Een diepe duik in de krochten van de natuurkunde

Een Zichzelf Scheppend Model van de Fysieke Werkelijkheid

Hans van Leunen
Colofon

Geschreven door J.A.J. van Leunen MSc

Het hoofdonderwerp van dit boek betreft een puur wiskundig model van de fysieke realiteit.

Op deze website is dit bestand ook beschikbaar als .docx bestand.

De laatste update van dit document dateert dinsdag 20 augustus 2019

©2019 J.A.J. (Hans) van Leunen MSc

Alle rechten worden gereserveerd. Behalve voor korte uittreksels of overzichten en wetenschappelijke studies die naar deze bron verwijzen, mogen geen van deze artikelen gekopieerd of vertaald worden zonder de expliciete toestemming van de publicist.

Alleen voor persoonlijk gebruik kunt u dit bestand naar een lokale print shop brengen. Deze dienstverlener kan er dan een betaalbaar en gemakkelijk leesbaar A4-formaat ringbandboek van maken. Het bestand bevat een voorpagina en een achterpagina.

U kunt dit document bestellen als print on demand boek bij https://www.boekenbestellen.nl/boek/de-wiskunde-van-de-fysieke-werkelijkheid/9789463457163
Een Zichzelf Scheppend Model van de Fysieke Werkelijkheid
Door Hans van Leunen

20-8-2019

Samenvatting
Het belangrijkste onderwerp van dit boek is een puur wiskundig model van de fysieke werkelijkheid. Het boek fungeert als een overzicht van het Hilbert Book Model project. Het project betreft een goed gefundeerd, puur wiskundig model van de fysi
eke realiteit. Het project berust op de overtuiging dat de fysieke werkelijkheid zijn eigen soort van wiskunde bezit en dat deze wiskunde de uitbreiding van het fundament tot meer gecompliceerde niveaus van de structuur en het gedrag van de fysieke werkelijkheid begeleid en inperkt. Dit resulteert in een model dat meer en meer lijkt op de fysieke werkelijkheid die mensen kunnen observeren. Het boek behandelt verschillende onderwerpen die rechtstreeks verband houden met het hoofdonderwerp. Het boek introduceert nieuwe fysica en nieuwe wiskunde.

Inhoud
1 De initiatiefnemer van het project .. 11
 1.1 Betrouwbaarheid .. 11
 1.2 De auteur .. 12
 1.3 Vroege ontmoetingen .. 13
2 Bedoeling .. 17
3 Het Hilbert boek Base Model ... 21
 3.1 Open vragen ... 23
4 Modelering van dynamische velden en discrete sets 25
 4.1 Quaternionische differentiaalrekening ... 26
22 Diracvergelijking

22.1 De Diracvergelijking in het originele formaat

22.2 De formulering van Dirac

22.3 Relativistische formulering

22.4 Een betere keuze

22.5 De Dirac nabla

23 Lage dosis beeldvorming

23.1 Geïntensiveerd beeld perceptie

24 Menselijke waarneming

24.1 Informatie-codering

24.2 Onscherpte

24.3 Detectieve kwantumefficiëntie

24.4 Kwantumnatuurkunde

25 Hoe de hersenen werken

25.1 Preprocessing

25.2 Verwerking

25.3 Beeldversterking

25.4 Kenmerken van beeldkwaliteit

25.5 De waarneming van ruisende beelden

25.6 Informatieassociatie

25.7 Ruisfilter

25.8 Redenering

25.9 Andere diersoorten

25.10 Mensen

25.11 Wetenschap

25.12 Fysische realiteit
27.9 Aanval .. 157
27.10 Set-back ... 158
27.11 Overblijfselen ... 158
27.12 Doel .. 159
27.13 Lessen ... 159
27.14 Conclusies .. 160
27.15 Uitweg ... 160
27.16 Discussie ... 161
28 Management van het software generatie proces ... 163
 28.1 Inleiding .. 163
 28.2 Complexiteit beheren .. 163
 28.2.1 Breekniveau .. 163
 28.2.2 Mate van complexiteit ... 164
 28.2.3 Extreme complexiteit ... 165
 28.3 De modulaire aanpak .. 165
 28.3.1 Modularisatie ... 165
 28.3.2 Modulair systeemontwerp ... 166
 28.3.3 Interfaces .. 167
 28.3.4 Juiste modules ... 169
 28.3.5 Eigenschappen en acties .. 170
 28.3.6 Kosten van modularisatie .. 170
 28.3.7 Misbruik .. 171
 28.3.8 Modularisatie succesfeiten .. 172
 28.3.9 Vereisten voor succes ... 173
 28.3.10 Problemen van modularisatie .. 173
 28.3.11 Hardware versus software ... 176
28.3.12 Koppeling van de markt en het ontwerp en de creatie van software modules en interfaces ... 180
28.3.13 Een volwaardige bedrijfstak voor softwareonderdelen 183
28.3.14 Code ... 191
29 Verwijzingen ... 192
1 De initiatiefnemer van het project

Het Hilbert Book Model project is een doorlopend project. Hans van Leunen is de initiatiefnemer van dit project. De initiator werd geboren in Nederland in 1941. Hij zal niet eeuwig leven. Dit project bevat zijn wetenschappelijke erfenis.

Het project wordt geïntroduceerd in een Wikiversity-project [1]. Naar het oordeel van de Initiator, is een Wikiversity-project een perfecte manier om nieuwe wetenschap te introduceren. Het dient vooral de behoeften van onafhankelijke of gepensioneerde wetenschappelijke auteurs.

De initiator onderhoudt een ResearchGate project dat het Hilbert Book Model project als onderwerp heeft. De ResearchGate site ondersteunt een flexibele manier om wetenschappelijke onderwerpen te bespreken [2] [3].

De initiator heeft een aantal documenten gegenereerd die hoogtepunten van het project betreffen. Hij heeft deze documenten op zijn persoonlijke e-print archief http://vixra.org/author/j_a_j_van_leunen gearchiveerd [4].

De privé website http://www.e-physics.eu bevat de meeste van deze documenten zowel in PDF als in docx-formaat [5]. Geen van deze documenten claimt auteursrecht. Iedereen is vrij om de inhoud van deze documenten te gebruiken.

1.1 Betrouwbaarheid

Het introduceren van nieuwe wetenschap introduceert altijd controversiële en onorthodoxe tekst. Het Hilbert Book Model project is een doorlopende onderneming. De inhoud ervan is dynamisch en wordt regelmatig herzien en aangevuld.

De inhoud van dit project is niet peer-reviewed. Het is de taak van de auteur om de juistheid van wat hij schrijft te waarborgen. In de visie van de auteur, is de lezer verantwoordelijk voor het controleren van de geldigheid van wat hij/zij leest. Het peer-review proces kan niet
omgaan met de dynamiek van revisies en uitbreidingen die mogelijk wordt via het publiceren in vrij toegankelijke e-print archieven. In vergelijking met openlijk toegankelijke publicatie op het Internet, is het peer-review proces een tamelijk langzaam proces. Het remt het gebruik van revisiediensten, zoals door vixra.org en door arxiv.org aangeboden worden.

Recensenten zijn altijd bevooroordeeld, en ze zijn nooit alwetend. Het peer-review proces is duur en vormt vaak belemmeringen voor de vernieuwing van de wetenschap.

Een manier om de geldigheid van de tekst te controleren is om delen van de tekst in te brengen in open wetenschappelijke discussie plaatsen zoals ResearchGate. [2]

De initiatiefnemer daagt iedereen uit om de uitspraken in dit document te weerleggen. Hij belooft een fijne fles van XO Cognac aan iedereen die een belangrijke fout in de gepresenteerde theorieën vindt.

Deze uitdaging staat al verscheidene jaren op zijn particuliere website [6]. Tot dusver heeft niemand de fles opgeëist.

1.2 De auteur

Hans is geboren in Helmond in 1941 en bezocht in Eindhoven de HTS in chemie van 1957 tot 1960.

Hans voltooide deze studie in 1970 en trad vervolgens toe tot Philips Elcoma EOD in de ontwikkeling van beeldversterkerbuizen. Later werd dit een onderdeel van de afdeling van de Medische Systemen van Philips.

In 1987 schakelde Hans over op een intern softwarehuis. In 1995 sloot Hans zich aan bij de halfgeleider divisie van Philips. In deze
periode ontwierp Hans een systeem voor modulaire software generatie. Dit had grote invloed op zijn visie op de modulaire structuur van de fysieke werkelijkheid.

In 2001 ging Hans met pensioen.

Van 1983 tot 2006 bezat Hans een eigen softwarebedrijf "Technische en Wetenschappelijke Programmatuur" (TWP).

Een privé website behandelt zijn huidige activiteiten [5].

Ik bewaar mijn documenten op een vrij toegankelijk e-print archief [4].

Hans begon in 2009 een persoonlijk onderzoeksproject naar de fundamente en de diepere niveaus van de fysieke werkelijkheid. Dit project kreeg in 2011 zijn huidige naam "Het Hilbert Book Model Project."

Het Hilbert Book Model is een puur wiskundig, onorthodox en tamelijk controversieel model van de fundamente en de diepere niveaus van de structuur van de fysieke werkelijkheid.

Het motto van Hans: Als je denkt, denk dan tweemaal.

De overtuiging van Hans: We leven in een universum dat met grote herhalingsfrequentie zijn inhoud regenereert.

