingerprints might one day be used as an inexpensive form of ID to protect users’ personal information for
technologies in the emerging network of internet-connected devices known as the Internet of Things. [23]

An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22]

The breakthrough was made in the lab of Andrea Alù, director of the ASRC’s Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21]

Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20]

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19]

A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18]

Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17]

Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16]

Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15]

Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14]

For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13]
Physicists have shown that the three main types of engines (four-stroke, twostroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. [12]

For the first time, physicists have performed an experiment confirming that thermodynamic processes are irreversible in a quantum system—meaning that, even on the quantum level, you can't put a broken egg back into its shell. The results have implications for understanding thermodynamics in quantum systems and, in turn, designing quantum computers and other quantum information technologies. [11]

Disorder, or entropy, in a microscopic quantum system has been measured by an international group of physicists. The team hopes that the feat will shed light on the "arrow of time": the observation that time always marches towards the future. The experiment involved continually flipping the spin of carbon atoms with an oscillating magnetic field and links the emergence of the arrow of time to quantum fluctuations between one atomic spin state and another. [10]

Mark M. Wilde, Assistant Professor at Louisiana State University, has improved this theorem in a way that allows for understanding how quantum measurements can be approximately reversed under certain circumstances. The new results allow for understanding how quantum information that has been lost during a measurement can be nearly recovered, which has potential implications for a variety of quantum technologies. [9]

Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement. [8]

The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories.

The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

Contents
Preface ..6
Complex quantum teleportation achieved for the first time ...6
Novel experimental method ..7
Higher information capacities for quantum computers ...7
Detraction-free light-matter interaction ..8
Light particles capable of transporting information across large distances8
Interfering photons from wetting layer ...8
Additional layer eliminates interferences ..8
Generation of light in a photon-number quantum superposition ..9
Correlating entangled photons by radial position and momenta ...10
Cracking a decades-old test, researchers bolster case for quantum mechanics10
A test for quantum theories ..11
Closing loopholes ..11
Studying quantum phenomena in magnetic systems to understand exotic states of matter12
Practical anonymous communication protocol developed for quantum networks13
World's first link layer protocol brings quantum internet closer to a reality14
Quantum internet ..15
Building a quantum network system ..15
Travelling towards a quantum internet at light speed ...16
Scientists film rotating carbonyl sulphide molecules ...17
Every transistor has a unique quantum fingerprint—but can it be used as a form of ID?18
The quantum states on the surface of conducting materials can strongly interact with light20
Breakthrough in circuit design makes electronics more resistant to damage and defects21
Researchers develop heat switch for electronics ..22
Converting heat into electricity with pencil and paper ..23
Tiny effect ..23
A new efficient and portable electrocaloric cooling device ...24
Fast heat flows in warm, dense aluminum ..24
Controlling heat and particle currents in nanodevices by quantum observation25
Maxwell's demon extracts work from quantum measurement ..27
Preface
Physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena. In a new proposed experiment in this area, two toaster-sized "nanosatellites" carrying entangled condensates orbit around the Earth, until one of them moves to a different orbit with different gravitational field strength. As a result of the change in gravity, the entanglement between the condensates is predicted to degrade by up to 20%. Experimentally testing the proposal may be possible in the near future. [5]

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the quantum state of each particle cannot be described independently – instead, a quantum state may be given for the system as a whole. [4]

I think that we have a simple bridge between the classical and quantum mechanics by understanding the Heisenberg Uncertainty Relations. It makes clear that the particles are not point like but have a dx and dp uncertainty.

Complex quantum teleportation achieved for the first time
Austrian and Chinese scientists have succeeded in teleporting three-dimensional quantum states for the first time. High-dimensional teleportation could play an important role in future quantum computers.

Researchers from the Austrian Academy of Sciences and the University of Vienna have experimentally demonstrated what was previously only a theoretical possibility. Together with quantum physicists from the University of Science and Technology of China, they have succeeded in teleporting complex high-dimensional quantum states. The research teams report this international first in the journal Physical Review Letters.

In their study, the researchers teleported the quantum state of one photon (light particle) to another distant one. Previously, only two-level states ("qubits") had been transmitted, i.e.,...
information with values "0" or "1". However, the scientists succeeded in teleporting a three-level state, a so-called "qutrit". In quantum physics, unlike in classical computer science, "0" and "1" are not an 'either/or' – both simultaneously, or anything in between, is also possible. The Austrian-Chinese team has now demonstrated this in practice with a third possibility "2".

Novel experimental method

It has been known since the 1990s that multidimensional quantum teleportation is theoretically possible. However: "First, we had to design an experimental method for implementing high-dimensional teleportation, as well as to develop the necessary technology", says Manuel Erhard from the Vienna Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences.

The quantum state to be teleported is encoded in the possible paths a photon can take. One can picture these paths as three optical fibers. Most interestingly, in quantum physics a single photon can also be located in all three optical fibers at the same time. To teleport this three-dimensional quantum state, the researchers used a new experimental method. The core of quantum teleportation is the so-called Bell measurement. It is based on a multiport beam splitter, which directs photons through several inputs and outputs and connects all optical fibers together. In addition, the scientists used auxiliary photons—these are also sent into the multiple beam splitter and can interfere with the other photons.

Through clever selection of certain interference patterns, the quantum information can be transferred to another photon far from the input photon, without the two ever physically interacting. The experimental concept is not limited to three dimensions, but can in principle be extended to any number of dimensions, as Erhard emphasizes.

Higher information capacities for quantum computers

With this, the international research team has also made an important step towards practical applications such as a future quantum internet, since high-dimensional quantum systems can transport larger amounts of information than qubits. "This result could help to connect quantum computers with information capacities beyond qubits", says Anton Zeilinger, quantum physicist at the Austrian Academy of Sciences and the University of Vienna, about the innovative potential of the new method.

The participating Chinese researchers also see great opportunities in multidimensional quantum teleportation. "The basics for the next-generation quantum network systems is built on our foundational research today", says Jian-Wei Pan from the University of Science and Technology of China. Pan recently held a lecture in Vienna at the invitation of the University of Vienna and the Academy.

In future work, the quantum physicists will focus on how to extend the newly gained knowledge to enable teleportation of the entire quantum state of a single photon or atom. [33]
Detraction-free light-matter interaction

An efficient light-matter interface might constitute the foundation of quantum communication. However, certain structures that are formed during the growth process interfere with the signal.

Certain semiconductor structures, so-called *quantum dots*, might constitute the foundation of quantum communication. They are an efficient interface between matter and light, with photons (light particles) emitted by the quantum dots transporting information across large distances. However, structures form by default during the manufacture of quantum dots that interfere with communication. Researchers at the University of Basel, Ruhr-Universität Bochum, and Forschungszentrum Jülich have now successfully eliminated these interferences. They've published their report in the journal *Communications Physics* from 9 August 2019.

Light particles capable of transporting information across large distances

Quantum dots can be realized in semiconductors if researchers lock an electron and an electron hole—i.e. a positive charge at a position where an electron should exist—in a constricted space. Together, electron and electron hole form an excited state. When they recombine, the excited state disappears and a photon is generated. "That photon might be usable as information carrier in quantum communication across large distances," says Dr. Arne Ludwig from the Chair for Applied Solid State Physics in Bochum.

The quantum dots manufactured in Bochum are generated in the semiconductor material indium arsenide. The researchers grow the material on a gallium arsenide substrate. In the process, a smooth indium arsenide layer forms at a thickness of a mere one and a half atomic layers—the so-called wetting layer. Subsequently, the researchers generate small islands with a diameter of 30 nanometers and a height of a few nanometers. These are the quantum dots.

Interfering photons from wetting layer

The wetting layer that has to be deposited in the first step causes problems, because it, too, contains excited electron hole states that decay and may release photons. In the wetting layer, these states decay even more easily than in the quantum dots. The photons emitted in the process can't be used in quantum communication, however; rather, they generate a static noise in the system.

"The wetting layer covers the entire surface while the quantum dots only cover a thousandth of the semiconductor chip, which is why the interfering light is approximately a thousand times stronger than the light emitted by the quantum dots," explains Andreas Wieck, Head of the Chair for Applied Solid State Physics in Bochum. "The wetting layer radiates photons at a slightly higher frequency and at a much higher intensity than the quantum dots. It's as if the quantum dots emitted the chamber pitch A, whereas the wetting layer emitted an B that was a thousand times louder."

Additional layer eliminates interferences

"We have been able to ignore those interferences by exciting only the required energy states," says Matthias Löbl from the University of Basel. "However, if quantum dots are to be used as information units for quantum applications, it might be ideal to charge them with more electrons."
But in that case, the energy levels in the wetting layer would be likewise excited," adds Arne Ludwig.

The research team has now eliminated this interference by adding an aluminum arsenide layer grown above the quantum dots in the wetting layer. The energy states in the wetting layer are thus removed, which, in turn, makes it less likely for electrons and electron holes to recombine and emit photons. [32]

Generation of light in a photon-number quantum superposition

Physicists at C2N have demonstrated for the first time the direct generation of light in a state that is simultaneously a single photon, two photons, and no photon at all. They showed that the same kind of light emitter used for decades is also able to generate these quantum states, and expect that this holds true for any kind of atomic system.

Quantum superposition is a property of quantum physics that allows objects to exist simultaneously in different states. A famous theoretical example is the Schrödinger's cat, which is both dead and alive. Let us imagine a mouse trying to find the exit of a maze. In the classical realm, it will try every path, one at a time, until it finally finds the exit. In the quantum world, however, superposition allows the mouse to try all different paths simultaneously, therefore finding the exit much faster. For light, superposition has been shown in several of its properties. For instance, in its polarization, where the electromagnetic field of a single photon oscillates both vertically and horizontally, or in a path, taking all possible trajectories inside interferometers, the photonic version of a maze. Superposition is also possible in time, with photons existing simultaneously at earlier and later moments.

However, creating light in a state that is simultaneously a single photon, two photons, or no photon at all, in other words a quantum superposition of "photon numbers," has remained elusive. Some complex experiments have achieved these superposition states a few times, but it has never been achieved on demand, meaning with success at every experimental run. Moreover, it was not known whether direct emitters of these states existed. In a work published in *Nature Photonics*, researchers from CNRS and collaborators have demonstrated for the first time the on-demand generation of light in a quantum superposition of photon numbers.

The researchers studied the emission of an artificial atom, a semiconductor quantum dot inserted in an optical microcavity. "By performing a coherent excitation of the quantum dot with optical pulses, we showed that the quantum coherence in the atomic state is preserved through the process of spontaneous emission and imprinted onto the emitted photonic state, generating a quantum superposition of zero, one, and two photons," note Juan Loredo and Carlos Antón, lead authors of the study.

Such observations, never seen before in any atomic system, demonstrate that artificial atoms like quantum dots are now controlled to such a point that they behave as the systems
described in textbooks. These new quantum states of light based on the coherent superposition of photon number states open exciting paths for designing and implementing new schemes in quantum communication and computation. [31]

Correlating entangled photons by radial position and momenta

A team of researchers from Xiamen University, the University of Ottawa and the University of Rochester has shown that it is possible to entangle photons with correlations between their radial and momentum states. In their paper published in the journal *Physical Review Letters*, the group describes experiments they carried out with entangled photons and what they learned.

Entanglement has made headlines as scientists continue to study the "eerie" quantum-mechanical phenomenon. Such work has shown that different types of quantum particles can be entangled, and that photons, in particular, can be entangled with correlations between such properties as polarization. In this new effort, the researchers have shown that entangled photon pairs can also be entangled with correlations between their radial positions and their radial momenta.

