Refutation of resolution-based decision procedure for two variables with equality

© Copyright 2019 by Colin James III All rights reserved.

Abstract: We evaluate six equations and three conjectures for the decision procedure. None is tautologous. This refutes the procedure for two variables with equality, and forms a non tautologous fragment of the universal logic VŁ4.

We assume the method and apparatus of Meth8/VŁ4 with Tautology as the designated proof value, F as contradiction, N as truthity (non-contingency), and C as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

LET ~ Not, ¬ ; + Or, ∨ , ∪ ; - Not Or; & And, ∧ , ∩ ; ⊔ ; \\ Not And;
> Imply, greater than, → , ⇒ , ⊳ , ⊳ ; < Not Imply, less than, ∈ , ⊀ , ∈ , ≠ , ≈ ;
= Equivalent, ≡ ; ⊤ , ≡ , ⊤ , ⊤ ; ⊥ ;
% possibility, for one or some, ∃ , ⊃ , M ; # necessity, for every or all, ∀ , □ , L;
(z=z) T as tautology, ⊤ , ordinal 3; (z@z) F as contradiction, Ø, Null, ⊥ , zero;
(%z>#z) N as non-contingency, Δ, ordinal 1; (%z<#z) C as contingency, ∇, ordinal 2;
~(y < x) (x ≤ y), (x ∈ y); (A=B) (A~B).
Note for clarity, we usually distribute quantifiers onto each designated variable.

From: de Nivelle, H.; Pratt-Hartmann, I. (2001). A resolution-based decision procedure for the two variable fragment with equality. nivelle@mpi.mpg-sb.de, ipratt@cs.man.ac.uk
www.cs.man.ac.uk/~ipratt/papers/logic/ijcar01.pdf

1 Introduction
The two-variable-fragment L2 ≈ is the set of formulas that do not contain function symbols, that possibly contain equality (∼), and that use only two variables. The two-variable fragment without equality L2 is the subset of L2 ≈ not involving the predicate ∼. For example, the formula

∀x∃y[r(x, y) ∧ ∀x(r(y, x) → x∼y)], (1.1.1)

LET p, q, r, s: a, x, r, y.
(r&(q&s))&((r&(s&q))>(q=s)) ;
FFFF FFFF FFFF FFNN (1.1.2)

stating that every element is r-related to some element whose only r-successor is itself, is in L2 ≈ (but not in L2). Note in particular the ‘re-use’ of the variable x by nested quantifiers in this example. In the same way, it is possible to translate modal formulas into L2, (without equality) by reusing variables. For example, the modal formula

□◊a (1.2.1)

#%#p = (s=s) ;
FNFN FNFN FFFF FFFF FFFF FFFF (1.2.2)

can be translated into

∀y(r(x, y) → ∃x(r(y, x) ∧ ∀y(r(x, y) → a(y)))). (1.3.1)
No equality is needed for translating modal formulas.

Remark 1.3.2: Eqs. 1.2.2 is not equivalent to 1.3.2 as claimed.

2 Motivation

A logic is said to have the *finite-model property* if any satisfiable formula in that logic is satisfiable in a finite structure. It is easy to see that any fragment of first order logic having the finite model property is decidable; and indeed, most of the known decidable fragments of first-order logic have the finite model property. … One such fragment of particular interest here is the so-called Gödel class: the set of first-order formulas *without equality* which, when put in prenex form, have quantifier prefixes matching the pattern $\exists^* \forall \forall \exists^*$. Gödel . . showed that the Gödel class has the finite model property, and is thus decidable. In the same paper, Gödel claimed that allowing \approx in formulas of the Gödel class would not affect the finite model property, a claim which was later shown to be false by Goldfarb . . Between these two discoveries, Scott . . showed that any formula of the two-variable fragment can be transformed into a formula in the Gödel fragment which is equisatisfiable. Relying on Gödel’s incorrect claim, Scott concluded decidability for $L_2 \approx$: Of course, what Scott actually showed was the decidability for L_2 only. That the full two-variable fragment does indeed have the finite model property was eventually established by Mortimer . . The fragment $L_2 \approx$ is of particular interest when dealing with natural language input, because many simple natural language sentences translate into $L_2 \approx$. To give a somewhat fanciful example, the sentence

Every meta-barber shaves every man who shaves no man who shaves himself.

translates to the two-variable formula

$$\forall x (\text{meta-barber}(x) \rightarrow \forall y ((\text{man}(y) \land \forall x ((\text{man}(x) \land \text{shave}(x,x)) \rightarrow \text{shave}(y,x)) \rightarrow \text{shave}(x,y))).$$

(2.1.1)

Remark 2.1.2: Eq. 2.1.2 as stated is not tautologous, meaning the example is not a theorem as presumably it should be.

3 Making equality disappear

In this section, we give a method for removing equality from a formula in $L_2 \approx$, based on resolution. … Occurrences of the \approx-symbol fall into two groups. Negative occurrences can be ’simulated’ without recourse to equality. Positive occurrences can be restricted to those belonging to a $\exists^!$ quantifier.

Remark 3: We interpret the quantifier $\exists^!$ as \exists, due to the non tautologous performances of Eqs. 1… and 2… above.
Lemma 5. Let $\gamma(x)$ be a formula not involving the variable y and let $\delta(y)$ a formula not involving the variable x. Then the formulas

$$\forall x \forall y (\gamma(x) \lor \delta(y) \lor x \approx y) \quad (5.1.1)$$

\[\text{LET p, q, r, s: } \gamma, \delta, x, y.\]

\[((p\land r)+(q\land s))+(r\approx s); \quad \text{TTTT CTCT CCTT TTTT} \quad (5.1.2)\]

and

$$\forall x \gamma(x) \lor \forall x \delta(x) \lor (\exists !x \neg \gamma(x) \land \forall x (\gamma(x) \leftrightarrow \delta(x))) \quad (5.2.1)$$

\[((p\land r)+(q\land r))+((r\land \neg (p\land r))\land ((p\land r)\approx (q\land r))); \quad \text{CCCC TNTN CCCC TNTN} \quad (5.2.2)\]

are logically equivalent. Using this, we can use the splitting rule to decompose the disjunctions of the Type 3 formula. The result is a formula, in all positive occurrences of \approx belong to a $\exists !$ quantifier. These can be eliminated by introducing new individual constants.

Remark 5.2.2: Eqs. 5.1.2 and 5.2.2 not logically equivalent, thereby refuting Lemma 5.