1.3 Vroege ontmoetingen

Ik ben geboren met een diepe nieuwsgierigheid naar mijn leefomgeving. Toen ik mij hiervan bewust werd, was ik verbaasd waarom deze omgeving zo ingewikkeld bleek te zijn, en op hetzelfde moment gedroeg die omgeving zich op een samenhangende wijze. In mijn kindertijd, had ik hierover geen goed idee. Later boden mij enkele unieke ervaringen een aantal aanwijzingen. Na mijn pensionering, ben ik in 2009 een persoonlijk onderzoeksproject begonnen om de gezochte redenen te ontdekken en een aantal van
Mijn interesse in de structuur en fenomenen van de fysische realiteit begon in het derde jaar van mijn natuurkundestudie toen de kwantummechanica me voor het eerst confronteerde met zijn speciale aanpak. Het feit dat de methodologie van de kwantumfysica fundamenteel verschilde van de werkwijze van de klassieke natuurkunde verbaasde mij zeer. Dus, vroeg ik mijn zeer wijze docent, professor Broer, naar de oorsprong waarop dit verschil gebaseerd is. Zijn antwoord was dat het superpositiebeginsel dit verschil veroorzaakt. Ik was niet erg blij met dit antwoord, omdat het superpositiebeginsel inderdaad een onderdeel van de methodologie van de kwantummechanica vormt, maar in die dagen, kon ik niet begrijpen hoe dat principe de belangrijkste oorzaak van het verschil tussen de twee methodologieën zou kunnen vormen. Ik besloot om in de literatuur te duiken, en na wat zoeken, stuitte ik op het boekje, "Philosophische Probleme der modernen Physik " van Peter Mittelsteadt (1963). Dit boekje bevatte een hoofdstuk over kwantumlogica en dat leek mij een beter antwoord op mijn kwestie. Later bleek dit een veel te snelle conclusie. In 1936 publiceerden Garrett Birkhoff en John von Neumann een document, waarin zij hun ontdekking van wat zij "Quantum Logic" noemden beschreven." [7] Kwantumlogica staat sindsdien in wiskundige terminologie bekend als een orthomodulair tralie [8]. De relationele structuur van dit tralie is voor een groot deel gelijk aan de relationele structuur van de klassieke logica. Dat is waarschijnlijk de reden waarom het duo hun ontdekking de naam "Quantum Logic" verleende. Deze naam was echter een ongelukkige keuze omdat er geen goede reden bestaat om het orthomodulair tralie als een systeem van logische uitspraken te beschouwen. In hetzelfde geschrift gaf het geleerde duo aan dat de verzameling van gesloten deelruimten van een separabele Hilbertruimte precies de relationele structuur van een orthomodulair
John von Neumann twijfelde lang tussen Hilbertruimten en projectieve geometriën. Uiteindelijk koos hij voor Hilbertruimten als het beste platform voor het ontwikkelen van kwantum fysische theorieën. Dit lijkt een van de belangrijkste redenen te zijn waarom kwantum fysici vaak voor Hilbertruimten kiezen als een omgeving waarin ze hun kwantum-fysische systemen willen modelleren. Nog een andere gewoonte van kwantum fysici intrigueerde mij. Mijn docent leerde me dat alle waarneembare kwantum-fysische grootheden eigenwaarden zijn van Hermitische operatoren. Hermitische operatoren bezitten reële eigenwaarden. Wanneer ik om me heen keek, zag ik een wereld die een structuur bezit die geconfigureerd is uit een driedimensionaal ruimtelijk domein en een ééndimensionaal en dus, scalar tijddomein. In de kwantumfysica van die tijd vertegenwoordigde geen enkele operator het tijddomein en werd er geen operator gebruikt om het ruimtelijke domein op een compacte manier te leveren. Na een aantal pogingen, ontdekte ik een vierdimensionaal getallensysteem dat een bepaalde normale operator van een eigenruimte kan voorzien die de volledige vierdimensionale structuur van mijn levensomgeving vertegenwoordigt. Op dat moment had ik nog niet van quaternionen gehoord, maar een assistent-professor, Boudewijn Verhaar, vertelde me kort daarna over de ontdekking van Rowan Hamilton, die meer dan een eeuw eerder had plaatsgevonden. Quaternionen blijken een getallensysteem te vormen dat de voorkeur van de fysische werkelijkheid geniet en daaraan zijn krachtige mogelijkheden verleent.

Het inleidende document van Birkhoff en von Neumann vermeldde de quaternionen al. Veel later toonde Maria Pia Solèr via een hard bewijs aan dat Hilbertruimten alleen kunnen omgaan met leden van een associatieve delingsring. Quaternionen vormen de meest uitgebreide associatieve delingsring. Tot mijn verbazing ontdekte ik echter al snel dat natuurkundigen een ruimtetijdstructuur prefereren

In het tweede deel van mijn carrière, wijdde ik mijn tijd aan het opstellen van een betere manier om software te genereren. Ik zag hoe de industrie zeer succesvol was in het modulair bouwen van hardware. Daarentegen werd en wordt software nog steeds als een monolithisch systeem ontwikkeld. Mijn ervaringen in deze periode zijn gerapporteerd in het hoofdstuk "Verhaal van een oorlog tegen software complexiteit " en in het hoofdstuk "Het beheren van het software generatie proces". Het heeft me de kracht van modulair ontwerp en modulaire constructie geleerd [4].

Pas na mijn pensionering, kreeg ik genoeg tijd om diep in de fundamenten van de fysieke werkelijkheid te duiken. In 2009, na het herstel van een ernstige ziekte, begon ik met mijn persoonlijke onderzoeksproject dat in 2011 zijn huidige naam "The Hilbert Book Model Project" kreeg. Voor de rest van zijn leven, neemt de auteur de vrijheid om de gerelateerde documenten in een gestaag tempo te upgraden en aan te vullen.
2 Bedoeling

Theoretische fysica bevat nog steeds onopgeloste onderwerpen. Deze tekortkomingen van de theorie worden veroorzaakt door de manier waarop de fysica werd ontwikkeld en door de houding van de natuurkundigen die de huidige theorie ontwierpen. Wetenschappers zijn zeer bezorgd om de betrouwbaarheid te beveiligen van hun werk, dat eindigt in de publicatie van de resultaten. Zij nemen maatregelen om te voorkomen dat hun publicaties vermengd raken met slecht voorbereide publicaties of erger nog, met beschrijvingen van fantasieën. Om die reden, installeerden zij de wetenschappelijke methode [7]. In de toegepaste natuurkunde, baseert de wetenschappelijke methode op observaties. De toegepaste natuurkunde bloeit omdat de beschrijvingen van observaties helpen om deze bevindingen toe te passen, speciaal wanneer formules de bruikbaarheid van de observaties voorbij directe observatie uitbreiden. In de theoretische natuurkunde, is dit niet altijd mogelijk omdat niet alle aspecten van fysieke werkelijkheid waarneembaar zijn. De enige manier om deze blokkade dan op te lossen is om te beginnen met een goede fundering die kan worden uitgebreid via betrouwbare methoden die afhankelijk zijn van deduceren. Deze aanpak kan alleen succesvol zijn als het deduceringsproces begeleid en ingeperkt wordt, zodat de uitbreidingen van het fundament nog steeds de fysieke werkelijkheid beschrijven. Dus, als een wiskundige deductie toegepast wordt, dan moet de wiskunde dit proces begeleiden en inperken, zodat een wiskundig consistente uitbreiding van het model opnieuw een geldig model van fysieke werkelijkheid vormt. Na een reeks van ontwikkelingstappen, moet deze aanpak leiden tot een structuur en gedrag van het model dat meer en meer voldoet aan de werkelijkheid die we kunnen waarnemen.

Deze begeleiding en inperking zijn niet vanzelfsprekend. Aan de andere kant weten we dat wanneer we dieper onderzoeken, de structuur eenvoudiger en gemakkelijker te begrijpen wordt. Dus, ten
slotte, komen we bij een fundamentele structuur die als geschikt beschouwd kan worden. De weg terug naar ingewikkeldere niveaus van de structuur kan niet vrij geselecteerd worden. De wiskunde moet beperkingen opleggen aan de uitbreiding van de fundamentele structuur. In werkelijkheid gebeurt dit voor een fundament dat ongeveer 80 jaar geleden door twee geleerden ontdekt werd. Zij noemden hun ontdekking kwantumlogica [8]. Het geleerde duo selecteerde deze naam voor de ontdekte relationele structuur omdat zijn relationele structuur erg leek op de relationele structuur van de toen al bekende klassieke logica. Garrett Birkhoff was een expert in relationele structuren. Dit zijn verzamelingen die precies bepalen welke relaties tussen de elementen van de verzameling worden getolereerd. De wiskundigen noemen deze relationele structuren tralies, en ze classificeren kwantumlogica als een orthomodulair tralie [9]. John von Neumann was een breed georiënteerde wetenschapper die samen met anderen op zoek was naar een platform dat geschikt was voor het modeleren van kwantummechanische systemen. Hij twijfelde lang tussen twee modelleringsplatformen. Een was een projectieve geometrie, en de andere was een Hilbertruimte [10] [11] [12]. Ten slotte selecteerde hij Hilbertruimten als zijn voorkeur. In hun inleidende paper, toonde het duo aan dat kwantumlogica tevoorschijn komt in een separabele Hilbertruimte. De reeks van gesloten deelruimtes binnen een separabele Hilbertruimte heeft precies de relationele structuur van een orthomodulair tralie. De vereniging van deze deelruimten is gelijk aan de hele Hilbertruimte. Een separabele Hilbertruimte benut een onderliggende vectorruimte [13], en tussen elk paar vectoren, definieert deze structuur een inwendig product [14]. Dit inwendig product kan alleen getallen benutten die lid zijn van een associatieve delingsring [15] [16]. In een delingsring, is elk niet-nul-lid eigenaar van een unieke inverse. Er bestaan slechts drie geschikte associatieve delingsringen. Dit zijn de reële getallen, de complexe getallen, en de quaternionen. Afhankelijk van hun dimensie bestaan deze getallensystemen in verschillende
versies die verschillen in de manier waarop cartesische en polaire coördinatensystemen hun leden ordenen [17] [18].