With photons, radial positions are their radii state and their radial momentum is a way of describing whether their ring is contracting or expanding. In this new effort, the researchers sought to learn whether it would be possible to correlate entangled photons using these two properties.

To find out, the researchers created a pair of entangled photons by firing a laser into a crystal—each of the entangled photons was then directed down a separate arm with two spatial light modulators. One of the modulators checked for correlations between radii, and the other one checked momentum. The modulators only allowed those of a predefined type to pass through—photons that were able to pass through were measured by detectors situated at the end of the arm. If both of the photons made it through the modulators, they were deemed to be entangled.

The researchers report that their experiments showed that photons can, indeed, be correlated by radial position and momentum. They suggest their finding opens up the possibility of using entangled photons in new ways—such as to create specialized optical tweezers for applications such as moving trapped particles with more precision. They also suggest such entangled photons could be used to create new types of cryptography applications or as experimental tools used to test physics theories. [30]

Cracking a decades-old test, researchers bolster case for quantum mechanics

In a new study, researchers demonstrate creative tactics to get rid of loopholes that have long confounded tests of quantum mechanics. With their innovative method, the researchers were able to demonstrate quantum interactions between two particles spaced more than 180 meters (590
feet) apart while eliminating the possibility that shared events during the past 11 years affected their interaction.

A paper explaining these results will be presented at the Frontiers in Optics + Laser Science (FIO + LS) conference, held 15–19 September in Washington, D.C., U.S.A.

Quantum phenomena are being explored for applications in computing, encryption, sensing and more, but researchers do not yet fully understand the physics behind them. The new work could help advance quantum applications by improving techniques for probing quantum mechanics.

A test for quantum theories
Physicists have long grappled with different ideas about the forces that govern our world. While theories of quantum mechanics have gradually overtaken classical mechanics, many aspects of quantum mechanics remain mysterious. In the 1960s, physicist John Bell proposed a way to test quantum mechanics known as Bell's inequality.

The idea is that two parties, nicknamed Alice and Bob, make measurements on particles that are located far apart but connected to each other via quantum entanglement.

If the world were indeed governed solely by quantum mechanics, these remote particles would be governed by a nonlocal correlation through quantum interactions, such that measuring the state of one particle affects the state of the other. However, some alternate theories suggest that the particles only appear to affect each other, but that in reality they are connected by other hidden variables following classical, rather than quantum, physics.

Researchers have conducted many experiments to test Bell's inequality. However, experiments can't always be perfect, and there are known loopholes that could cause misleading results. While most experiments have strongly supported the conclusion that quantum interactions exist, these loopholes still leave a remote possibility that researchers could be inadvertently affecting hidden variables, thus leaving room for doubt.

Closing loopholes
In the new study, Li and his colleagues demonstrate ways to close those loopholes and add to the evidence that quantum mechanics governs the interactions between the two particles.

"We realized a loophole-free Bell test with the measurement settings determined by remote cosmic photons. Thus we verified the completeness of quantum mechanics with high-confidence probability," said Ming-Han Li of the University of Science and Technology of China, who is lead author on the paper.

Their experimental setup includes three main components: a device that periodically sends out pairs of entangled photons and two stations that measure the photons. These stations are Alice and Bob, in the parlance of Bell's inequality. The first measurement station is 93 meters (305 feet) from the photon pair source and the second station is 90 meters (295 feet) away in the opposite direction.
The entangled photons travel through single mode optical fiber to the measurement stations, where their polarization state is measured with a Pockels cell and the photons are detected by superconducting nanowire single-photon detectors.

In designing their experiment, the researchers sought to overcome three key problems: the idea that loss and noise make detection unreliable (the detection loophole), the idea that any communication that affects Alice's and Bob's measurement choices makes the measurement cheatable (the locality loophole), and the idea that a measurement-setting choice that is not "truly free and random" makes the result able to be controlled by a hidden cause in the common past (the freedom-of-choice loophole).

To address the first problem, Li and his colleagues demonstrated that their setup achieved a sufficiently low level of loss and noise by comparing measurements made at the start and end of the photon's journey. To address the second, they built the experimental setup with space-like separation between the events of measurement setting choice. To address the third, they based their measurement-setting choices on cosmic photon behavior from 11 years earlier, which offers high confidence that nothing in the particles' shared past—for at least the past 11 years—created a hidden variable affecting the outcome.

Combining theoretically calculated predictions with experimental results, the researchers were able to demonstrate quantum interactions between the entangled photon pairs with a high degree of confidence and fidelity. Their experiment thus provides robust evidence that quantum effects, rather than hidden variables, are behind the particles' behavior. [29]

Studying quantum phenomena in magnetic systems to understand exotic states of matter

Besides solids, liquids and gases, more exotic states of matter can be generated in specific materials under special conditions. Such states are of great interest to physicists because they provide a deeper understanding of quantum phenomena.

The Bose-Einstein condensate is one such state of matter that occurs at very low temperatures. In this state, most of the constituent particles of the condensate are in the so-called "ground state," at their lowest possible energy, and microscopic quantum phenomena can be easily observed. Interestingly, this state can also be exhibited by quasiparticles, which are not actual particles but represent collective microscopic excitations in a system and can thus be used to describe the system in a simplified, yet very useful manner.

Magnons, a type of quasiparticle that manifests in magnetic materials, are collective excitations originating from electrons in a crystal. Magnons can normally hop between different locations in the crystal; however, in some compounds and under the effect of a magnetic field, they can be trapped in a kind of catch-22 situation, which results in rigid crystallinity. This is a very
interesting quantum phenomenon called "magnon crystallization," in which the magnons are said to be in a "frustrated" state.

To explore this peculiar effect, a team of scientists led by Prof. Hidekazu Tanaka from Tokyo Tech worked on characterizing the magnetic excitations occurring in a magnetic insulator, \(\text{Ba}_2\text{CoSi}_2\text{O}_6\text{Cl}_2 \). They performed neutron scattering experiments, in which neutron beams were fired onto \(\text{Ba}_2\text{CoSi}_2\text{O}_6\text{Cl}_2 \) crystals at different energies and angles to determine the properties of the crystals. Based on the results of these experiments, the team demonstrated that magnon crystallization occurs in \(\text{Ba}_2\text{CoSi}_2\text{O}_6\text{Cl}_2 \) and attributed the origin of this ordered state to the fundamental electronic interactions in the material, from a quantum-mechanical perspective. "Until recently, experimental studies on magnon crystallization have been limited to the Shastry-Sutherland compound \(\text{SrCu}_2(\text{BO}_3)_2 \), and this study is an attempt to investigate this fascinating quantum phenomenon in a different material," remarks Prof. Tanaka.

Understanding the ordering of magnons and their effects on the micro- and macroscopic magnetic properties of crystals could provide researchers valuable insight to correlate condensed matter physics with the principles of quantum mechanics. "This work shows that highly frustrated quantum magnets provide playgrounds for interacting quantum particles," concludes Prof. Tanaka. Additional studies are required to further understand the \(\text{Ba}_2\text{CoSi}_2\text{O}_6\text{Cl}_2 \) system and gain a deeper foothold into quantum mechanics and its potential applications. [28]

Practical anonymous communication protocol developed for quantum networks

The ability to securely transmit information over the internet is extremely important, but most of the time, eavesdroppers can still generally determine who the sender and receiver are. In some highly confidential situations, it is important that the sender's and receiver's identities remain anonymous.

Over the past couple of decades, researchers have been developing protocols for anonymously transmitting messages over classical networks, but similar protocols for **quantum networks** are still in much earlier stages of development. The anonymity methods that have been proposed for quantum networks so far face challenges such as implementation difficulties or require that strong assumptions be made about the resources, making them impractical for use in the **real world**.

In a new paper, Anupama Unnikrishnan, Ian MacFarlane, Richard Yi, Eleni Diamanti, Damian Markham, and Iordanis Kerenidis, from the University of Oxford, MIT, Sorbonne University, the University of Paris and CNRS, have proposed the first practical **protocol** for anonymous communication in quantum networks.

"Our protocol brings anonymous quantum communication closer to being actually demonstrated in the lab," Unnikrishnan told *Phys.org*. "We can guarantee anonymity in the most paranoid scenario:
without needing to trust the honesty or computational power of players in the network, or even the entanglement they share."

The new protocol works in the following way. To start, the player who wants to send a message anonymously notifies the receiver. Then, in each round of the protocol, an untrusted source creates an entangled quantum state called the Greenberger-Horne-Zeilinger (GHZ) state, and distributes it between the players.

The players then have two options: They can either check if the state is actually the GHZ state by running a verification test, or they can use the state for anonymous quantum communication. Most of the time, the players test the state. If a test fails, indicating a possible breach, the players stop the protocol. In this way, a misbehaving source is likely to get caught.

If the players chose to use the state for anonymous communication, they perform certain operations and measurements on their part of the GHZ state in order to create "anonymous entanglement" between the sender and receiver, so that they are now connected by an anonymous quantum channel. Using this channel, the sender can then use quantum teleportation to anonymously send a quantum message to the receiver.

The ability of the protocol to achieve perfect anonymity depends on the players performing perfect actions and sharing a perfect GHZ state. The researchers showed that, even in realistic networks with imperfections, the players can still communicate close to anonymously—within a security parameter epsilon, leading them to call their method an "epsilon-anonymous protocol."

In the future, the ability to anonymously transmit messages will be critical for many of the potential applications of a future quantum internet. However, much more work needs to be done in the meantime.

"We are looking into the experimental demonstration of the protocol in our lab and also in parallel into the conception of further protocols that can enrich the toolbox of applications offered by quantum networks," Diamanti said. [27]

World's first link layer protocol brings quantum internet closer to a reality

Researchers from QuTech have achieved a world's first in quantum internet technology. A team led by Professor Stephanie Wehner has developed a so-called link layer protocol that brings the phenomenon of quantum entanglement from experimental physics to a real-world quantum network. This brings closer the day when quantum internet can become a reality, delivering applications that are impossible to achieve via classical internet. The work was presented today at ACM SIGCOMM.

In classical computing, a collection of software layers referred to as the network stack allows computers to communicate with each other. Underlying the network stack are communications protocols, such as the internet protocol or HTTP. Stephanie Wehner explained that one
essential protocol used by a network is the link layer protocol, which overcomes the problems caused by imperfect hardware: "All of us use classical link layer protocols in everyday life. One example is Wi-Fi, which allows an unreliable radio signal—suffering from interruptions and interference—to be used to transmit data reliably between compatible devices."

A quantum network, based on transmission of quantum bits, or qubits, requires the same level of reliability. Stephanie Wehner says, "In our work, we have proposed a quantum network stack, and have constructed the world's first link-layer protocol for a quantum network."

It turns out that existing classical protocols cannot help in the quantum world. One challenge is presented by differences between the technologies used. Stephanie Wehner: "Currently, qubits cannot be kept in memory for very long. This means control decisions on what to do with them need to be taken very quickly. By creating this link layer protocol, we have overcome obstacles presented by some very demanding physics."

There are also some fundamental differences between a future quantum internet and the internet that we see today. Stephanie Wehner said that two quantum bits can be entangled: "Such entanglement is like a connection. This is very different to the situation for classical link layer protocols where we typically just send signals. In that case, there is no sense of connection built in at a fundamental level."

Quantum internet

The phenomenon of entanglement forms the basis of a quantum internet. When two fundamental particles are entangled, they are connected with each other in such a way that nothing else can have any share of this connection. Researcher Axel Dahlberg said that this enables a whole new range of applications "Security is one important application. It is physically impossible to eavesdrop on an entangled network connection between two users. To give another example, the technology also allows improved clock synchronization, or it can join up astronomical telescopes that are a long way apart, so they act as a huge single telescope."

