A BOUND FOR THE ISOTROPIC CONSTANT IN THE
SYMMETRIC CASE

J. ASPEGREN

Abstract. In this preprint we will prove an explicit bound for the
isotropic constant in the symmetric case.

1. Introduction

We say that a convex body K is centralized, if

$$0 = \int_K \langle x, \phi \rangle,$$

for all $\phi \in S^{n-1}$. The entries of the covariance matrix of a convex body K
are defined as

$$(a_{ij}) = \frac{\int_K x_i x_j}{|K|} - \frac{\int_K x_i}{|K|} \frac{\int_K x_j}{|K|}.$$

We define the isotropic constant of any convex body K via

$$I^n_K := \frac{\text{Det}(\text{Cov}K)}{|K|^2}.$$

[2]. We define the polar of K as

$$K^\circ := \{x \in \mathbb{R}^n | \langle x, y \rangle \leq 1 \text{ for all } y \in K\}.$$

The Mahler volume $s(K)$ of K is defined as

$$s(K) := |K| * |K^\circ|.$$

We say that the convex body is in isotropic position if it is centralized and the
 covariance matrix is a constant times the unit matrix. This kind of position
exists [4]. The reverse Santaló inequality says that there is an universal
constant c such that

$$c^n |B_n|^2 \leq |K| |K^\circ|,$$

where B_n is the n-dimensional euclidean unit ball [1]. The isotropic constant
for a ball L_{B_n} is well know to be bounded. We will prove

Theorem 1. For all isotropic symmetric convex bodies K it holds that

$$L_K \leq L_{B_n}^{-1} (s(K))^{-1/n} \leq C,$$

where C is an universal constant.

2010 Mathematics Subject Classification. 52A23.

Key words and phrases. Convex Geometry, Bourgain’s Slicing Problem, Hyperplane
Conjecture, Asymptotic Convex Geometry.
2. The proof of the main theorem

Let K be an unit ball. Then there exist $T(K), T \in SLG(n, \mathbb{R}^n)$, that is isotropic and the covariance matrix is a constant times the unit matrix [4]. Using that $K \subset \sqrt{n}B_2$ we can calculate

\[L^2_{T(K)} = \frac{\int_{T(K)} |x|^2}{n|K|} * |K|^{-2/n} \leq \frac{|K|^n}{|K|} * |K|^{-2/n} = |K|^{-2/n} \]

and

\[L^2_{A(K)} = \frac{\int_{A(K)} |x|^2}{n|K|^\circ} * |K|^\circ \leq \frac{|K|^\circ n}{|K|^\circ} * |K|^\circ \leq |K|^\circ \leq 1 \]

where $A \in SLG(n, \mathbb{R}^n)$ and $A(K)$ is isotropic. Thus form (2) and (3) we obtain

\[L_{B_2} L_{T(K)} \leq L_{T(K)} L_{A(K)} \leq \frac{1}{s(K)\frac{1}{n}}, \]

where we use the fact that $L_{B_2} \leq L_K$ for all convex bodies K. Combining (4) with Milman-Bourgain (or reverse Santaló) inequality (1), we obtain

\[L_{T(K)} \leq \frac{1}{L(B_2)s(K)\frac{1}{n}} \leq C, \]

which implies the main theorem 1.

References

Email address: jaspegren@outlook.com