Deze initiële ontwikkeling werd echter niet veel verder nagestreefd. Axiomatische modellen van de fysische werkelijkheid zijn niet populair. De meeste natuurkundigen wantrouwen deze aanpak. Waarschijnlijk vinden deze natuurkundigen het naïef om te veronderstellen dat een axiomatisch fundament ontdekt kan worden dat als de wijze waarop een zaadje in een bepaald type plant evolueert, zal evolueren naar een model van de fysische werkelijkheid dat we kunnen waarnemen.

De meeste kwantumfysici besloten om een andere route te nemen die veel meer de lijn volgt van de natuurkundige versie van de wetenschappelijke methode. Zoals vermoed kan worden, belemmert het feit dat niet elk facet van de fysische werkelijkheid door geschikte experimenten geverifieerd kan worden deze ingeslagen weg.

19
Daarmee in directe tegenstelling, benut het Hilbert Book Model project een puur en zelf-consistent wiskundig model van de fysische realiteit [1] [20]. Dit model gebruikt het orthomodulair tralie als zijn axiomatische fundament en past sommige algemene kenmerken van werkelijkheid als leidende gidslijnen toe. Een belangrijk ingrediënt is het modulaire ontwerp van de meeste discrete objecten die in het universum voorkomen. Een ander verschil is dat het Hilbert Book Model berust op de controle van de coherentie en de binding van modules door stochastische processen die een karakteristieke functie bezitten in plaats van de zwakke en sterke krachten en de krachtdragers die QFT, QED, en QCD toepassen [21] [22] [23].

Essentieel voor het Hilbert Book Model is dat de fysieke werkelijkheid quaternionische Hilbertruimten toepast als gestructureerde read-only archieven van de dynamische geometrische gegevens van de afzonderlijke objecten die in het model bestaan. Het model slaat deze gegevens op voordat ze door waarnemers kunnen worden benaderd. Dit feit maakt het mogelijk om het model te interpreteren als de schepper van het universum. De classificatie van modules als waarnemers introduceert twee verschillende zienswijzen; De zienswijze van de schepper en de zienswijze van de waarnemer. Tijdomkering is alleen mogelijk in de zienswijze van de schepper. Tijdomkering kan niet door waarnemers worden waargenomen, omdat waarnemers samen moeten reizen met het scannende tijdvenster.
Het Hilbert boek Base Model

elementaire deeltjes. Ze gedragen zich als elementaire modules, maar mainstream fysica past deze interpretatie niet toe. Daarentegen, exploiteert het Hilbert Book Model project juist het modulaire ontwerp van het model.

In feite definieert de ordening van de reële delen van de opgeslagen quaternionische eigenwaarden van de referentieoperator een deelruimte van de onderliggende vectorruimte die als een functie van progressie over het hele model scant. Dit scanvenster verdeelt het model in een historisch gedeelte, een venster dat de huidige statische status quo vertegenwoordigt, en een toekomstig onderdeel. Op deze wijze, lijkt het dynamische model op het pagineren van een boek waarin elke pagina een universum-breed verhaal vertelt van wat momenteel in dit continuüm gebeurt. Dit verklaart de naam van het Hilbert Book Model. Samen met de eis dat alle toegepaste separabele Hilbertruimten dezelfde vectorruimte delen en het feit dat een venster het Hilbert Book Base Model als functie van een voortgangsparameter scant resulteert dit in het feit dat deze quaternionische separabele Hilbertruimten allen dezelfde op reële getallen gebaseerde separabele Hilbertruimte delen. Na het rangschikken van de eigenwaarden, werkt de eigenruimte van de referentieoperator van deze reële Hilbertruimte als een model-brede echte-tijd klok.

In tegenstelling tot het Hilbert Book Model, passen de meeste andere fysische theorieën slechts één Hilbertruimte toe die complexe getallen toepast om zijn inwendig product te definiëren, of ze passen een Fock ruimte [27] toe. Een Fock-ruimte is een tensorproduct van een aantal op complexe getallen gebaseerde Hilbertruimten. Een tensorproduct van quaternionische Hilbertruimten [28] resulteert in een op reële getallen gebaseerde Hilbertruimte. In het Hilbert Book Base Model, delen de quaternionische separabele Hilbertruimten dezelfde op reële getallen gebaseerde Hilbertruimte.
De coherentie van de huppellandingslocatiezwerm die de voetafdruk van een elementaire module configureert wordt gewaarborgd door het feit dat het mechanisme dat de huppellandingslocaties genereert een stochastisch proces is dat een karakteristieke functie bezit. Deze karakteristieke functie is de Fourier-getransformeerde van de locatiedichtheidsverdeling van de huppellandingslocatie zwerm. Het mechanisme weerspiegelt het effect van de doorlopende inbedding van de separabele Hilbertruimte van de elementaire module in de achtergrond niet-separabele Hilbertruimte. Een continuüm eigenruimte van een toegewijde operator registreert het inbedden van de huppellandingen van alle elementaire modules in dit continuüm. De fysici gebruiken de naam universum voor dit continuüm dat in de fysische realiteit een dynamisch veld vertegenwoordigt. Dit veld fungeert als de leefruimte van alle discrete objecten die in het universum bestaan. Het universum bestaat altijd en overal.

3.1 Open vragen

Verder wordt gesuggereerd dat het privé-stochastische proces op elke kloktik een nieuwe huppellandingslocatie genereert. Het is mogelijk dat het stochastische proces langzamer dan de echte-tijdtklok werkt en deze snelheid kan per generatie verschillen.
Ook de massa van verschillende typecategorieën van elementaire deeltjes verschilt. Momenteel bevat het Hilbert Book Model geen gedetailleerde uitleg voor deze verschillen.
4 Modelering van dynamische velden en discrete sets

De eigenruimte van een toegewijde voetspooroperator in een quaternionische separabele Hilbertruimte kan de dynamische geometrische gegevens bevatten van het puntvormige object dat zich op deze zwevende separabele Hilbertruimte bevindt. De eigenruimte van operatoren in een quaternionische niet-separabele Hilbertruimte kan de beschrijving van een dynamisch continuüm vertegenwoordigen. We hebben al een ontmoeting gehad met de eigenruimte van de referentieoperator, die de private parametteruimte van de Hilbertruimte vertegenwoordigt. In de separabele Hilbertruimte is deze eigenruimte aftelbaar en bevat slechts de rationele waarden van de versie van het quaternionische getallensysteem dat de separabele Hilbertruimte als eigenwaarden kan toepassen. In de niet-separabele Hilbertruimte, bevat de eigenruimte van de referentieoperator ook alle limieten van de convergente reeksen van rationele waarden. Bijgevolg is deze eigenruimte niet meer aftelbaar. In elk van de toegepaste Hilbertruimten, is het mogelijk om de referentieoperator te gebruiken voor het definiëren van een categorie van nieuw gedefinieerde operatoren door voor elke eigenvector van de referentieoperator een nieuwe eigenwaarde te nemen die gelijk is aan de doelwaarden van een geselecteerde quaternionische functie voor de parameterwaarde die gelijk is aan de overeenkomstige eigenwaarden van de referentieoperator. In de quaternionische separabele Hilbertruimte vertegenwoordigt de nieuwe eigenruimte het gesampelde veld dat door de geselecteerde quaternionische functie beschreven wordt. In de quaternionische niet-separabele Hilbertruimte vertegenwoordigt de nieuwe eigenruimte het volledige continuüm dat door de geselecteerde quaternionische functie beschreven wordt. Continuüm eigenruimtes vertegenwoordigen het wiskundige equivalent van een dynamisch fysiek veld. De privé parametteruimte van een quaternionische Hilbertruimte
vertegenwoordigt een vlak veld. De dynamiek van een veld kan door quaternionische differentiaalvergelijkingen beschreven worden.

4.1 Quaternionische differentiaalrekening

De eerste-orde partiële differentiaalvergelijkingen verdelen de verandering van een basisveld in vijf verschillende delen die elk een nieuw veld vertegenwoordigen. Wij zullen de operator van de veldverandering door een quaternionische nabla-operator weergeven. Deze operator gedraagt zich als een quaternionische vermenigvuldiger.

Een quaternion kan een tijdstempel in zijn reële deel en een driedimensionale ruimtelijke locatie in het imaginaire deel bevatten. De quaternionische nabla \(\nabla \) fungeert als een quaternionische vermenigvuldigingsoperator. Quaternionische vermenigvuldiging gehoorzaamt de vergelijking

\[
\begin{align*}
 c &= a_r + \vec{a} = \vec{ab} = (a_r + \vec{a})(b_r + \vec{b}) \\
 &= a_r b_r - \langle \vec{a}, \vec{b} \rangle + a_r \vec{b} + \vec{a} b_r \pm \vec{a} \times \vec{b}
\end{align*}
\]

(4.1.1)

Het ± teken wijst op de vrijheid van keuze van de links-rechtshandigheid van de productregel die een rol speelt bij het selecteren van een versie van het quaternionische getallensysteem. Het eerste-orde partiële verschil volgt uit het volgende

\[
\nabla = \left\{ \frac{\partial}{\partial \tau}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\} = \nabla_r + \ddot{\nabla}
\]

(4.1.2)
De ruimtelijke nabla ∇ staat bekend als de del-operator en wordt in detail behandeld in Wikipedia [30] [31].

\[
\phi = \nabla \psi = \left(\frac{\partial}{\partial \tau} + \tilde{\nabla} \right) (\psi_r + \tilde{\psi}) = \nabla_r \psi_r - \langle \tilde{\nabla}, \tilde{\psi} \rangle + \nabla_r \tilde{\psi} + \nabla \psi_r + \pm \nabla \times \tilde{\psi} \tag{4.1.3}
\]

De differentiaal $\nabla \psi$ beschrijft de verandering van veld ψ. De vijf afzonderlijke termen in de eerste-orde partiële verandering hebben een afzonderlijke fysieke betekenis. Alle basisvelden tonen deze opdeling. De termen kunnen nieuwe velden voorstellen.

\[
\phi_r = \nabla_r \psi_r - \langle \tilde{\nabla}, \tilde{\psi} \rangle \tag{4.1.4}
\]

\[
\tilde{\phi} = \nabla_r \tilde{\psi} + \nabla \psi_r \pm \tilde{\nabla} \times \tilde{\psi} = -E \pm B \tag{4.1.5}
\]

$\tilde{\nabla} f$ is de gradiënt van f.