Researcher Matthew Skrzypczyk said that an important feature of the proposed quantum network stack and the link layer protocol is that it any future software written using the protocol will be compatible with many quantum hardware platforms. "Someone who makes use of our link layer protocol no longer needs to know what the underlying quantum hardware is. In our paper, we study the protocol's performance on Nitrogen-Vacancy centers in diamond, which are essentially small quantum computers. However, our protocol can also be implemented on Ion Traps, for example. This also means our link layer protocol can be used in the future on many different types of quantum hardware."

Building a quantum network system

Stephanie Wehner said that the next step will be to test and demonstrate a new network layer protocol using the link layer protocol: "Our link layer protocol allows us to reliably generate entanglement between two network nodes connected by a direct physical link, such as a telecom fiber. The next step is to produce entanglement between network nodes which are not connected directly by a fiber, using the help of an intermediary node. In order to realize large scale quantum networks, it is important to go beyond a physics experiment, and move towards building a
quantum network system. This is one of the objectives EU-funded Quantum Internet Alliance (QIA)." [26]

Travelling towards a quantum internet at light speed

A research team lead by Osaka University demonstrated how information encoded in the circular polarization of a laser beam can be translated into the spin state of an electron in a quantum dot, each being a quantum bit and a quantum computer candidate. The achievement represents a major step towards a "quantum internet," in which future computers can rapidly and securely send and receive quantum information.

Quantum computers have the potential to vastly outperform current systems because they work in a fundamentally different way. Instead of processing discrete ones and zeros, quantum information, whether stored in electron spins or transmitted by laser photons, can be in a superposition of multiple states simultaneously. Moreover, the states of two or more objects can become entangled, so that the status of one cannot be completely described without this other. Handling entangled states allow quantum computers to evaluate many possibilities simultaneously, as well as transmit information from place to place immune from eavesdropping.

However, these entangled states can be very fragile, lasting only microseconds before losing coherence. To realize the goal of a quantum internet, over which coherent light signals can relay quantum information, these signals must be able to interact with electron spins inside distant computers.

Researchers led by Osaka University used laser light to send quantum information to a quantum dot by altering the spin state of a single electron trapped there. While electrons don't spin in the usual sense, they do have angular momentum, which can be flipped when absorbing circularly polarized laser light.

"Importantly, this action allowed us to read the state of the electron after applying the laser light to confirm that it was in the correct spin state," says first author Takafumi Fujita. "Our readout method used the Pauli exclusion principle, which prohibits two electrons from occupying the exact same state. On the tiny quantum dot, there is only enough space for the electron to pass the so-called Pauli spin blockade if it has the correct spin."

Quantum information transfer has already been used for cryptographic purposes. "The transfer of superposition states or entangled states allows for completely secure quantum key distribution," senior author Akira Oiwa says. "This is because any attempt to intercept the signal automatically destroys the superposition, making it impossible to listen in without being detected."

The rapid optical manipulation of individual spins is a promising method for producing a quantum nano-scale general computing platform. An exciting possibility is that future computers may be able to leverage this method for many other applications, including optimization and chemical simulations. [25]
Scientists film rotating carbonyl sulphide molecules

Scientists have used precisely tuned pulses of laser light to film the ultrafast rotation of a molecule. The resulting "molecular movie" tracks one and a half revolutions of carbonyl sulphide (OCS)—a rod-shaped molecule consisting of one oxygen, one carbon and one sulphur atom—taking place within 125 trillionths of a second, at a high temporal and spatial resolution. The team headed by DESY's Jochen Küpper from the Center for Free-Electron Laser Science (CFEL) and Arnaud Rouzée from the Max Born Institute in Berlin are presenting their findings in the journal *Nature Communications*. CFEL is a cooperation of DESY, the Max Planck Society and Universität Hamburg.

"Molecular physics has long dreamed of capturing the ultrafast motion of atoms during dynamic processes on film," explains Küpper, who is also a professor at the University of Hamburg. This is by no means simple, however, as the realm of molecules normally requires high-energy radiation with a wavelength of the order of the size of an atom in order to be able to see details. So Küpper's team took a different approach: They used two pulses of infrared laser light precisely tuned to each other and separated by 38 trillionths of a second (picoseconds) to set the carbonyl sulphide molecules spinning rapidly in unison, i.e., coherently. They then used another laser pulse with a longer wavelength to determine the position of the molecules at intervals of around 0.2 trillionths of a second each. "Since this diagnostic laser pulse destroys the molecules, the experiment had to be restarted again for each snapshot," reports Evangelos Karamatskos, the principal author of the study from CFEL.

Altogether, the scientists took 651 pictures covering 1.5 periods of rotation of the molecule. Assembled sequentially, the pictures produced a 125 picosecond film of the molecule's rotation. The carbonyl sulphide molecule takes about 82 trillionths of a second, i.e. 0.000000000082 seconds, to complete one whole revolution. "It would be wrong to think of its motion as being like that of a rotating stick, though," says Küpper. "The processes we are observing here are governed by quantum mechanics. On this scale, very small objects like atoms and molecules behave differently from the everyday objects in our surroundings. The position and momentum of a molecule cannot be determined simultaneously with the highest precision; you can only define a certain probability of finding the molecule in a specific place at a particular point in time."
The peculiar features of quantum mechanics can be seen in several of the movie's many images, in which the molecule does not simply point in one direction, but in various directions at the same time—each with a different probability (see for example the 3 o'clock position in the figure). "It is precisely those directions and probabilities that we imaged experimentally in this study," adds Rouzée. "From the fact that these individual images start to repeat after about 82 picoseconds, we can deduce the period of rotation of a carbonyl sulphide molecule."

The scientists believe that their method can also be used for other molecules and processes, for example to study the internal twisting, i.e., torsion, of molecules or chiral compounds, those that exist in two mirrored forms, much like a person's right and left hands. "We recorded a high-resolution molecular movie of the ultrafast rotation of carbonyl sulphide as a pilot project," says Karamatskos, summarizing the experiment. "The level of detail we were able to achieve indicates that our method could be used to produce instructive films about the dynamics of other processes and molecules." [24]

Every transistor has a unique quantum fingerprint—but can it be used as a form of ID?

We might imagine that electric current flows as a smooth, even stream of electrons through our electronics devices, but at the quantum scale the flow of electric current might be more accurately pictured as a bubbling brook containing many tiny ripples. These ripples can be caused by single-electron effects, which arise due to the repulsion among electrons confined in very small spaces,
such as trap sites in transistors. Single-electron effects can lead to tiny changes in the current-voltage characteristics of these devices.

As trap sites are basically tiny defects that are randomly distributed in an uncontrollable way during fabrication, the number, location, and energy levels of trap sites differ for every transistor. As a result, single-electron effects lead to a unique modification in the current-voltage characteristics, effectively giving each transistor a unique "fingerprint."

Recently, researchers have been investigating how these quantum fingerprints might one day be used as an inexpensive form of ID to protect users' personal information for technologies in the emerging network of internet-connected devices known as the Internet of Things.

In a new paper published in *Applied Physics Letters*, physicists T. Tanamoto and Y. Nishi at the Toshiba Corporation in Kawasaki, Japan, and K. Ono at RIKEN in Saitama, Japan, have demonstrated that single-electron effects may be detected by image-recognition algorithms and used for computer chip identification and security.

"So far, no widespread application exists for single-electron devices," Tanamoto told Phys.org. "Our research opens a different way of using the single-electron effect: as a security device. The importance of security is increasing day by day."

As the physicists explain, the fingerprint of an electronic device can be thought of as a physically unclonable function (PUF). Like a human fingerprint, PUFs are based on unique, naturally occurring physical variations and cannot be transferred to other devices. In addition, PUFs retain their key features throughout the lifetime of the device, despite some degradation due to aging effects.

In their work, the physicists applied image-matching algorithms in order to identify different current-voltage features called Coulomb diamonds. The Coulomb diamonds are so-named because the regions of a current-voltage diagram in which current is suppressed by single-electron effects sometimes have the shape of a diamond. As the number of trap sites increases, the diamond patterns become more complex.

Just as human fingerprints change depending on conditions, such as being wet, dry, or oily, the Coulomb diamond images can also look slightly different when measured under different conditions. Despite these variations, the researchers demonstrated that currently available feature detection and image-matching algorithms could successfully extract the key features (such as corners and edges) and distinguish between different Coulomb diamonds.

One of the advantages of the method is that, although an average computer chip today contains more than a billion transistors, just a single transistor is needed to generate the fingerprint for the entire chip. This makes it potentially feasible to use this method for practical devices, since only one transistor needs to be measured.

On the other hand, there are still challenges that remain before implementing the method. For one thing, the Coulomb diamonds here were measured at cryogenic temperatures of around 1.5 degrees above absolute zero. Previous research has shown that it's possible to measure single-electron effects at room temperature, but currently this ability requires expensive fabrication processes.
In the future, the physicists plan to explore other ways of fingerprinting transistors. One possibility is to measure the spin-qubit behaviors of electrons in traps, as these quantum behaviors are expected to be affected by the traps. As with single-electron effects, the unique and random distribution of traps in transistors is expected to result in a unique fingerprint for each transistor. Going forward, the researchers would also like to investigate ways to implement transistor fingerprint security into future quantum computers.

"Quantum computers are one of the hottest issues right now," Tanamoto said. "We would like to combine our quantum PUF into the security system of quantum computers in the future." [23]

The quantum states on the surface of conducting materials can strongly interact with light

An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR.

Atomically thin materials, such as graphene, derive some of their properties from the fact that electrons are confined to traveling in just two-dimensions. Similar phenomena are also seen in some three-dimensional materials, in which electrons confined to the surface behave very differently from those within the bulk—for example, topological insulators, whose surface electrons conduct electricity even though their bulk electrons do not. Recently, another exciting class of materials has been identified: the topological semimetal.

The difference in insulator and conductor electrical properties is down to the bandgap: a gap between the ranges, or bands, of energy that an electron traveling through the material can assume. In an insulator, the lower band is full of electrons and the bandgap is too large to enable a current to flow. In a semimetal, the lower band is also full but the lower and upper bands touch at some points, enabling the flow of a small current.

This lack of a full bandgap means that topological semimetals should theoretically exhibit very different properties from those of the more conventional topological insulators.

To prove this, Li-kun Shi and Justin Song from the A*STAR Institute of High Performance Computing used an 'effective Hamiltonian' approximation to show that the two-dimensional surface states in semimetals, known as Fermi arcs, possess a light–matter interaction much stronger than that found in other gapless two-dimensional systems, such as graphene.

"Typically, the bulk dominates material absorption," explains Song. "But we show that Dirac semimetals are unusual in that they possess a very optically active surface due to these peculiar Fermi arc states."

Shi and Song analyzed a proto-typical semimetal with a symmetric band structure where the electronic bands touch at two places, known as Dirac points, and predicted the strength with which incident radiation induces electron transitions from the lower band to the upper one. They found that surface absorption depends heavily on the polarization of light, being 100 to 1,000 times stronger when light is polarized perpendicular—rather than parallel—to the crystal's rotational axis.
This strong anisotropy offers a way of optically investigating and probing the topological surfaces states of Dirac semimetals.

"Our goal is to identify more unconventional optics that arise due to Fermi arcs," says Song. "Topological semimetals could host unusual opto-electronic behavior that goes beyond conventional materials." [22]

Breakthrough in circuit design makes electronics more resistant to damage and defects

People are growing increasingly dependent on their mobile phones, tablets and other portable devices that help them navigate daily life. But these gadgets are prone to failure, often caused by small defects in their complex electronics, which can result from regular use. Now, a paper in today's *Nature Electronics* details an innovation from researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York that provides robust protection against circuitry damage that affects signal transmission.

The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Nobel Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. This concept is associated with topology—a branch of mathematics that studies the properties of space that are preserved under continuous deformations.

"In the past few years there has been a strong interest in translating this concept of matter topology from material science to light propagation," said Alù. "We achieved two goals with this project: First, we showed that we can use the science of topology to facilitate robust electromagnetic-wave propagation in electronics and circuit components. Second, we showed that the inherent robustness associated with these topological phenomena can be self-induced by the signal traveling in the circuit, and that we can achieve this robustness using suitably tailored nonlinearities in circuit arrays."

To achieve their goals, the team used nonlinear resonators to mold a band-diagram of the circuit array. The array was designed so that a change in signal intensity could induce a change in the band diagram's topology. For low signal intensities, the electronic circuit was designed to support a trivial topology, and therefore provide no protection from defects. In this case, as defects were introduced into the array, the signal transmission and the functionality of the circuit were negatively affected.

As the voltage was increased beyond a specific threshold, however, the band-diagram's topology was automatically modified, and the signal transmission was not impeded by arbitrary defects introduced across the circuit array. This provided direct evidence of a topological transition in the circuitry that translated into a self-induced robustness against defects and disorder.
"As soon as we applied the higher-voltage signal, the system reconfigured itself, inducing a topology that propagated across the entire chain of resonators allowing the signal to transmit without any problem," said A. Khanikaev, professor at The City College of New York and co-author in the study. "Because the system is nonlinear, it's able to undergo an unusual transition that makes signal transmission robust even when there are defects or damage to the circuitry."

"These ideas open up exciting opportunities for inherently robust electronics and show how complex concepts in mathematics, like the one of topology, can have real-life impact on common electronic devices," said Yakir Hadad, lead author and former postdoc in Alù’s group, currently a professor at Tel-Aviv University, Israel. "Similar ideas can be applied to nonlinear optical circuits and extended to two and three-dimensional nonlinear metamaterials." [21]

Researchers develop heat switch for electronics

Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. The findings were published in the article "Millimeter-scale liquid metal droplet thermal switch," which appeared in *Applied Physics Letters*.

Switches are used to control many technical products and engineered systems. Mechanical switches are used to lock or unlock doors, or to select gears in a car's transmission system. Electrical switches are used to turn on and off the lights in a room. At a smaller scale, electrical switches in the form of transistors are used to turn electronic devices on and off, or to route logic signals within a circuit.

Engineers have long desired a switch for heat flows, especially in electronics systems where controlling heat flows can significantly improve system performance and reliability. There are however significant challenges in creating such a heat switch.

"Heat flow occurs whenever you have a region of higher temperature near a region of lower temperature," said William King, the Andersen Chair Professor in the Department of Mechanical Science and Engineering and the project co-leader. "In order to control the heat flow, we engineered a specific heat flow path between the hot region and cold region, and then created a way to break the heat flow path when desired."

"The technology is based on the motion of a liquid metal droplet," said Nenad Miljkovic, Assistant Professor in the Department of Mechanical Science and Engineering and the project co-leader. "The metal droplet can be positioned to connect a heat flow path, or moved away from the heat flow path in order to limit the heat flow."

The researchers demonstrated the technology in a system modeled after modern electronics systems. On one side of the switch there was a heat source representing the power electronics component, and on the other side of the switch, there was liquid cooling for heat removal. When the switch was on, they were able to extract heat at more than 10 W/cm². When the switch was off, the heat flow dropped by nearly 100X.

Besides King and Miljkovic, other authors of the paper include Paul Braun, Racheff Professor of Materials Science and Engineering and the Director of Materials Research Laboratory; and graduate students Tianyu Yang, Beomjin Kwon and Patricia B. Weisensee (now an assistant professor at
Washington University in St. Louis) from mechanical science and engineering and Jin Gu Kang and Xuejiao Li from materials science and engineering.

King says that the next step for the research is to integrate the switch with power electronics on a circuit board. The researchers will have a working prototype later this year. [20]

Converting heat into electricity with pencil and paper
Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. These are sufficient to convert a temperature difference into electricity via the thermoelectric effect, which has now been demonstrated by a team at the Helmholtz-Zentrum Berlin.

The thermoelectric effect was discovered almost 200 years ago by Thomas J. Seebeck. If two metals of different temperatures are brought together, they can develop an electrical voltage. This effect allows residual heat to be converted partially into electrical energy. Residual heat is a by-product of almost all technological and natural processes, such as in power plants and household appliances, not to mention the human body. It is also one of the most under-utilised energy sources in the world.

Tiny effect
However, as useful an effect as it is, it is extremely small in ordinary metals. This is because metals not only have high electrical conductivity, but high thermal conductivity as well, so that differences in temperature disappear immediately. Thermoelectric materials need to have low thermal conductivity despite their high electrical conductivity. Thermoelectric devices made of inorganic semiconductor materials such as bismuth telluride are already being used today in certain technological applications. However, such material systems are expensive and their use only pays off in certain situations. Researchers are exploring whether flexible, nontoxic organic materials based on carbon nanostructures, for example, might also be used in the human body.

The team led by Prof. Norbert Nickel at the HZB has now shown that the effect can be obtained much more simply—using a normal HB-grade pencil, they covered a small area with pencil on ordinary photocopy paper. As a second material, they applied a transparent, conductive co-polymer paint (PEDOT: PSS) to the surface.

The pencil traces on the paper delivered a voltage comparable to other far more expensive nanocomposites that are currently used for flexible thermoelectric elements. And this voltage could be increased tenfold by adding indium selenide to the graphite from the pencil.

The researchers investigated graphite and co-polymer coating films using a scanning electron microscope and Raman scattering at HZB. "The results were very surprising for us as well," says Nickel. "But we have now found an explanation of why this works so well—the pencil deposit left on the paper forms a surface characterised by unordered graphite flakes, some graphene, and clay.
While this only slightly reduces the electrical conductivity, heat is transported much less effectively."

These simple constituents might be usable in the future to print extremely inexpensive, environmentally friendly, and non-toxic thermoelectric components onto paper. Such tiny and flexible components could also be used directly on the body and could use body heat to operate small devices or sensors. [19]

A new efficient and portable electrocaloric cooling device
A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. In their paper published in the journal Science, the team describes their new device and possible applications for its use. Q.M. Zhang and Tian Zhang with the Pennsylvania State University offer some background on electrocaloric theory and outline the work done by the team in California in a Perspectives piece in the same journal issue.

As most everyone knows, conventional air conditioners are bulky, heavy, use a lot of electricity and often leak greenhouse gases into the atmosphere. Thus, conditions are ripe for something new. Some new devices have been developed such as thermoelectric coolers, which make use of ceramics, but they are not efficient enough to play a major role in cooling. A more recent development is the use of devices exploiting the electrocaloric effect, which is where heat moves through certain materials when an electric current is applied. In this new effort, the researchers used a polymer as the material.

The new cooling device was made by layering a polymer between a heat sink and a heat source. Applying electric current to the polymer when it was touching the heat sink caused its molecules to line up, which reduced entropy, forcing heat into the sink. The polymer was then moved into contact with the heat source while the current was turned off. The molecules relaxed, which caused the temperature to drop. Repeating this process resulted in cooling.

The researchers report that the device is extremely efficient, portable and configurable. They suggest the same technology could be used to create coolers for a chair or hat, for example, or perhaps to chill smartphone batteries. They proved this last claim by actually building such a device and using it to cool down a battery heated by ordinary use—after only five seconds, the temperature of the battery had lessened by 8° C. Comparatively, air cooling the battery reduced its temperature just 3° C in 50 seconds. [18]

Fast heat flows in warm, dense aluminum
Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas.
In the warm dense matter (WDM) regime, experimental data are very rare, so many theoretical models remain untested.

But LLNL researchers have tested theory by developing a platform called "differential heating" to conduct thermal conductivity measurements. Just as land and water on Earth heat up differently in sunlight, a temperature gradient can be induced between two different materials. The subsequent heat flow from the hotter material to the cooler material is detected by time-resolved diagnostics to determine thermal conductivity.

In an experiment using the Titan laser at the Lab's Jupiter Laser Facility, LLNL researchers and collaborators achieved the first measurements of thermal conductivity of warm dense aluminum—a prototype material commonly used in model development—by heating a dual-layer target of gold and aluminum with laser-generated protons.

"Two simultaneous time-resolved diagnostics provided excellent data for gold, the hotter material, and aluminum, the colder material," said Andrew Mckelvey, a graduate student from the University of Michigan and the first author of a paper appearing in Scientific Reports. "The systematic data sets can constrain both the release equation of state (EOS) and thermal conductivity."

By comparing the data with simulations using five existing thermal conductivity models, the team found that only two agree with the data. The most commonly used model in WDM, called the LeeMore model, did not agree with data. "I am glad to see that Purgatorio, an LLNL-based model, agrees with the data," said Phil Sterne, LLNL co-author and the group leader of EOS development and application group in the Physics Division. "This is the first time these thermal conductivity models of aluminum have been tested in the WDM regime."

"Discrepancy still exists at early time up to 15 picoseconds," said Elijah Kemp, who is responsible for the simulation efforts. "This is likely due to non-equilibrium conditions, another active research area in WDM."

The team is led by Yuan Ping through her early career project funded by the Department of Energy Office of Fusion Energy Science Early Career Program. "This platform can be applied to many pairs of materials and by various heating methods including particle and X-ray heating," Ping said. [17]

Controlling heat and particle currents in nanodevices by quantum observation

Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations.

Measurement plays a fundamental role in quantum mechanics. The best-known illustration of the principles of superposition and entanglement is Schrödinger’s cat. Invisible from the outside, the cat resides in a coherent superposition of two states, alive and dead at the same time.

By means of a measurement, this superposition collapses to a concrete state. The cat is now either dead or alive. In this famous thought experiment, a measurement of the "quantum cat" can be
seen as an interaction with a macroscopic object collapsing the superposition onto a concrete state by destroying its coherence.

In their new article published in npj Quantum Materials, researchers from the Max Planck Institute for the Structure and Dynamics of Matter and collaborators from the University of the Basque Country (UPV/EHU) and the Bremen Center for Computational Materials Science discovered how a microscopic quantum observer is able to control thermal and electrical currents in nanoscale devices. Local quantum observation of a system can induce continuous and dynamic changes in its quantum coherence, which allows better control of particle and energy currents in nanoscale systems.

Classical non-equilibrium thermodynamics was developed to understand the flow of particles and energy between multiple heat and particle reservoirs. The best-known example is Clausius' formulation of the second law of thermodynamics, stating that when two objects with different temperatures are brought in contact, heat will exclusively flow from the hotter to the colder one.

In macroscopic objects, the observation of this process does not influence the flow of energy and particles between them. However, in quantum devices, thermodynamical concepts need to be revisited. When a classical observer measures a quantum system, this interaction destroys most of the coherence inside the system and alters its dynamical response.

Instead, if a quantum observer acts only locally, the system quantum coherence changes continuously and dynamically, thus providing another level of control of its properties. Depending on how strong and where these local quantum observations are performed, novel and surprising quantum transport phenomena arise.

The group of Prof. Dr. Angel Rubio at the Theory Department of the MPSD, along with their colleagues, have demonstrated how the concept of quantum measurements can offer novel possibilities for a thermodynamical control of quantum transport (heat and particle). This concept offers possibilities far beyond those obtained using standard classical thermal reservoirs.

The scientists studied this idea in a theoretical quantum ratchet. Within this system, the left and right side are connected to hot and cold thermal baths, respectively. This configuration forces the energy to flow from hot to cold and the particles to flow clockwise inside the ratchet. The introduction of a quantum observer, however, inverts the particle ring-current against the natural direction of the ratchet—a phenomenon caused by the localized electronic state and the disruption of the system's symmetry.