$\langle \tilde{\nabla}, \tilde{f} \rangle$ is de divergentie van \tilde{f}.

$\tilde{\nabla} \times \tilde{f}$ is de rotatie van \tilde{f}.

De geconjugeerde van de quaternionische nabla-operator definieert nog een ander type veldverandering.

\[
\nabla^* = \nabla_r - \tilde{\nabla} \tag{4.1.6}
\]

\[
\zeta = \nabla^* \phi = \left(\frac{\partial}{\partial \tau} - \tilde{\nabla} \right) (\phi_r + \tilde{\phi}) = \nabla_r \phi_r + \langle \tilde{\nabla}, \tilde{\phi} \rangle + \nabla_r \tilde{\phi} - \tilde{\nabla} \phi_r \mp \tilde{\nabla} \times \tilde{\phi} \tag{4.1.7}
\]

4.2 Veldexcitaties

Simpele excitaties van het veld zijn oplossingen van tweede-orde partiële differentiaalvergelijkingen.

Een van de tweede-orde partiële differentiaalvergelijkingen vloeit voort uit het combineren van de twee hierboven weergegeven eerste-orde partiële differentiaalvergelijkingen $\phi = \nabla \psi$ en $\zeta = \nabla^* \phi$.

27
\[\zeta = \nabla^* \varphi = \nabla^* \nabla \psi = \nabla \nabla^* \psi = \left(\nabla_r + \tilde{\nabla} \right) \left(\nabla_r - \tilde{\nabla} \right) \left(\psi_r + \tilde{\psi} \right) = \left(\nabla_r, \nabla_r + \langle \tilde{\nabla}, \tilde{\nabla} \rangle \right) \psi \]

(4.2.1)

Veel van de mengtermen vallen dus tegen elkaar weg. Integratie in het tijddomein resulteert in de Poisson-vergelijking

\[\rho = \langle \tilde{\nabla}, \tilde{\nabla} \rangle \psi \]

(4.2.2)

Onder isotrope omstandigheden, bestaat een zeer bijzondere oplossing van deze vergelijking in de vorm van de Greense functie

\[\frac{1}{q - q'} \]

van het betreffende veld. Deze oplossing is de ruimtelijke Dirac pulsrespons \(\delta(q) \) van het veld onder strikt isotrope omstandigheden.

\[\nabla \frac{1}{q - q'} = -\frac{(q - \tilde{q}')}{|q - q'|^3} \]

(4.2.3)

\[\langle \nabla, \nabla \rangle \frac{1}{|q - q'|} \equiv \left\langle \nabla, \nabla \frac{1}{|q - q'|} \right\rangle = -\left\langle \nabla, \frac{(q - \tilde{q}')}{|q - q'|^3} \right\rangle = 4\pi\delta(q - \tilde{q}') \]

(4.2.4)

Onder deze omstandigheden, is de dynamische bolvormige pulsrespons van het veld een oplossing voor een speciale vorm van vergelijking (4.2.1)

\[\left(\nabla, \nabla_r + \langle \tilde{\nabla}, \tilde{\nabla} \rangle \right) \psi = 4\pi\delta(q - \tilde{q}') \theta(\tau \pm \tau') \]

(4.2.5)

Hier is \(\theta(\tau) \) een stapfunctie en \(\delta(q) \) is een Dirac puls [33] [34].

Na het moment \(\tau' \), wordt deze oplossing beschreven door

\[\psi = \frac{f \left(|q - q'| \pm c(\tau - \tau') n \right)}{|q - q'|} \]

(4.2.6)

28

Behalve de bolvormige pulsrespons ondersteunt vergelijking (4.2.5) ook een ééndimensionale pulsrespons. Deze fungeert als een ééndimensionaal schokfront. De oplossing wordt beschreven door

$$\psi = f\left(\sqrt{|\vec{q} - \vec{q}'|} \pm c(\tau - \tau')\vec{n}\right)$$ \hspace{1cm} (4.2.7)

Hier, kan de genormaliseerde vector \vec{n} worden geïnterpreteerd als de polarisatie van de oplossing. Schokfronten kunnen alleen optreden in één en in drie dimensies. Een pulsrespons kan ook in twee dimensies voorkomen, maar in dat geval, is de pulsrespons een ingewikkelde trilling die lijkt op het resultaat van een worp van een steen in het midden van een vijver.

Vergelijkingen (4.2.1) en (4.2.2) tonen aan dat de operatoren $\frac{\partial^2}{\partial \tau^2}$ en $\langle \vec{\nabla}, \vec{\nabla} \rangle$ geldige tweede-orde partiële differentiaal operatoren zijn. Deze operatoren combineren in het quaternionische equivalent van de golfvergelijking [35].

$$\varphi = \left(\frac{\partial^2}{\partial \tau^2} - \langle \vec{\nabla}, \vec{\nabla} \rangle\right)\psi$$ \hspace{1cm} (4.2.8)

Deze vergelijking biedt ook eendimensionale en driedimensionale schokfronten als zijn oplossingen.
Deze pulsresponses bevatten niet de genormeerde vector \bar{n}. Apart van puls responsen, biedt de golfvergelijking ook golven als zijn oplossingen [31 [35].

Door het veld te splitsen in een tijdafhankelijk deel $T(\tau)$ en een locatieafhankelijke deel $A(\bar{q})$, kan de homogene versie van de golfvergelijking worden omgezet in de Helmholtz vergelijking [36].

\[
\frac{\partial^2 \psi}{\partial \tau^2} = \langle \nabla, \nabla \rangle \psi = -\omega^2 \psi
\]
(4.2.11)

\[
\psi(\bar{q}, \tau) = A(\bar{q}) T(\tau)
\]
(4.2.12)

\[
\frac{1}{T} \frac{\partial^2 T}{\partial \tau^2} = \frac{1}{A} \langle \nabla, \nabla \rangle A = -\omega^2
\]
(4.2.13)

\[
\langle \nabla, \nabla \rangle A + \omega^2 A
\]
(4.2.14)

Het tijdafhankelijke deel $T(\tau)$ bepaalt de initiële voorwaarden, of het wijst op de verandering van de oscillatiemodus. Een verandering van de oscillatiemodus houdt in dat tijdelijk de oscillatie gestopt wordt en in plaats daarvan een object (foton) uitgezonden of geabsorbeerd wordt zodat het verschil in potentiële energie gecompenseerd wordt. Het locatieafhankelijke deel van het veld $A(\bar{q})$ beschrijft de mogelijke oscillatiewijzen van het veld en hangt van grensvoorwaarden af. De oscillaties hebben een bindend effect. Ze houden de bewegende objecten binnen een begrensd gebied [37].

Voor driedimensionale isotrope bolvormige condities, hebben de oplossingen de vorm
Hier zijn j_l en y_l de sferische Bessel-functies en vormen Y_l^m de sferische harmonischen [38] [39]. Deze oplossingen spelen een rol in de spectra van atomaire modules (atomen en atomaire ionen).

De vlakke en sferische golven zijn de eenvoudigere golfvormige oplossingen van vergelijking (4.2.11)

$$\psi(\vec{q},\tau) = \exp\left\{ i \left(\vec{k}.\vec{q} - \vec{q}_0 \right) - \omega\tau + \phi \right\}$$

(4.2.16)

$$\psi(\vec{q},\tau) = \frac{\exp\left\{ i \left(\vec{k}.\vec{q} - \vec{q}_0 \right) - \omega\tau + \phi \right\}}{|\vec{q} - \vec{q}_0|}$$

(4.2.17)

Een meer algemene oplossing is een superpositie van deze basistypes.

Er bestaan twee tamelijk vergelijkbare homogene tweede-orde partiële differentiaalvergelijkingen. Het zijn de homogene versies van vergelijking (4.2.5) en vergelijking (4.2.8). De eerste vergelijking heeft bolvormige schokfrontoplossingen met een spinvector die zich gedraagt als de spin van elementaire fermionische deeltjes. De tweede vergelijking heeft bolvormige schokfrontoplossingen die zich meer als elementaire bosonen gedragen.

De inhomogene door een puls geactiveerde vergelijkingen zijn

$$\left(\nabla_r, \nabla_r \pm \left(\vec{V}, \vec{V} \right) \right)\psi = 4\pi\delta\left(\vec{q} - \vec{q}' \right)\theta(\tau \pm \tau')$$

(4.2.18)

Dit document behandelt quaternionische differentiaalvergelijkingen meer uitgebreid in hoofdstuk 14.
5 Fotonen
Fotonen zijn objecten die nog steeds aanzienlijke verwarring onder natuurkundigen veroorzaken. De mainstream interpretatie is nog steeds dat fotonen elektromagnetische golven zijn [40]. Deze interpretatie is tegenstrijdig met bekend gedrag van fotonen. Fotonen die worden uitgezonden door een nabijgelegen ster kunnen door een menselijk oog gedetecteerd worden. Aangezien de ruimte tussen de ster en de aarde geen golfgeleiders bevat, kunnen golven deze truc niet volbrengen. Elektromagnetische velden vereisen de nabijgelegen aanwezigheid van elektrische ladingen. Beide voorwaarden verbieden dat de fotonen door elektromagnetische golven geïmplementeerd worden.

5.1 Foton structuur
Fotonen zijn eendimensionale objecten die ketens van onderling gelijke afstand bewegende energiepakketten vormen en wel zodanig dat de keten gehoorzaamt aan de Einstein-Planck relatie

\[E = h\nu \]

(5.1.1)

De energiepakketten worden geïmplementeerd door eendimensionale schokfronten die een polarisatievector bezitten.