Furthermore, the quantum observation is also able to invert the direction of the heat flow, contradicting the second law of thermodynamics. "Such heat and particle current control might open the door for different strategies to design quantum transport devices with directionality control of the injection of currents. There could be applications in thermoelectricity, spintronics, photonics, and sensing, among others. These results have been an important contribution to my PhD thesis," says Robert Biele, first author of the paper.

From a more fundamental point of view, this work highlights the role of a quantum observer. In contrast to Schrödinger's cat, where the coherent state is destroyed via the interaction with a macroscopic "observer," here, by introducing a local quantum observer, the coherence is changed
locally and dynamically, allowing researchers to tune between the coherent states of the system. "This shows how thermodynamics is very different in the quantum regime. Schrödinger’s cat paradox leads to new thermodynamic forces never seen before," says César A. Rodríguez Rosario.

In the near future, the researchers will apply this concept to control spins for applications in spin injection and novel magnetic memories. Angel Rubio suggests that "The quantum observer—besides controlling the particle and energy transfer at the nanoscale—could also observe spins, select individual components, and give rise to spin-polarized currents without spin-orbit coupling. Observation could be used to write a magnetic memory." [16]

Maxwell's demon extracts work from quantum measurement

Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition.

The team of Alexia Auffèves at CNRS and Université Grenoble Alpes have published a paper on the new Maxwell's demon in a recent issue of Physical Review Letters.

"In the classical world, thermodynamics teaches us how to extract energy from thermal fluctuations induced on a large system (such as a gas or water) by coupling it to a hot source," Auffèves told Phys.org. "In the quantum world, the systems are small, and they can fluctuate—even if they are not hot, but simply because they are measured. In our paper, we show that it is possible to extract energy from these genuinely quantum fluctuations, induced by quantum measurement."

In the years since James Clerk Maxwell proposed the first demon around 1870, many other versions have been theoretically and experimentally investigated. Most recently, physicists have begun investigating Maxwell's demons that operate in the quantum regime, which could one day have implications for quantum information technologies.

Most quantum versions of the demon have a couple things in common: They are thermally driven by a heat bath, and the demon makes measurements to extract information only. The measurements do not actually extract any work, but rather the information gained by the measurements allows the demon to act on the system so that energy is always extracted from the cycle.

The new Maxwell's demon differs from previous versions in that there is no heat bath—the demon is not thermally driven, but measurement-driven. Also, the measurements have multiple purposes: They not only extract information about the state of the system, but they are also the "fuel" for extracting work from the system. This is because, when the demon performs a measurement on a qubit in the proposed system, the measurement projects the qubit from one state into a superposition of states, which provides energy to the qubit simply due to the measurement process. In their paper, the physicists proposed an experiment in which projective quantum non-demolition measurements can be performed with light pulses repeated every 70 nanoseconds or so.
Since recent experiments have already demonstrated the possibility of performing measurements at such high frequencies, the physicists expect that the new Maxwell’s demon could be readily implemented using existing technology. In the future, they also plan to investigate potential applications for quantum computing.

"This engine is a perfect proof of concept evidencing that quantum measurement has some energetic footprint," Auffèves said. "Now I would like to reverse the game and use this effect to estimate the energetic cost of quantum tasks, if they are performed in the presence of some measuring entity. This is the case in a quantum computer, which is continuously 'measured' by its surroundings. This effect is called decoherence and is the biggest enemy of quantum computation. Our work provides tools to estimate the energy needed to counteract it." [15]

Physicists read Maxwell's Demon's mind

Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics.

An international research team, including Dr Janet Anders from the University of Exeter, have used superconducting circuits to bring the 'demon' to life.

The demon, first proposed by James Clerk Maxwell in 1867, is a hypothetical being that can gain more useful energy from a thermodynamic system than one of the most fundamental laws of physics—the second law of thermodynamics—should allow.

Crucially, the team not only directly observed the gained energy for the first time, they also tracked how information gets stored in the demon’s memory.

The research is published in the leading scientific journal Proceedings of the National Academy of Sciences (PNAS).

The original thought experiment was first proposed by mathematical physicist James Clerk Maxwell—one of the most influential scientists in history—150 years ago.

He hypothesised that gas particles in two adjacent boxes could be filtered by a 'demon' operating a tiny door, that allowed only fast energy particles to pass in one direction and low energy particles the opposite way.

As a result, one box gains a higher average energy than the other, which creates a pressure difference. This non-equilibrium situation can be used to gain energy, not unlike the energy obtained when water stored behind a dam is released.

So although the gas was initially in equilibrium, the demon can create a non-equilibrium situation and extract energy, bypassing the second law of thermodynamics.

Dr Anders, a leading theoretical physicist from the University of Exeter’s physics department adds: "In the 1980s it was discovered that this is not the full story. The information about the particles' properties remains stored in the memory of the demon. This information leads to an energetic cost which then reduces the demon’s energy gain to null, resolving the paradox."
In this research, the team created a quantum Maxwell demon, manifested as a microwave cavity, that draws energy from a superconducting qubit. The team was able to fully map out the memory of the demon after its intervention, unveiling the stored information about the qubit state.

Dr Anders adds: "The fact that the system behaves quantum mechanically means that the particle can have a high and low energy at the same time, not only either of these choices as considered by Maxwell."

This ground-breaking experiment gives a fascinating peek into the interplay between quantum information and thermodynamics, and is an important step in the current development of a theory for nanoscale thermodynamic processes.

'Observing a Quantum Maxwell demon at Work' is published in PNAS. [14]

Researchers posit way to locally circumvent Second Law of Thermodynamics

For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme.

But researchers with the U.S. Department of Energy's (DOE's) Argonne National Laboratory announced recently that they may have discovered a little loophole in this famous maxim.

Their research, published in Scientific Reports, lays out a possible avenue to a situation where the Second Law is violated on the microscopic level.

The Second Law is underpinned by what is called the H-theorem, which says that if you open a door between two rooms, one hot and one cold, they will eventually settle into lukewarm equilibrium; the hot room will never end up hotter.

But even in the twentieth century, as our knowledge of quantum mechanics advanced, we didn't fully understand the fundamental physical origins of the H-theorem.

Recent advancements in a field called quantum information theory offered a mathematical construction in which entropy increases.

"What we did was formulate how these beautiful abstract mathematical theories could be connected to our crude reality," said Valerii Vinokur, an Argonne Distinguished Fellow and corresponding author on the study.

The scientists took quantum information theory, which is based on abstract mathematical systems, and applied it to condensed matter physics, a well-explored field with many known laws and experiments.

"This allowed us to formulate the quantum H-theorem as it related to things that could be physically observed," said Ivan Sadovskyy, a joint appointee with Argonne's Materials Science Division and the Computation Institute and another author on the paper. "It establishes a
connection between well-documented quantum physics processes and the theoretical quantum channels that make up quantum information theory."

The work predicts certain conditions under which the H-theorem might be violated and entropy—in the short term—might actually decrease.

As far back as 1867, physicist James Clerk Maxwell described a hypothetical way to violate the Second Law: if a small theoretical being sat at the door between the hot and cold rooms and only let through particles traveling at a certain speed. This theoretical imp is called "Maxwell's demon."

"Although the violation is only on the local scale, the implications are far-reaching," Vinokur said. "This provides us a platform for the practical realization of a quantum Maxwell's demon, which could make possible a local quantum perpetual motion machine."

For example, he said, the principle could be designed into a "refrigerator" which could be cooled remotely—that is, the energy expended to cool it could take place anywhere.

The authors are planning to work closely with a team of experimentalists to design a proof-of-concept system, they said.

The study, "H-theorem in quantum physics," was published September 12 in Nature Scientific Reports. [13]

What is quantum in quantum thermodynamics?

A lot of attention has been given to the differences between the quantum and classical worlds. For example, quantum entanglement, superposition, and teleportation are purely quantum phenomena with no classical counterparts. However, when it comes to certain areas of thermodynamics—specifically, thermal engines and refrigerators—quantum and classical systems so far appear to be nearly identical. It seems that the same thermodynamic laws that govern the engines in our vehicles may also accurately describe the tiniest quantum engines consisting of just a single particle.

In a new study, physicists Raam Uzdin, Amikam Levy, and Ronnie Kosloff at the Hebrew University of Jerusalem have investigated whether there is anything distinctly quantum about thermodynamics at the quantum level, or if "quantum" thermodynamics is really the same as classical thermodynamics.

For the first time, they have shown a difference in the thermodynamics of heat machines on the quantum scale: in part of the quantum regime, the three main engine types (two-stroke, four-stroke, and continuous) are thermodynamically equivalent. This means that, despite operating in different ways, all three types of engines exhibit all of the same thermodynamic properties, including generating the same amounts of power and heat, and doing so at the same efficiency. This new "thermodynamical equivalence principle" is purely quantum, as it depends on quantum effects, and does not occur at the classical level.

The scientists also showed that, in this quantum regime where all engines are thermodynamically equivalent, it's possible to extract a quantum-thermodynamic signature that further confirms the
presence of quantum effects. They did this by calculating an upper limit on the work output of a classical engine, so that any engine that surpasses this bound must be using a quantum effect—namely, quantum coherence—to generate the additional work. In this study, quantum coherence, which accounts for the wave-like properties of quantum particles, is shown to be critical for power generation at very fast engine cycles.

"To the best of my knowledge, this is the first time [that a difference between quantum and classical thermodynamics has been shown] in heat machines," Uzdin told Phys.org. "What has been surprising [in the past] is that the classical description has still held at the quantum level, as many authors have shown. The reasons are now understood, and in the face of this classicality, people have started to stray to other types of research, as it was believed that nothing quantum can pop up.

Thus, it was very difficult to isolate a generic effect, not just a numerical simulation of a specific case, with a complementing theory that manages to avoid the classicality and demonstrate quantum effects in thermodynamic quantities, such as work and heat."

One important implication of the new results is that quantum effects may significantly increase the performance of engines at the quantum level. While the current work deals with single-particle engines, the researchers expect that quantum effects may also emerge in multi-particle engines, where quantum entanglement between particles may play a role similar to that of coherence. [12]

Physicists confirm thermodynamic irreversibility in a quantum system

The physicists, Tiago Batalhão at the Federal University of ABC, Brazil, and coauthors, have published their paper on the experimental demonstration of quantum thermodynamic irreversibility in a recent issue of Physical Review Letters.

Irreversibility at the quantum level may seem obvious to most people because it matches our observations of the everyday, macroscopic world. However, it is not as straightforward to physicists because the microscopic laws of physics, such as the Schrödinger equation, are "time-symmetric," or reversible. In theory, forward and backward microscopic processes are indistinguishable.

In reality, however, we only observe forward processes, not reversible ones like broken egg shells being put back together. It’s clear that, at the macroscopic level, the laws run counter to what we observe. Now the new study shows that the laws don’t match what happens at the quantum level, either.

Observing thermodynamic processes in a quantum system is very difficult and has not been done until now. In their experiment, the scientists measured the entropy change that occurs when applying an oscillating magnetic field to carbon-13 atoms in liquid chloroform. They first applied a magnetic field pulse that causes the atoms’ nuclear spins to flip, and then applied the pulse in reverse to make the spins undergo the reversed dynamics.

If the procedure were reversible, the spins would have returned to their starting points—but they didn’t. Basically, the forward and reverse magnetic pulses were applied so rapidly that the spins’ flipping couldn’t always keep up, so the spins were driven out of equilibrium. The measurements of
the spins indicated that entropy was increasing in the isolated system, showing that the quantum thermodynamic process was irreversible.