Wanneer de lichtsnelheid c de snelheid aangeeft waarmee de schokken voortplanten, dan geeft de constante van Planck de periode gedurende welke de eendimensionale schokfronten uitgezonden worden. We kennen de frequentie van het foton dat uitgezonden wordt bij de annihilatie van een elektron. Zo weten we het emissietempo waarmee de energiepakketten die dit foton vormen worden geproduceerd. Er zijn echter geen gegevens beschikbaar over de duur van de emissie van het foton of over de ruimtelijke lengte van fotonen.

5.2 Eendimensionale puls responsies
Eendimensionale puls responsies die fungeren als eendimensionale schokfronten en beschikken over een polarisatievector zijn
oplossingen van de vergelijking (4.2.5) en worden beschreven door vergelijking (4.2.7).

\[\psi = f \left(|\vec{q} - \vec{q}'| \pm c (\tau - \tau') n \right) \] (5.1.2)

Tijdens zijn reis, behoudt het front \(f(\vec{q}) \) zijn vorm en zijn amplitude. Op deze wijze, behouden de schokfronten tijdens lange-afstandsreizen hun integriteit. De ééndimensionale pulsrespons vertegenwoordigt een energiepakket dat met snelheid \(c \) door zijn dragerveld reist. De energie van het pakket heeft een standaardwaarde.

In de animatie van dit links-handig cirkelgepolariseerde foton, vertegenwoordigen de zwarte pijlen de bewegende schokfronten [41]. De rode lijn verbindt de vectoren die de amplitudes van de afzonderlijke schokfronten aangeven. Hier is het beeld van een geleide golf geleend om de gelijkenis te laten zien met dergelijke EM golven. Echter fotonen zijn geen EM golven!

5.3 Fotonintegriteit

Met uitzondering van de snelheid, bepaalt de fotonemitter de eigenschappen van het foton. Deze eigenschappen zijn de frequentie, de energie, en de polarisatie. De energiepakketten behouden hun eigen integriteit. Ze reizen met een constante snelheid en volgen een wereldlijn. Fotonemissie bezit een vaste duur. Het is dus niet een instantaan proces. Tijdens de emissie, mag de zender niet bewegen en kan alleen rond de richting van de voortgang van het foton draaien. Het missen van deze eisen zal de integriteit van het foton in gevaar brengen en zal het voor een ver, klein absorberend object onmogelijk maken om het volledige foton in te vangen. In dat geval, zullen de energiepakketten in allerlei richtingen naar meerdere
locaties vliegen. Bijgevolg zullen zij zich als donkere-energieobjecten gaan gedragen.

De absorptie van een foton door een atoom vereist van de zender een ongelooflijk duidelijkheid. In feite, kan deze absorptie alleen worden begrepen wanneer deze wordt geïnterpreteerd als de tijdsomkering van het overeenkomstige emissieproces. Als het absorberende atoom niet kan omgaan met de volle energie van het foton, dan kan het slechts een deel van de energiepakketten van het foton absorberen. De rest zal op weg blijven naar de volgende ontvanger. Het absorberen van individuele energiepakketten zal resulteren in een verhoging van de kinetische energie van de absorbent. Het absorberen van het volledige foton of een deel van het foton zal resulteren in een toename van de potentiële energie van de absorbent. Meestal resulteert dit in een hogere trillingssmodus van één of meer van de componenten van de absorbent.

5.4 Licht
Licht is een dynamische ruimtelijke verdeling van fotonen. Vaak bezit de locatiedichtheidsverdeling van fotonen een Fourier-getransformeerde. In dat geval, kan licht golfgedrag vertonen. Fotonen zijn één-dimensionale deeltjes die een eigen frequentie en energie vertonen. Enkelvoudige fotonen vertonen geen golfgedrag. Fotonen en de lichtgolven die zij vormen zullen meestal verschillende frequenties bezitten.

5.5 Optica
Optica is de wetenschap van beeldvormende verdelingen van deeltjes die kunnen worden gekenmerkt door een locatiedichtheidsverdeling en een overeenkomstige Fourier-getransformeerde van deze locatiedichtheidsverdeling. Hoewel fotonen een vaste ruimtelijke lengte bezitten die niet gelijk aan nul is, zal de optica deze deeltjes behandelen als puntvormige objecten. Een andere naam voor de locatiedichtheidsverdeling is
puntspreidingsfunctie (PSF). Een andere naam voor de Fourier-getransformeerde van de PSF is de **optische overdracht functie** OTF [42]. Afgezien van een locatiedichtheidsverdeling, wordt de zwerm van de afbeeldende deeltjes ook gekenmerkt door een angulaire verdeling en door een energieverdeling. In het geval van fotonen, wordt de energieverdeling ook wel een chromatische verdeling genoemd. Elk foton heeft zijn eigen kleur.

Een lineair werkend beeldvormingsapparaat kan door zijn PSF of alternatief door zijn OTF gekenmerkt worden. Deze puntspredingsfunctie beschrijft een afbeelding van een puntvormig object. De PSF vertegenwoordigt de vervaging die door het afbeeldende apparaat geïntroduceerd wordt. Bij een homogene verdeling van de deeltjeseigenschappen is de OTF van een keten van lineair werkende afbeeldingsapparaten gelijk aan het product van de OTF’s van de afzonderlijke apparaten.

De afbeeldingseigenschappen van een afbeeldingsapparaat kunnen variëren als functie van de locatie en de oriëntatie in het afbeeldingsvlak.

Ook zonder de aanwezigheid van de bewegende deeltjes, behouden de afbeeldingsapparaten hun OTF. Kleine diafragma's en patronen van diafragma's bezitten een OTF. De OTF behandelt enkelvoudige deeltjes op eendere wijze als de OTF de verdelingen van deeltjes behandelt.
6 Modulair ontwerpen en bouwen
De afzonderlijke objecten die in het heelal bestaan tonen een modular ontwerp. In modulaire samenstellingen gedragen elementaire deeltjes zich als elementaire modules. Samen vormen ze alle modules die in het universum bestaan. Sommige modules vormen modulaire systemen.

Ook fotonen tonen een samengestelde structuur. Zelf zijn zij geen elementaire modules.

6.1 Elementaire modules
6.1.1 Symmetrie gerelateerde ladingen
Elementaire modules zijn zeer ingewikkelde objecten die zich op een privé platform bevinden. Dit platform levert een aantal van de karakteristieke eigenschappen van de elementaire module. Deze eigenschappen bepalen het type van de elementaire module.

Elementaire modules leven op een eigen Hilbertruimte, die een geselecteerde versie van het quaternionische getallensysteem gebruikt om zijn inwendige producten te specificeren. De operatoren in deze Hilbertruimte passen bijgevolg leden van deze versie toe om hun eigenwaarden te specificeren. De eigenruimte van deze operator weerspiegelt de eigenschappen van deze versie. Zo weerspiegelt de eigenruimte van de referentieoperator de symmetrie van de Hilbertruimte. Het geometrische centrum van deze parameterruimte zweeft over de achtergrondparameterruimte. De symmetrie wordt gedefinieerd ten opzichte van de symmetrie van het achtergrondplatform. Wiskunde kan deze verschillen vergelijken als de assen van de Cartesische coördinatenstelsels in deze parameterruimten evenwijdig aan elkaar zijn. Het model past de Stelling van Stokes en de Stelling van Gauss toe om het effect van de symmetrieverschillen te bepalen [43] [44]. Zie paragraaf 15.3. De enige vrijheden die overblijven zijn de locaties van de geometrische centra van de parameterruimten en de manier waarop de elementen
van de versies van de getallensystemen langs de assen gerangschikt worden. Deze beperkingen verkleinen de lijst van symmetrievergelijkingen langs de assen gerangschikt worden. Het betekent dat de elementaire modules in een klein aantal verschillende symmetriegerelateerde categorieën bestaan. Het symmetrievergelijking wordt vertegenwoordigd door een symmetriegerelateerde lading die zich in het geometrische centrum van de privé parameterruimte bevindt. De opgelegde beperkingen die bepalend zijn voor de toegestane versies van het quaternionische-getallensysteem, beperken de lijst met waarden van symmetriegerelateerde ladingen tot

De isotrope symmetrievergelijkingen worden vertegenwoordigd door

De symmetriegerelateerde ladingen komen overeen met symmetriegerelateerde velden. Op de plek van de ladingen, genereert een bron of een put een overeenkomstige potentiaal.

De eerste conclusie is nu dat elementaire modules bestaan in een korte lijst van categorieën die verschillen in hun symmetriegerelateerde eigenschappen, in hun hoekbereikeigenschappen, en in hun rekenkundige eigenschappen.
6.2 Modulaire Configuratie

De huppellanding van isotrope elementaire modules produceert bolvormige pulsresponses die het inbeddende veld vervormen. Ook, de huppellanding van hadronen kunnen dergelijke bolvormige pulsresponses veroorzaken.

6.2.1 Open vraag

Het Hilbert Book Model verklaart niet waarom een uitsluitingsprincipe fermionen kenmerkt, terwijl de bosonen een dergelijke beperking niet ondervinden. Dit uitsluitingsprincipe
bepaalt de structuur van atomen en staat bekend als het Pauliuitsluitingsprincipe.

6.3 Stochastische controle

Voor elke elementaire module, genereert een privé-stochastisch proces de huppellandingslocaties in het voortgaande huppelpad dat regelmatig opnieuw een coherente huppellandingslocatiezwerm regenererend die de herkenbare voetafdruk van de elementaire module vormt. Alleen voor isotrope modules, kunnen de huppellandingen het inbeddende veld vervormen. De voetafdrukken van anisotropische elementaire modules moeten eerst gecombineerd worden in kleurloze hadronen voordat hun voetafdrukken het inbeddende veld kunnen vervormen. Dit fenomeen staat bekend als color-confinement.

Het type stochastisch proces dat de voetafdruk van elementaire modules genereert, bezit een karakteristieke functie die gelijk is aan de Fourier-getransformeerde van de locatiedichtheidsverdeling van de coherente huppellandingslocatiezwerm. Het is mogelijk om het stochastische proces te interpreteren als een ruimtelijk Poisson-punt proces in \mathbb{R}^3 [45]. De intensiteitsfunctie van dit proces wordt geïmplementeerd door een ruimtelijke puntspreidingsfunctie die gelijk is aan de locatiedichtheidsverdeling van de gegenereerde huppellandingslocatiezwerm. De eigenruimte van de voetspooroperator archiveert de doelwaarden van een quaternionische functie, waarvan het ruimtedeel de puntspreidingsfunctie beschrijft. Een cyclische randomverdeling beschrijft de reële delen van deze doelwaarden. Na het rangschikken van deze reële delen, beschrijft de eigenruimte het gestadig voortgaande huppelpad van de elementaire module.

De locatiedichtheidsverdeling kan geïnterpreteerd worden als een detectiewaarschijnlijkheidsdichtheidsverdeling. Als deze verdeling een Fourier-getransformeerde bezit, dan bestaat er een soort van
onzekerheidsprincipe tussen de standaarddeviatie van de detectiewaarschijnlijkheidsdichtheidsverdeling en de standaarddeviatie van de modulus van deze Fourier-getransformeerde [46]. Als de standaarddeviatie van de modulus van deze Fourier-getransformeerde stijgt, dan daalt de standaarddeviatie van de detectiewaarschijnlijkheidsdichtheidsverdeling (en omgekeerd).

Deze analyse vertelt dat de karakteristieke functies, die in de Fourier-ruimte gedefinieerd worden, de samenstelling van de module bepalen. In de Fourier-ruimte heeft de ruimtelijke positie in configuratieruimte geen betekenis. Het betekent dat de componenten van een module ver uit elkaar kunnen liggen. Dit fenomeen staat bekend als verstrengeling [47]. Alleen de aantrekkende werking van potentialen kan componenten kort bij elkaar houden.

6.3.1 Superpositie

De manier waarop superpositie in het Hilbert Book Model wordt geïmplementeerd, verklaart het belangrijkste verschil tussen de klassieke fysica en de kwantumfysica. Superpositie van veld excitaties komt voor in de Fourier-ruimte en wordt gecontroleerd door de karakteristieke functies van stochastische processen. Color-confinement remt de generatie en de verdere superpositie van de
veldexcitaties voor quarks. Zij moeten eerst in kleurloze hadronen combineren alvorens zij de vereiste bolvormige pulsresponses kunnen produceren. Ook deze combinatie wordt gecontroleerd door oscillaties die worden beheerd via de karakteristieke functies van de overeenkomstige stochastische processen.

Aangezien de definitie van een samengestelde module in de Fourier-ruimte gedefinieerd wordt is de locatie van de componenten van de modules in de configuratieruimte niet belangrijk voor de definitie van deze modules. Verstrengeling is het fenomeen dat het mogelijk maakt om componenten van een module ver uit elkaar te plaatsen. Dit feit wordt waarneembaar wanneer deze componenten elkaar uitsluitende eigenschappen bezitten.

6.3.2 Open vragen
Het Hilbert Book Model biedt geen gedetailleerde uitleg waarom de voortdurende inbedding van elementaire modules wordt gerealiseerd wordt door een privé stochastisch proces dat eigenaar is van een karakteristieke functie. Op eendere wijze biedt het Hilbert Book Model geen verklaring voor het feit dat het binden van modules binnen samengestelde modules wordt gecontroleerd door een stochastisch proces dat een karakteristieke functie bezit die gelijk is aan een dynamische superpositie van de karakteristieke functies van zijn componenten. In feite betekent dit dat het HBM niet verklaart waarom de superpositie van modules in de Fourier-ruimte gedefinieerd wordt. Het HBM gebruikt deze aangenomen feiten om het gedrag te verklaren.

De generaties waarin fermionen bestaan kunnen wellicht ook verklaard worden met het bindingsmechanisme dat samengestelde modules bijeenhoudt.

6.4 Voordelen van modulair ontwerp en bouw
Het modulaire ontwerp verbergt relaties die alleen binnen de module relevant zijn voor de buitenkant van de module. Op deze wijze, vermindert het modulaire ontwerp de relationele complexiteit van de
bouw van samengestelde modules. Dit wordt verder verbeterd door de mogelijkheid om relaties bijeen te brengen in standaard interfaces. Deze standaardisatie bevordert de herbruikbaarheid van modules. Het feit dat samengestelde modules kunnen worden gegenereerd uit een lager niveau van modules heeft een enorm gunstig effect op de vermindering van de relationele complexiteit van het modulaire samenstellingsproces.

Door het toepassen van modular ontwerp, heeft de schepper het universum voorbereid voor modulaire constructie, wat een zeer efficiënte manier van het genereren van nieuwe objecten vormt. Toch, impliceert de modulaire configuratie van voorwerpen de beschikbaarheid van modules die kunnen worden samengevoegd om hoger niveau modules of modulaire systemen te worden. Dit betekent dat er op de juiste plaats en de juiste tijd voldoende middelen beschikbaar moeten zijn. De generatie van een module door het samenstellen van modules is logisch wanneer de nieuwe module een winstgevende functionaliteit heeft. Een voordeel kan zijn dat de nieuwe module of het modulaire systeem in een competitieve omgeving een betere overlevingskans heeft. In dat geval, kan het stochastische modulaire ontwerp gemakkelijk winnen van een monolithisch ontwerp. Evolutie kan zich met een puur stochastisch modulair ontwerp ontwikkelen. Echter, zodra er intelligente modulaire systemen worden gevormd, dan kunnen deze individuen deelnemen aan de controle van evolutie via intelligent modulair ontwerp. Het intelligente modulaire ontwerp en de daaropvolgende bouw komen veel sneller vooruit dan een stochastisch modulair ontwerp en daaropvolgende bouw. Helaas, komen het intelligente modulaire ontwerp en de daaropvolgende bouw slechts voor waar de intelligente modulaire systemen bestaan. Deze locaties zijn in het universum niet wijdverbreid.
6.4.1 Modulaire hiërarchie
De modulaire hiërarchie begint met elementaire modules. Elementaire modules bestaan in verschillende soorten die in hun basiseigenschappen verschillen.

Deze basiseigenschappen zijn hun symmetrie-gerelateerde lading, hun spin, en hun massa.

6.4.2 Compact samengestelde modules
Compact samengestelde modules zijn samengesteld uit modules waarvoor de geometrische centra van de platforms van de componenten samenvallen. De ladingen van de platforms van de elementaire modules bepalen de binding van de overeenkomstige platforms. De fysici en de chemici noemen deze samengestelde modules atomen of atoom ionen [48].

In vrije ruimte nemen de symmetrie-gerelateerde ladingen van de componenten van compact samengestelde modules niet aan de interne oscillaties deel. De doelen van de privé stochastische processen van de elementaire modules oscilleren. Dit betekent dat de huppelpaden van de elementaire modules zich rond het oscillatie pad plooiën en de huppellandingslocatiezwerm langs het oscillatie pad uitgesmeerd wordt. Het oscillatie pad is een oplossing van de Helmholtzvergelijking [36]. Elk fermion moet een eigen oscillatiemodus gebruiken. Een verandering van de oscillatiemodus gaat samen met de emissie of de absorptie van een foton. Het centrum van deze emissie valt samen met het geometrische centrum van de compact samengestelde module. Tijdens de emissie of absorptie, worden de oscillatie en het huppelpad gestopt, zodat het uitgezonden foton zijn integriteit niet verliest. Aangezien alle fotonen dezelfde emissieduur delen, moet die duur samenvallen met de regeneratie cyclus van de huppellandingslocatiezwerm. Absorptie kan niet zo gemakkelijk geïnterpreteerd worden. In feite kan het alleen als een in tijd omgekeerde emissiehandeling begrepen
worden. Anders vereist de absorptie voor het foton een ongelooflijke richtprecisie.

Het type stochastisch proces dat de binding van componenten regelt, lijkt verantwoordelijk te zijn voor de absorptie en de emissie van fotonen en voor de verandering van de oscillatiemodi. Als fotonen met een te lage energie arriveren, dan wordt de energie van het foton besteed aan de vermeerdering van de kinetische energie van het gemeenschappelijke platform. Als de fotonen met te hoge energie arriveren, dan wordt de energie verdeeld over de beschikbare oscillatiewijzen, en de rest wordt besteed aan de kinetische energie van het gemeenschappelijke platform, of het ontsnapt in vrije ruimte. Het proces moet op een of andere manier de oscillatiemodi van de componenten archiveren. Het kan voor dat doel het privé platform van de componenten benutten. Hoogstwaarschijnlijk wordt de momentele waarde van de dynamische superpositiecoëfficiënt opgeslagen in de eigenruimte van een speciale superpositieoperator.

6.4.2.1 Open vragen
Het Hilbert Book Model onthult niet de fijne details van de fotonemissie, en bijgevolg, onthult het evenmin de fijne details van fotonabsorptie.

6.4.3 Moleculen
Moleculen zijn conglomeraten van compact samengestelde modules die elk hun privé-geometrische centrum behouden [49]. Elektronenoscillaties worden echter tussen de compact samengestelde modules gedeeld. Samen met de symmetrie-gerelateerde ladingen bindt dit de samenstellende modules in de molecule.