By demonstrating that thermodynamic irreversibility occurs even at the quantum level, the results reveal that thermodynamic irreversibility emerges at a genuine microscopic scale. This finding makes the question of why the microscopic laws of physics don't match our observations even more pressing. If the laws really are reversible, then what are the physical origins of the time-asymmetric entropy production that we observe?

The physicists explain that the answer to this question lies in the choice of the initial conditions. The microscopic laws allow reversible processes only because they begin with "a genuine equilibrium process for which the entropy production vanishes at all times," the scientists write in their paper. Preparing such an ideal initial state in a physical system is extremely complex, and the initial states of all observed processes aren't at "genuine equilibrium," which is why they lead to irreversible processes.

"Our experiment shows the irreversible nature of quantum dynamics, but does not pinpoint, experimentally, what causes it at the microscopic level, what determines the onset of the arrow of time," coauthor Mauro Paternostro at Queen's University in Belfast, UK, told Phys.org. "Addressing it would clarify the ultimate reason for its emergence."

The researchers hope to apply the new understanding of thermodynamics at the quantum level to high-performance quantum technologies in the future.

"Any progress towards the management of finite-time thermodynamic processes at the quantum level is a step forward towards the realization of a fully fledged thermo-machine that can exploit the laws of quantum mechanics to overcome the performance limitations of classical devices," Paternostro said. "This work shows the implications for reversibility (or lack thereof) of nonequilibrium quantum dynamics. Once we characterize it, we can harness it at the technological level." [11]

Physicists put the arrow of time under a quantum microscope
Disorder, or entropy, in a microscopic quantum system has been measured by an international group of physicists. The team hopes that the feat will shed light on the "arrow of time": the observation that time always marches towards the future. The experiment involved continually flipping the spin of carbon atoms with an oscillating magnetic field and links the emergence of the arrow of time to quantum fluctuations between one atomic spin state and another.

"That is why we remember yesterday and not tomorrow," explains group member Roberto Serra, a physicist specializing in quantum information at the Federal University of ABC in Santo André, Brazil. At the fundamental level, he says, quantum fluctuations are involved in the asymmetry of time.

Egging on
The arrow of time is often taken for granted in the everyday world. We see an egg breaking, for example, yet we never see the yolk, white and shell fragments come back together again to recreate the egg. It seems obvious that the laws of nature should not be reversible, yet there is nothing in the underlying physics to say so.

The dynamical equations of an egg breaking run just as well forwards as they do backwards.

Entropy, however, provides a window onto the arrow of time. Most eggs look alike, but a broken egg can take on any number of forms: it could be neatly cracked open, scrambled, splattered all over a pavement, and so on. A broken egg is a disordered state – that is, a state of greater entropy – and because there are many more disordered than ordered states, it is more likely for a system to progress towards disorder than order.

This probabilistic reasoning is encapsulated in the second law of thermodynamics, which states that the entropy of a closed system always increases over time.

According to the second law, time cannot suddenly go backwards because this would require entropy to decrease. It is a convincing argument for a complex system made up of a great many interacting particles, like an egg, but what about a system composed of just one particle?

Murky territory
Serra and colleagues have delved into this murky territory with measurements of entropy in an ensemble of carbon-13 atoms contained in a sample of liquid chloroform. Although the sample contained roughly a trillion chloroform molecules, the non-interacting quantum nature of the molecules meant that the experiment was equivalent to performing the same measurement on a single carbon atom, one trillion times.

Serra and colleagues applied an oscillating external magnetic field to the sample, which continually flipped the spin state of a carbon atom between up and down.

They ramped up the intensity of the field oscillations to increase the frequency of the spin-flipping, and then brought the intensity back down again.

Had the system been reversible, the overall distribution of carbon spin states would have been the same at the end as at the start of the process. Using nuclear magnetic resonance and quantum-
state tomography, however, Serra and colleagues measured an increase in disorder among the final spins. Because of the quantum nature of the system, this was equivalent to an increase in entropy in a single carbon atom.

According to the researchers, entropy rises for a single atom because of the speed with which it is forced to flip its spin. Unable to keep up with the field-oscillation intensity, the atom begins to fluctuate randomly, like an inexperienced dancer failing to keep pace with up-tempo music. "It's easier to dance to a slow rhythm than a fast one," says Serra.

Many questions remain
The group has managed to observe the existence of the arrow of time in a quantum system, says experimentalist Mark Raizen of the University of Texas at Austin in the US, who has also studied irreversibility in quantum systems. But Raizen stresses that the group has not observed the "onset" of the arrow of time. "This [study] does not close the book on our understanding of the arrow of time, and many questions remain," he adds.

One of those questions is whether the arrow of time is linked to quantum entanglement – the phenomenon whereby two particles exhibit instantaneous correlations with each other, even when separated by vast distances. This idea is nearly 30 years old and has enjoyed a recent resurgence in popularity. However, this link is less to do with growing entropy and more to do with an unstoppable dispersion of quantum information.

Indeed, Serra believes that by harnessing quantum entanglement, it may even be possible to reverse the arrow of time in a microscopic system. "We're working on it," he says. "In the next generation of our experiments on quantum thermodynamics we will explore such aspects." [10]

Small entropy changes allow quantum measurements to be nearly reversed

In 1975, Swedish physicist Göran Lindblad developed a theorem that describes the change in entropy that occurs during a quantum measurement. Today, this theorem is a foundational component of quantum information theory, underlying such important concepts as the uncertainty principle, the second law of thermodynamics, and data transmission in quantum communication systems.

Now, 40 years later, physicist Mark M. Wilde, Assistant Professor at Louisiana State University, has improved this theorem in a way that allows for understanding how quantum measurements can be approximately reversed under certain circumstances. The new results allow for understanding how quantum information that has been lost during a measurement can be nearly recovered, which has potential implications for a variety of quantum technologies.

Quantum relative entropy never increases
Most people are familiar with entropy as a measure of disorder and the law that "entropy never decreases"—it either increases or stays the same during a thermodynamic process, according to the second law of thermodynamics. However, here the focus is on "quantum relative entropy," which in some sense is the negative of entropy, so the reverse is true: quantum relative entropy never increases, but instead only decreases or stays the same.

In fact, this was the entropy inequality theorem that Lindblad proved in 1975: that the quantum relative entropy cannot increase after a measurement. In this context, quantum relative entropy is interpreted as a measure of how well one can distinguish between two quantum states, so it’s this distinguishability that can never increase. (Wilde describes a proof of Lindblad’s result in greater detail in his textbook Quantum Information Theory, published by Cambridge University Press.)

One thing that Lindblad’s proof doesn’t address, however, is whether it makes any difference if the quantum relative entropy decreases by a little or by a lot after a measurement.

In the new paper, Wilde has shown that, if the quantum relative entropy decreases by only a little, then the quantum measurement (or any other type of so-called "quantum physical evolution") can be approximately reversed.

"When looking at Lindblad’s entropy inequality, a natural question is to wonder what we could say if the quantum relative entropy goes down only by a little when the quantum physical evolution is applied," Wilde told Phys.org. "It is quite reasonable to suspect that we might be able to approximately reverse the evolution. This was arguably open since the work of Lindblad in 1975, addressed in an important way by Denes Petz in the late 1980s (for the case in which the quantum relative entropy stays the same under the action of the evolution), and finally formulated as a conjecture around 2008 by Andreas Winter. What my work did was to prove this result as a theorem: if the quantum relative entropy goes down only by a little under a quantum physical evolution, then we can approximately reverse its action."

Wide implications

Wilde’s improvements to Lindblad’s theorem have a variety of implications, but the main one that Wilde discusses in his paper is how the new results allow for recovering quantum information.

"If the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small," he said, "then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution." So the smaller the relative entropy decrease, the better the reversal process.

The ability to recover quantum information could prove useful for quantum error correction, which aims to protect quantum information from damaging external effects. Wilde plans to address this application more in the future with his colleagues.
As Wilde explained, Lindblad’s original theorem can also be used to prove the uncertainty principle of quantum mechanics in terms of entropies, as well as the second law of thermodynamics for quantum systems, so the new results have implications in these areas, as well.

"Lindblad's entropy inequality underlies many limiting statements, in some cases said to be physical laws or principles," Wilde said. "Examples are the uncertainty principle and the second law of thermodynamics. Another example is that this entropy inequality is the core step in determining limitations on how much data we can communicate over quantum communication channels. We could go as far as to say that the above entropy inequality constitutes a fundamental law of quantum information theory, which is a direct mathematical consequence of the postulates of quantum mechanics."

Regarding the uncertainty principle, Wilde and two coauthors, Mario Berta and Stephanie Wehner, discuss this angle in a forthcoming paper. They explain that the uncertainty principle involves quantum measurements, which are a type of quantum physical evolution and therefore subject to Lindblad’s theorem. In one formulation of the uncertainty principle, two experiments are performed on different copies of the same quantum state, with both experimental outcomes having some uncertainty.

"The uncertainty principle is the statement that you cannot generally make the uncertainties of both experiments arbitrarily small, i.e., there is generally a limitation," Wilde said. "It is now known that a statement of the uncertainty principle in terms of entropies can be proved by using the 'decrease of quantum relative entropy inequality.' So what the new theorem allows for doing is relating the uncertainties of the measurement outcomes to how well we could try to reverse the action of one of the measurements. That is, there is now a single mathematical inequality which captures all of these notions."

In terms of the second law of thermodynamics, Wilde explains how the new results have implications for reversing thermodynamic processes in both classical and quantum systems.

"The new theorem allows for quantifying how well we can approximately reverse a thermodynamic transition from one state to another without using any energy at all," he said.

He explained that this is possible due to the connection between entropy, energy, and work. According to the second law of thermodynamics, a thermodynamic transition from one quantum state to another is allowed only if the free energy decreases from the original state to the final state. During this process, one can gain work and store energy. This law can be rewritten as a statement involving relative entropies and can be proved as a consequence of the decrease of quantum relative entropy.

"What my new work with Stephanie Wehner and Mischa Woods allows for is a refinement of this statement," Wilde said. "We can say that if the free energy does not go down by very much under a thermodynamic transition (i.e., if there is not too much work gained in the process), then it is possible to go back approximately to the original state from the final state, without investing any work at all. The key word here is that you can go back only approximately, so we are not in violation of the second law, only providing a refinement of it."
In addition to these implications, the new theorem can also be applied to other research topics in quantum information theory, including the Holevo bound, quantum discord, and multipartite information measures.

Wilde's work was funded in part by The DARPA Quiness program (ending now), which focused on quantum key distribution, or using quantum mechanics to ensure secret communication between two parties. He describes more about this application, in particular how Alice and Bob might use a quantum state to share secrets that can be kept private from an eavesdropper Eve (and help them survive being attacked by a bear), in a recent blog post. [9]

Tricking the uncertainty principle

"If you want to know where something is, you have to scatter something off of it," explains Professor of Applied Physics Keith Schwab, who led the study. "For example, if you shine light at an object, the photons that scatter off provide information about the object. But the photons don't all hit and scatter at the same time, and the random pattern of scattering creates quantum fluctuations"—that is, noise. "If you shine more light, you have increased sensitivity, but you also have more noise. Here we were looking for a way to beat the uncertainty principle—to increase sensitivity but not noise."

Schwab and his colleagues began by developing a way to actually detect the noise produced during the scattering of microwaves—electromagnetic radiation that has a wavelength longer than that of visible light. To do this, they delivered microwaves of a specific frequency to a superconducting electronic circuit, or resonator, that vibrates at 5 gigahertz—or 5 billion times per second. The electronic circuit was then coupled to a mechanical device formed of two metal plates that vibrate at around 4 megahertz—or 4 million times per second. The researchers observed that the quantum noise of the microwave field, due to the impact of individual photons, made the mechanical device shake randomly with an amplitude of 10^{-15} meters, about the diameter of a proton.