6.4.4 Bewustzijn en intelligentie
In het Hilbert Book Model worden alle modules als waarnemers beschouwd. Dat betekent niet dat deze modules op een bewuste of
intelligente manier op de waargenomen informatie reageren. In de hiërarchie van modulaire systemen, komt in vergelijking met intelligentie, het bewustzijn al op lagere niveaus van complexiteit voor [50] [51]. Bewustzijn kan echter niet worden toegeschreven aan niet-levende modulaire systemen. Primitieve levensvormen hebben primitieve bewustzijns gradaties.

Intelligente soorten tonen zelfreflectie en kunnen strategieën creëren die hun type-gemeenschap of hun sociale-gemeenschap beveiligen. Bewuste soorten kunnen dergelijke bewakende maatregelen ook ontwikkelen, maar dat is meestal een gevolg van trial and error in plaats van een ontwikkelde strategie. De strategie wordt dan via genen geërfd.

Voor intelligente soorten kan de modulaire ontwerpstrategie van de schepper een inspiratie vormen.

- Modulair ontwerp is superieur aan monolithisch ontwerp.
- De modulaire bouw gaat zuinig met middelen om.
- Het is voordelig om toegang te hebben tot een groot aantal en een grote verscheidenheid van geschikte modules.
- Maak module-typegemeenschappen.
- Typegemeenschappen overleven veel langer dan de overeenkomstige individuele modules.
- De leden moeten hun module-typegemeenschap bewaken.
- Typegemeenschappen kunnen de cultuur van hun leden erven en cultiveren.
- Modulaire systemen moeten zorgen voor de typegemeenschappen waarvan zij afhankelijk zijn.
- Modulaire systemen moeten zorgen voor hun leefomgeving.
- Darwins uitspraak dat de meest fitte individu zal overleven moet worden vervangen door de uitspraak dat de module-typegemeenschap overleeft die het beste voor haar leden, haar middelen en haar omgeving zorgt.
In de moderne menselijke activiteit, wordt hardware vaak op modulaire wijze ontworpen en gebouwd. In tegenstelling daarmee, wordt de software typisch op een niet-modulaire wijze ontworpen en gebouwd. In vergelijking, is software daardoor veel minder robuust dan hardware. Zie de laatste hoofdstukken.
7 Donkere objecten en progressiezigzag

In grote aantallen, kunnen verspreide donkere objecten nog steeds tot merkbare invloeden leiden. Van de halo van donkere materie
rond melkwegstelsels is bekend dat deze zwaartekrachtlenseffecten produceren.

Alhoewel het Hilbert Book Model niet de schokfronten als laagste niveau van modules beschouwt, vormen de schokfronten tezamen alle afzonderlijke objecten die in het heelal bestaan.

Het Hilbert Book Model beschouwt elementaire modules als het laagste niveau van modules. Het zijn ingewikkelde constructies die bestaan uit een quaternionische separabele Hilbertruimte, een geselecteerde versie van het quaternionische getallensysteem en een privé stochastisch proces dat hun levensverhaal genereert.
8 Gravitation

Mainstream fysica beschouwt de oorsprong van de vervorming van onze leefruimte als een ongelost probleem [54]. Het gebruikt het Higgs-mechanisme als de uitleg van waarom sommige elementaire deeltjes hun massa krijgen [55] [56]. Het Hilbert Book Model relateert massa met de vervorming van het veld dat ons universum vertegenwoordigt. Deze vervorming veroorzaakt de wederzijdse aantrekkingskracht van massieve objecten [57].

8.1 Verschil tussen het Higgs-veld en het universum-veld

8.2 Een vervormende veldexcitatie

Een bolvormige pulsrespons is een oplossing van een homogene tweede-orde partiële differentiaalvergelijking die door een isotrope puls werd teweeggebracht. De overeenkomstige veldvergelijking en de overeenkomstige oplossing worden hier herhaald.
\[
\left(\nabla, \nabla, + \left(\nabla, \nabla \right) \right) \psi = 4\pi \delta \left(\vec{q} - \vec{q}' \right) \theta \left(t \pm \tau' \right)
\]

(8.2.1)

Hier vertegenwoordigt het ± teken tijdinversie.

\[
\psi = \frac{f \left(|\vec{q} - \vec{q}'| \pm c (t - \tau') n \right)}{|\vec{q} - \vec{q}'|}
\]

(8.2.2)

De bolvormige pulsrespons integreert over tijd in de Greense functie van het veld. De Greense functie is zelf een oplossing van de Poisson-vergelijking.

\[
\rho = \left(\nabla, \nabla \right) \psi
\]

(8.2.3)

De Greense functie bezit wat volume.

\[
g(\vec{q}) = \frac{1}{\vec{q} - \vec{q}'}
\]

(8.2.4)

Zo, vervormt de puls plaatselijk en tijdelijk het veld. Het geïnjecteerde volume expandeert het veld op persistente wijze.

Dit document veronderstelt dat de bolvormige pulsrespons de enige veldexcitatie is die tijdelijk het veld vervormt, terwijl het ingespoten volume het veld op persistente wijze uitbreidt.

Het effect van de bolvormige pulsrespons is zo uiterst klein en zo tijdelijk dat geen enkel instrument het effect van één enkele geïsoleerde bolvormige pulsrespons ooit kan meten. Echter, wanneer 50
deze herhaaldelijk in grote aantallen in dichte en coherente zwermen geregenereerd worden, kunnen pulsresponses leiden tot een significante en aanhoudende vervorming die geëigende instrumenten kunnen detecteren. Dit wordt tot stand gebracht door de stochastische processen die de voetafdruk van elementaire modules genereren.

De bolvormige pulsresponses zijn vanzelfsprekende kandidaten voor wat natuurrkundigen donkere materie objecten noemen. Een halo van deze objecten kan leiden tot zwaartekrachtlenzen.

8.3 Centrum van de massa

In een systeem van massieve objecten $p_i, i = 1,2,3,...n$, elk met statische massa m_i op locaties r_i, volgt het massacentrum \bar{R} uit

$$\sum_{i=1}^{n} m_i (\bar{r}_i - \bar{R}) = 0$$ \hspace{1cm} (8.3.1)

Dus

$$\bar{R} = \frac{1}{M} \sum_{i=1}^{n} m_i \bar{r}_i$$ \hspace{1cm} (8.3.2)

Waar

$$M = \sum_{i=1}^{n} m_i$$ \hspace{1cm} (8.3.3)

In het volgende, zullen we een ensemble van massieve objecten die eigenaar zijn van een massacentrum \bar{R} en een vaste gecombineerde massa M beschouwen als één enkel massief object dat lokaliseert op punt \bar{R}. \bar{R} kan een dynamische locatie zijn. In dat geval moet het ensemble als één eenheid bewegen. Deze constructie heeft in de fysieke werkelijkheid geen equivalent in de vorm van een puntvormig object dat een blijvend vaste massa bezit.
8.4 Gravitatiepotentiaal

De gravitatiepotentiaal die een elementaire module veroorzaakt kan benaderd worden door de convolutie van de Greense functie van het veld met de locatiedichtheidsverdeling van de huppelandingslocatiezwerm. Deze benadering wordt nog beïnvloed door het feit dat de vervormingen, die te wijten zijn aan de individuele pulsresponses snel vervagen. Verder, is de dichtheid van de locatieverdeling van invloed op de effectiviteit van de vervorming.

De Greense functie beschrijft het resultaat van een puntvormige puls waarvan de respons een eigen, tijdelijke massa heeft. Op enige afstand van het centrum van de zwerm kan de gravitatiepotentiaal benaderd worden door [59]

\[g(r) \approx \frac{GM}{r} \] \hspace{1cm} (8.4.1)

Hierin is \(M \) de massa van het object en is \(r \) gelijk aan de afstand tot het centrum van de massa’s. Hier negeren we behalve de factor \(G \) de fysieke eenheden. \(G \) is de gravitatieconstante. Het feit dat een verdeling van puntvormige massa’s de gravitatiepotentiaal veroorzaakt maakt deze eenvoudige benadering mogelijk.

Preciezer, kan de zwaartekrachtpotentiaal van de elementaire module worden benaderd door het nemen van de convolutie van de locatiedichtheidsverdeling van de huppelandingslocatiezwerm. Als we dit bijvoorbeeld doen voor een Gaussische locatiedichtheidsverdeling, dan resulteert de convolutie in [60]

\[g(r) \approx GM \frac{ERF(r)}{r} \] \hspace{1cm} (8.4.2)

Hierin is \(ERF(r) \) de bekende errorfunctie. Hier is de gravitatiepotentiaal een volkomen vloeiende functie die op behoorlijke afstand van het massacentrum de benaderde
Gravitatiepotentiaal die hierboven in vergelijking (8.4.1) wordt beschreven evenaart. De convolutie biedt slechts een benadering omdat deze berekening geen rekening houdt met de invloed van de dichtheid van de zwerm en niet compenseert voor het feit dat de vervorming door de individuele pulsresponsies snel verdwijnt. Dus, hangt het nauwkeurige resultaat af van de duur van de herhalingscyclus van de zwerm.

In het voorbeeld, passen we een genormaliseerde locatiedichtheidsverdeling toe, maar de werkelijke locatiedichtheidsverdeling kan een hogere amplitude bezitten.

Dit zou kunnen verklaren waarom er elementaire moduletypes in drie generaties bestaan [61] [62] [63].

Vanwege de convolutie, en de samenhang van de locatiedichtheidsverdeling, toont de blauwe curve geen teken van de singulariteit die is vervat in de rode curve, welke de Greense functie toont.