"Our mechanical device is a tiny square of aluminum—only 40 microns long, or about the diameter of a hair. We think of quantum mechanics as a good description for the behaviors of atoms and electrons and protons and all of that, but normally you don't think of these sorts of quantum effects manifesting themselves on somewhat macroscopic objects," Schwab says. "This is a physical manifestation of the uncertainty principle, seen in single photons impacting a somewhat macroscopic thing."

Once the researchers had a reliable mechanism for detecting the forces generated by the quantum fluctuations of microwaves on a macroscopic object, they could modify their electronic resonator, mechanical device, and mathematical approach to exclude the noise of the position and motion of the vibrating metal plates from their measurement.

The experiment shows that a) the noise is present and can be picked up by a detector, and b) it can be pushed to someplace that won't affect the measurement. "It's a way of tricking the uncertainty principle so that you can dial up the sensitivity of a detector without increasing the noise," Schwab says.
Although this experiment is mostly a fundamental exploration of the quantum nature of microwaves in mechanical devices, Schwab says that this line of research could one day lead to the observation of quantum mechanical effects in much larger mechanical structures. And that, he notes, could allow the demonstration of strange quantum mechanical properties like superposition and entanglement in large objects—for example, allowing a macroscopic object to exist in two places at once.

"Subatomic particles act in quantum ways—they have a wave-like nature—and so can atoms, and so can whole molecules since they’re collections of atoms,” Schwab says. "So the question then is: Can you make bigger and bigger objects behave in these weird wave-like ways? Why not? Right now we’re just trying to figure out where the boundary of quantum physics is, but you never know." [8]

Particle Measurement Sidesteps the Uncertainty Principle

Quantum mechanics imposes a limit on what we can know about subatomic particles. If physicists measure a particle’s position, they cannot also measure its momentum, so the theory goes. But a new experiment has managed to circumvent this rule—the so-called uncertainty principle—by ascertaining just a little bit about a particle’s position, thus retaining the ability to measure its momentum, too.

The uncertainty principle, formulated by Werner Heisenberg in 1927, is a consequence of the fuzziness of the universe at microscopic scales. Quantum mechanics revealed that particles are not just tiny marbles that act like ordinary objects we can see and touch. Instead of being in a particular place at a particular time, particles actually exist in a haze of probability. Their chances of being in any given state are described by an equation called the quantum wavefunction. Any measurement of a particle “collapses” its wavefunction, in effect forcing it to choose a value for the measured characteristic and eliminating the possibility of knowing anything about its related properties.

Recently, physicists decided to see if they could overcome this limitation by using a new engineering technique called compressive sensing. This tool for making efficient measurements has already been applied successfully in digital photographs, MRI scans and many other technologies. Normally, measuring devices would take a detailed reading and afterward compress it for ease of use. For example, cameras take large raw files and then convert them to compressed jpegs. In compressive sensing, however, engineers aim to compress a signal while measuring it, allowing them to take many fewer measurements—the equivalent of capturing images as jpegs rather than raw files.

This same technique of acquiring the minimum amount of information needed for a measurement seemed to offer a way around the uncertainty principle. To test compressive sensing in the quantum world, physicist John C. Howell and his team at the University of Rochester set out to measure the position and momentum of a photon—a particle of light. They shone a laser through a box equipped with an array of mirrors that could either point toward or away from a detector at its
end. These mirrors formed a filter, allowing photons through in some places and blocking them in others. If a photon made it to the detector, the physicists knew it had been in one of the locations where the mirrors offered a throughway. The filter provided a way of measuring a particle's position without knowing exactly where it was—without collapsing its wavefunction. “All we know is either the photon can get through that pattern, or it can’t,” says Gregory A. Howland, first author of a paper reporting the research published June 26 in Physical Review Letters. “It turns out that because of that we’re still able to figure out the momentum—where it’s going. The penalty that we pay is that our measurement of where it’s going gets a little bit of noise on it.” A less precise momentum measurement, however, is better than no momentum measurement at all.

The physicists stress that they have not broken any laws of physics. “We do not violate the uncertainty principle,” Howland says. “We just use it in a clever way.” The technique could prove powerful for developing technologies such as quantum cryptography and quantum computers, which aim to harness the fuzzy quantum properties of particles for technological applications. The more information quantum measurements can acquire, the better such technologies could work. Howland’s experiment offers a more efficient quantum measurement than has traditionally been possible, says Aephraim M. Steinberg, a physicist at the University of Toronto who was not involved in the research. “This is one of a number of novel techniques which seem poised to prove indispensable for economically characterizing large systems.” In other words, the physicists seem to have found a way to get more data with less measurement—or more bangs for their buck. [7]

A new experiment shows that measuring a quantum system does not necessarily introduce uncertainty

Contrary to what many students are taught, quantum uncertainty may not always be in the eye of the beholder. A new experiment shows that measuring a quantum system does not necessarily introduce uncertainty. The study overthrows a common classroom explanation of why the quantum world appears so fuzzy, but the fundamental limit to what is knowable at the smallest scales remains unchanged.

At the foundation of quantum mechanics is the Heisenberg uncertainty principle. Simply put, the principle states that there is a fundamental limit to what one can know about a quantum system. For example, the more precisely one knows a particle's position, the less one can know about its momentum, and vice versa. The limit is expressed as a simple equation that is straightforward to prove mathematically.

Heisenberg sometimes explained the uncertainty principle as a problem of making measurements. His most well-known thought experiment involved photographing an electron. To take the picture, a scientist might bounce a light particle off the electron's surface. That would reveal its position, but it would also impart energy to the electron, causing it to move. Learning about the electron's position would create uncertainty in its velocity; and the act of measurement would produce the uncertainty needed to satisfy the principle.

Physics students are still taught this measurement-disturbance version of the uncertainty principle in introductory classes, but it turns out that it's not always true. Aephraim Steinberg of the
University of Toronto in Canada and his team have performed measurements on photons (particles of light) and showed that the act of measuring can introduce less uncertainty than is required by Heisenberg’s principle. The total uncertainty of what can be known about the photon’s properties, however, remains above Heisenberg’s limit.

Delicate measurement
Steinberg's group does not measure position and momentum, but rather two different inter-related properties of a photon: its polarization states. In this case, the polarization along one plane is intrinsically tied to the polarization along the other, and by Heisenberg’s principle, there is a limit to the certainty with which both states can be known.

The researchers made a ‘weak’ measurement of the photon’s polarization in one plane — not enough to disturb it, but enough to produce a rough sense of its orientation. Next, they measured the polarization in the second plane. Then they made an exact, or 'strong', measurement of the first polarization to see whether it had been disturbed by the second measurement.

When the researchers did the experiment multiple times, they found that measurement of one polarization did not always disturb the other state as much as the uncertainty principle predicted. In the strongest case, the induced fuzziness was as little as half of what would be predicted by the uncertainty principle.

Don't get too excited: the uncertainty principle still stands, says Steinberg: “In the end, there's no way you can know [both quantum states] accurately at the same time.” But the experiment shows that the act of measurement isn't always what causes the uncertainty. “If there's already a lot of uncertainty in the system, then there doesn't need to be any noise from the measurement at all,” he says.

The latest experiment is the second to make a measurement below the uncertainty noise limit. Earlier this year, Yuji Hasegawa, a physicist at the Vienna University of Technology in Austria, measured groups of neutron spins and derived results well below what would be predicted if measurements were inserting all the uncertainty into the system.

But the latest results are the clearest example yet of why Heisenberg’s explanation was incorrect. "This is the most direct experimental test of the Heisenberg measurement-disturbance uncertainty principle," says Howard Wiseman, a theoretical physicist at Griffith University in Brisbane, Australia "Hopefully it will be useful for educating textbook writers so they know that the naive measurement-disturbance relation is wrong."

Shaking the old measurement-uncertainty explanation may be difficult, however. Even after doing the experiment, Steinberg still included a question about how measurements create uncertainty on a recent homework assignment for his students. "Only as I was grading it did I realize that my homework assignment was wrong," he says. "Now I have to be more careful." [6]

Quantum entanglement
Measurements of physical properties such as position, momentum, spin, polarization, etc.
performed on entangled particles are found to be appropriately correlated. For example, if a pair of particles is generated in such a way that their total spin is known to be zero, and one particle is found to have clockwise spin on a certain axis, then the spin of the other particle, measured on the same axis, will be found to be counterclockwise. Because of the nature of quantum measurement, however, this behavior gives rise to effects that can appear paradoxical: any measurement of a property of a particle can be seen as acting on that particle (e.g. by collapsing a number of superimposed states); and in the case of entangled particles, such action must be on the entangled system as a whole. It thus appears that one particle of an entangled pair "knows" what measurement has been performed on the other, and with what outcome, even though there is no known means for such information to be communicated between the particles, which at the time of measurement may be separated by arbitrarily large distances. [4]

The Bridge
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories. [1]

Accelerating charges
The moving charges are self maintain the electromagnetic field locally, causing their movement and this is the result of their acceleration under the force of this field. In the classical physics the charges will distributed along the electric current so that the electric potential lowering along the current, by linearly increasing the way they take every next time period because this accelerated motion. The same thing happens on the atomic scale giving a dp impulse difference and a dx way difference between the different part of the not point like particles.

Relativistic effect
Another bridge between the classical and quantum mechanics in the realm of relativity is that the charge distribution is lowering in the reference frame of the accelerating charges linearly: \(ds/dt = at\) (time coordinate), but in the reference frame of the current it is parabolic: \(s = a/2 \ t^2\) (geometric coordinate).

Heisenberg Uncertainty Relation
In the atomic scale the Heisenberg uncertainty relation gives the same result, since the moving electron in the atom accelerating in the electric field of the proton, causing a charge distribution on delta x position difference and with a delta p momentum difference such a way that they product is about the half Planck reduced constant. For the proton this delta x much less in the nucleon, than in the orbit of the electron in the atom, the delta p is much higher because of the greater proton mass.

This means that the electron and proton are not point like particles, but has a real charge distribution.
Wave – Particle Duality
The accelerating electrons explains the wave – particle duality of the electrons and photons, since the elementary charges are distributed on delta x position with delta p impulse and creating a wave packet of the electron. The photon gives the electromagnetic particle of the mediating force of the electrons electromagnetic field with the same distribution of wavelengths.

Atomic model
The constantly accelerating electron in the Hydrogen atom is moving on the equipotential line of the proton and it's kinetic and potential energy will be constant. Its energy will change only when it is changing its way to another equipotential line with another value of potential energy or getting free with enough kinetic energy. This means that the Rutherford-Bohr atomic model is right and only that changing acceleration of the electric charge causes radiation, not the steady acceleration. The steady acceleration of the charges only creates a centric parabolic steady electric field around the charge, the magnetic field. This gives the magnetic moment of the atoms, summing up the proton and electron magnetic moments caused by their circular motions and spins.

The Relativistic Bridge
Commonly accepted idea that the relativistic effect on the particle physics it is the fermions' spin - another unresolved problem in the classical concepts. If the electric charges can move only with accelerated motions in the self maintaining electromagnetic field, once upon a time they would reach the velocity of the electromagnetic field. The resolution of this problem is the spinning particle, constantly accelerating and not reaching the velocity of light because the acceleration is radial. One origin of the Quantum Physics is the Planck Distribution Law of the electromagnetic oscillators, giving equal intensity for 2 different wavelengths on any temperature. Any of these two wavelengths will give equal intensity diffraction patterns, building different asymmetric constructions, for example proton - electron structures (atoms), molecules, etc. Since the particles are centers of diffraction patterns they also have particle – wave duality as the electromagnetic waves have. [2]

The weak interaction
The weak interaction transforms an electric charge in the diffraction pattern from one side to the other side, causing an electric dipole momentum change, which violates the CP and time reversal symmetry. The Electroweak Interaction shows that the Weak Interaction is basically electromagnetic in nature. The arrow of time shows the entropy grows by changing the temperature dependent diffraction patterns of the electromagnetic oscillators.

Another important issue of the quark model is when one quark changes its flavor such that a linear oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1.
This kind of change in the oscillation mode requires not only parity change, but also charge and
time changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino.

The right handed anti-neutrino and the left handed neutrino exist only because changing back the
quark flavor could happen only in reverse, because they are different geometrical constructions,
the u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It
needs also a time reversal, because anti particle (anti neutrino) is involved.

The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for
example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction
changes the entropy since more or less particles will give more or less freedom of movement. The
entropy change is a result of temperature change and breaks the equality of oscillator diffraction
intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and
makes possible a different time dilation as of the special relativity.

The limit of the velocity of particles as the speed of light appropriate only for electrical charged
particles, since the accelerated charges are self maintaining locally the accelerating electric force.
The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that
is the time coordinate not works as in the electromagnetic interactions, consequently the speed of
neutrinos is not limited by the speed of light.

The weak interaction T- asymmetry is in conjunction with the T-asymmetry of the second law of
thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes the
weak interaction, for example the Hydrogen fusion.

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional
oscillation by changing d to u quark and creating anti neutrino going back in time relative to the
proton and electron created from the neutron, it seems that the anti neutrino fastest then the
velocity of the photons created also in this weak interaction?

A quark flavor changing shows that it is a reflection changes movement and the CP- and T-
symmetry breaking!!! This flavor changing oscillation could prove that it could be also on higher
level such as atoms, molecules, probably big biological significant molecules and responsible on the
aging of the life.

Important to mention that the weak interaction is always contains particles and antiparticles,
where the neutrinos (antineutrinos) present the opposite side. It means by Feynman’s
interpretation that these particles present the backward time and probably because this they seem
to move faster than the speed of light in the reference frame of the other side.

Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by
the velocity of the electromagnetic wave, so the neutrino’s velocity cannot exceed the velocity of
light.
The General Weak Interaction

The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows the increasing entropy and decreasing information by the Weak Interaction, changing the temperature dependent diffraction patterns. A good example of this is the neutron decay, creating more particles with less known information about them.

The neutrino oscillation of the Weak Interaction shows that it is a general electric dipole change and it is possible to any other temperature dependent entropy and information changing diffraction pattern of atoms, molecules and even complicated biological living structures.

We can generalize the weak interaction on all of the decaying matter constructions, even on the biological too. This gives the limited lifetime for the biological constructions also by the arrow of time. There should be a new research space of the Quantum Information Science the 'general neutrino oscillation' for the greater then subatomic matter structures as an electric dipole change. There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also.

The Fluctuation Theorem says that there is a probability that entropy will flow in a direction opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is growing that is the matter formulas are emerging from the chaos. So the Weak Interaction has two directions, samples for one direction is the Neutron decay, and Hydrogen fusion is the opposite direction.

Fermions and Bosons

The fermions are the diffraction patterns of the bosons such a way that they are both sides of the same thing.

Van Der Waals force

Named after the Dutch scientist Johannes Diderik van der Waals – who first proposed it in 1873 to explain the behaviour of gases – it is a very weak force that only becomes relevant when atoms and molecules are very close together. Fluctuations in the electronic cloud of an atom mean that it will have an instantaneous dipole moment. This can induce a dipole moment in a nearby atom, the result being an attractive dipole–dipole interaction.

Electromagnetic inertia and mass

Electromagnetic Induction

Since the magnetic induction creates a negative electric field as a result of the changing acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass. [1]

Relativistic change of mass

The increasing mass of the electric charges the result of the increasing inductive electric force acting against the accelerating force. The decreasing mass of the decreasing acceleration is the result of the inductive electric force acting against the decreasing force. This is the relativistic mass
change explanation, especially importantly explaining the mass reduction in case of velocity decrease.

The frequency dependence of mass
Since $E = h\nu$ and $E = mc^2$, $m = \frac{h\nu}{c^2}$ that is the m depends only on the ν frequency. It means that the mass of the proton and electron are electromagnetic and the result of the electromagnetic induction, caused by the changing acceleration of the spinning and moving charge! It could be that the m, inertial mass is the result of the spin, since this is the only accelerating motion of the electric charge. Since the accelerating motion has different frequency for the electron in the atom and the proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, giving equal intensity of radiation.

Electron – Proton mass rate
The Planck distribution law explains the different frequencies of the proton and electron, giving equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns they have some closeness to each other – can be seen as a gravitational force. [2]

There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

Gravity from the point of view of quantum physics

The Gravitational force
The gravitational attractive force is basically a magnetic force.

The same electric charges can attract one another by the magnetic force if they are moving parallel in the same direction. Since the electrically neutral matter is composed of negative and positive charges they need 2 photons to mediate this attractive force, one per charges. The Bing Bang caused parallel moving of the matter gives this magnetic force, experienced as gravitational force.

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.

You can think about photons as virtual electron – positron pairs, obtaining the necessary virtual mass for gravity.

The mass as seen before a result of the diffraction, for example the proton – electron mass rate $M_p=1840$ Me. In order to move one of these diffraction maximum (electron or proton) we need to intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction maximum, means its intensity or mass.
The Big Bang caused acceleration created radial currents of the matter, and since the matter is composed of negative and positive charges, these currents are creating magnetic field and attracting forces between the parallel moving electric currents. This is the gravitational force experienced by the matter, and also the mass is result of the electromagnetic forces between the charged particles. The positive and negative charged currents attracts each other or by the magnetic forces or by the much stronger electrostatic forces!

The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy. There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

The Higgs boson

By March 2013, the particle had been proven to behave, interact and decay in many of the expected ways predicted by the Standard Model, and was also tentatively confirmed to have + parity and zero spin, two fundamental criteria of a Higgs boson, making it also the first known scalar particle to be discovered in nature, although a number of other properties were not fully proven and some partial results do not yet precisely match those expected; in some cases data is also still awaited or being analyzed.

Since the Higgs boson is necessary to the W and Z bosons, the dipole change of the Weak interaction and the change in the magnetic effect caused gravitation must be conducted. The Wien law is also important to explain the Weak interaction, since it describes the T_{max} change and the diffraction patterns change. [2]

Higgs mechanism and Quantum Gravity

The magnetic induction creates a negative electric field, causing an electromagnetic inertia. Probably it is the mysterious Higgs field giving mass to the charged particles? We can think about the photon as an electron-positron pair, they have mass. The neutral particles are built from negative and positive charges, for example the neutron, decaying to proton and electron. The wave – particle duality makes sure that the particles are oscillating and creating magnetic induction as an inertial mass, explaining also the relativistic mass change. Higher frequency creates stronger magnetic induction, smaller frequency results lesser magnetic induction. It seems to me that the magnetic induction is the secret of the Higgs field.
In particle physics, the Higgs mechanism is a kind of mass generation mechanism, a process that gives mass to elementary particles. According to this theory, particles gain mass by interacting with the Higgs field that permeates all space. More precisely, the Higgs mechanism endows gauge bosons in a gauge theory with mass through absorption of Nambu–Goldstone bosons arising in spontaneous symmetry breaking.

The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The spontaneous symmetry breaking of the underlying local symmetry triggers conversion of components of this Higgs field to Goldstone bosons which interact with (at least some of) the other fields in the theory, so as to produce mass terms for (at least some of) the gauge bosons. This mechanism may also leave behind elementary scalar (spin-0) particles, known as Higgs bosons.

In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W^\pm and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on July 4, 2012 but stressed that further testing is needed to confirm the Standard Model.

What is the Spin?

So we know already that the new particle has spin zero or spin two and we could tell which one if we could detect the polarizations of the photons produced. Unfortunately this is difficult and neither ATLAS nor CMS are able to measure polarizations. The only direct and sure way to confirm that the particle is indeed a scalar is to plot the angular distribution of the photons in the rest frame of the centre of mass. A spin zero particles like the Higgs carries no directional information away from the original collision so the distribution will be even in all directions. This test will be possible when a much larger number of events have been observed. In the mean time we can settle for less certain indirect indicators.

The Graviton

In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation in the framework of quantum field theory. If it exists, the graviton is expected to be massless (because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank tensor (compared to electromagnetism's spin-1 photon, the source of which is the four-current, a first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress-energy tensor in the same way that the gravitational field does. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only experimental verification needed for the graviton may simply be the discovery of a massless spin-2 particle. [3]

Conclusions

The accelerated charges self-maintaining potential shows the locality of the relativity, working on the quantum level also. [1]
The Secret of Quantum Entanglement that the particles are diffraction patterns of the electromagnetic waves and this way their quantum states every time is the result of the quantum state of the intermediate electromagnetic waves. [2]

One of the most important conclusions is that the electric charges are moving in an accelerated way and even if their velocity is constant, they have an intrinsic acceleration anyway, the so called spin, since they need at least an intrinsic acceleration to make possible they movement . The bridge between the classical and quantum theory is based on this intrinsic acceleration of the spin, explaining also the Heisenberg Uncertainty Principle. The particle – wave duality of the electric charges and the photon makes certain that they are both sides of the same thing. Basing the gravitational force on the accelerating Universe caused magnetic force and the Planck Distribution Law of the electromagnetic waves caused diffraction gives us the basis to build a Unified Theory of the physical interactions.

References
http://academia.edu/3833335/The_Magnetic_field_of_the_Electric_current

[2] 3 Dimensional String Theory http://academia.edu/3834454/3_Dimensional_String_Theory

[5] Space-based experiment could test gravity's effects on quantum entanglement

http://www.scientificamerican.com/article/common-interpretation-of-heisenbergs-uncertaintyprinciple-is-proven-false/

[7] Particle Measurement Sidesteps the Uncertainty Principle
http://www.scientificamerican.com/article/particle-measurement-sidesteps-the-uncertaintyprinciple/

Small entropy changes allow quantum measurements to be nearly reversed

[9] Physicists put the arrow of time under a quantum microscope
Physicists confirm thermodynamic irreversibility in a quantum system

What is quantum in quantum thermodynamics?

Researchers posit way to locally circumvent Second Law of Thermodynamics

Physicists read Maxwell's Demon's mind

Maxwell's demon extracts work from quantum measurement

Controlling heat and particle currents in nanodevices by quantum observation

Fast heat flows in warm, dense aluminum

A new efficient and portable electrocaloric cooling device

Converting heat into electricity with pencil and paper

Researchers develop heat switch for electronics

Breakthrough in circuit design makes electronics more resistant to damage and defects

The quantum states on the surface of conducting materials can strongly interact with light

Every transistor has a unique quantum fingerprint—but can it be used as a form of ID?

Scientists film rotating carbonyl sulphide molecules
[25] Travelling towards a quantum internet at light speed

[26] World's first link layer protocol brings quantum internet closer to a reality

[27] Practical anonymous communication protocol developed for quantum networks

[28] Studying quantum phenomena in magnetic systems to understand exotic states of matter

[29] Cracking a decades-old test, researchers bolster case for quantum mechanics

[30] Correlating entangled photons by radial position and momenta

[31] Generation of light in a photon-number quantum superposition

[32] Detraction-free light-matter interaction

[33] Complex quantum teleportation achieved for the first time