8.5 Massa
Massa is een eigenschap van objecten, welke een eigen betekenis heeft. Doordat op verre afstand de gravitatiepotentiaal altijd de vorm (8.4.1) heeft, maakt het niet uit wat het massieve object is. De formule kan gebruikt worden om de massa te bepalen. Deze formule kan ook gebruikt worden wanneer alleen bekend is dat het betreffende object het inbeddende veld vervormt. Dit wordt toegepast in het hoofdstuk Gemengde velden.
8.6 Huppellandingsgeneratie

De generatie van het huppelpad is een aanhoudend proces. De gegenereerde huppellandingslocatiezwerm bevat een groot aantal elementen. Elke elementaire moduletype wordt gecontroleerd door een overeenkomstig type stochastisch proces. Voor het stochastische proces, is alleen de Fourier-getransformeerde van de locatiedichtheidsverdeling van de zwerm belangrijk. Bijgevolg, maakt het voor een geselecteerd elementaire moduletype niet uit op welk moment van de regeneratie van de huppellandingslocatiezwerm de locatie dichtheidsverdeling bepaald wordt. Dus, zelfs wanneer verschillende moduletypen gebonden zijn in samengestelde modules, is het niet nodig om de regeneratiecyci van verschillende moduletypes te synchroniseren. Deze vrijheid betekent ook dat het aantal elementen in een huppellandingslocatiezwerm tussen elementaire moduletypes mag verschillen. Dit betekent dat de sterkte van de vervorming van het inbeddende veld tussen elementaire moduletypes kan verschillen. De sterkte van de vervorming heeft volgens de formule (8.4.1) betrekking op de massa van de elementaire modules.

De eis voor regeneratie vormt een groot mysterie. Alle gegenereerde massa lijkt te vervagen en moet opnieuw gegenereerd worden. Dit feit conflicteert met de behoudswetten van de mainstream fysica. Het vervormingswerk van de stochastische processen verdwijnt volledig. Wat resulteert is de voortdurende expansie van het veld. Zo moeten deze processen zich continu bezig blijven houden met het regenereren van het deeltje waartoe zij behoren. Het stochastische proces regeneereert de huppellandingslocatiezwerm nauwkeurig, en wel zo dat de restmassa hetzelfde blijft. Deze nauwkeurige herhaling vervangt de behoudswet.

Alleen de voortdurende inbedding in het inbeddende veld van de inhoud die in het zwevende platform gearchiveerd staat, kan de activiteit van het stochastische proces verklaren. Dit veronderstelt
dat op het moment van de schepping, de schepper al alle dynamische geometrische gegevens van zijn scheepselen in de eigenruimtes van de voetspooroperatoren gearchiveerd heeft. Deze gegevens bestaan uit een scalaire tijdstempel en een driedimensionale ruimtelijke locatie. De quaternionische eigenwaarden fungeren als opslaglocaties.

Direct na het moment van de schepping, liet de schepper zijn schepping alleen. De verzameling van zwevende, separabele Hilbertruimten, samen met de achtergrond Hilbertruimte, fungeert als een alleen-lezen bewaarplaats. Na het rangschikken van de tijdstempels, lezen de stochastische processen de opslaglocaties en veroorzaken de inbedding van de locatie in het inbeddende veld in de vooraf bepaalde volgorde.

8.6.1 Open kwestie
Zolang het moment van archivering voorafgaat aan de passage van het venster dat het Hilbert Book Base Model scant als een functie van progressie, verandert de keuze van het opslagmoment het gedrag van het model niet. Dit wijst op een vrijheidsgraad van het hier beschreven model.

8.7 Traagheid
De relatie tussen inertie en massa is ingewikkeld [64] [65]. Het veronderstelt dat er een veld ξ bestaat dat probeert de verandering van dit veld te compenseren wanneer zijn vectoriëel deel plotseling met de tijd verandert.

Dit speciale veld ondersteunt de hupbellandingslocatiezwerm die op het drijvende platform leeft. Het weerspiegelt de activiteit van het stochastische proces, en de uniforme drift van het platform over het achtergrondplatform. Het wordt gekenmerkt door een massawaarde en door de uniforme snelheid van het platform relatief gezien ten opzichte van het achtergrondplatform. Het reële deel komt overeen met de vervorming die het stochastische proces in het inbeddende veld veroorzaakt. Het imaginaire deel komt overeen met de snelheid
van de beweging van het zwevende platform. Het belangrijkste kenmerk van dit veld is dat het probeert om zijn totale verandering gelijk aan nul te houden. We noemen ξ het **vervormingsveld**.

De eerste-orde verandering van een veld bevat vijf termen. Mathematisch, betekent de verklaring dat in eerste benadering niets in het veld ξ wijzigt, aangeeft dat lokaal, de eerste-orde partiële differentiaal $\nabla \xi$ gelijk aan nul moet blijven.

$$\zeta = \nabla \xi = \nabla r \xi = -\left(\hat{v} \cdot \xi \right) + \hat{v} \cdot \xi + \nabla r \xi \pm \hat{v} \times \xi = 0 \quad (8.7.1)$$

De termen die nog voor verandering in aanmerking komen, moeten tezamen gelijk aan nul blijven. Deze termen zijn.

$$\nabla r \xi + \hat{v} \cdot \xi = 0 \quad (8.7.2)$$

In de volgende tekst speelt ξ de rol van het vectorveld en speelt ζ, de rol van de scalaire gravitatiepotentiël van het onderhavige object. We benaderen deze potentiaal met behulp van formule (8.4.1).

Het nieuwe veld $\xi = \left\{ \frac{m}{r}, \vec{v} \right\}$ beschouwt een uniform bewegende massa als een normale situatie. Het is een combinatie van de scalaire potentiaal $\frac{m}{r}$ en de uniforme snelheid \vec{v}.

Als dit object versnelt, dan probeert het nieuwe veld $\left\{ \frac{m}{r}, \vec{v} \right\}$ om de verandering $\dot{\vec{v}}$ van het veld tegen te gaan door dit te compenseren met een gelijkwaardige verandering van het reële deel $\frac{m}{r}$ van het nieuwe veld. Volgens vergelijking (8.7.2) is deze gelijkwaardige verandering tegengesteld aan de gradiënt van het reële deel van het veld.
\[\ddot{a} = \ddot{v} = -\nabla \left(\frac{m}{r} \right) = \frac{m\ddot{r}}{|\ddot{r}|^3} \] (8.7.3)

Dit gegenereerde vectorveld werkt op massa's die in haar werkomgeving verschijnen.

Dus, als twee massa's \(m_1 \) en \(m_2 \) in elkaars buurt bestaan, dan zal elke verstoring van de situatie een zwaartekracht veroorzaken

\[\vec{F}(\ddot{r}_1 - \ddot{r}_2) = m_1 \ddot{r} = \frac{m_1 m_2 (\ddot{r}_1 - \ddot{r}_2)}{|\ddot{r}_1 - \ddot{r}_2|^3} \] (8.7.4)

De verstoring door de aanhoudende expansie van het veld volstaat om de zwaartekracht in actie te zetten. De omschrijving geldt ook wanneer het veld \(\xi \) een conglomeraat van platformen beschrijft en \(m \) de massa van het conglomeraat vertegenwoordigt.

In samengestelde modules zoals ionen en atomen oscilleert het veld \(\xi \) van een component eerder met de vervorming van het veld dan met diens platform.

Inertie baseert zich voornamelijk op de definitie van massa die van toepassing is op de regio buiten de bol waar de gravitatiepotential zich gedraagt als de Greense functie van het veld. Daar geldt de formule \(\xi = \frac{m}{r} \). Verder baseert het zich op de neiging van modules om de gravitatiepotential binnen de vermelde bol constant te houden. Tenminste geldt dat wanneer deze potential gemiddeld genomen wordt over de regeneratieperiode. In dat geval is de algehele verandering \(\zeta \) van het vervormingsveld \(\xi \) gelijk aan nul. Vervolgens, veronderstelt de definitie van de vervorming van het veld dat de zwerm die de vervorming veroorzaakt als één geheel beweegt. Verder, wordt het feit gebruikt dat oplossingen van de homogene tweede-orde partiële differentiaalvergelijking kunnen superponeren in nieuwe oplossingen van diezelfde vergelijking.
De populaire schets waarin de vervorming van onze leefruimte wordt gepresenteerd door gladde dips is natuurlijk foutief. Het verhaal dat in dit document wordt gepresenteerd toont de vervormingen als lokale expansions van het veld, dat het heelal vertegenwoordigt. In beide schetsen verlengen de vervormingen het informatiepad, maar geen van de twee schetsen verklaart waarom twee massa's elkaar aantrekken. De bovenstaande uitleg baseert op de neiging van het stochastische proces om herhaaldelijk dezelfde tijdgemiddelde van de zwaartekrachtpotentiaal te regenereren, zelfs wanneer die gemiddelde potentiaal uniform beweegt. Zonder de beschreven gewoonten van de stochastische processen, zou inertie niet bestaan.

Gelijkwaardige trucs kunnen gebruikt worden om de elektrokracht te verklaren uit het feit dat het elektroveld door bronnen en putten wordt veroorzaakt die met de Greense functie beschreven kunnen worden.

8.8 Symmetriegerelateerde ladingen
Symmetriegerelateerde ladingen komen alleen voor in het geometrische centrum van de privé parameterruimte van de separabele Hilbertruimte die fungeert als het drijvende platform voor een elementair deeltje. Deze ladingen vertegenwoordigen bronnen of putten voor het corresponderende symmetriegerelateerde veld. Aangezien deze verschijnselen het corresponderende symmetriegerelateerde veld verstoren op een statische wijze die beschreven wordt door de Greense functie van het veld, kan dezelfde truc die werd gebruikt om de inertie uit te leggen hier worden gebruikt om de aantrekkingskracht of het afstoten van twee symmetriegerelateerde ladingen Q_1 en Q_2 te verklaren

$$\ddot{a} = \ddot{v} = -\ddot{V} \left(\frac{Q}{r} \right) = \frac{Q \ddot{r}}{|\dddot{r}|}$$ \hspace{1cm} (8.8.1)

$$\dddot{F} (\dddot{r}_1 - \dddot{r}_2) = Q_1 \dddot{a} = \frac{Q_1Q_2 (\dddot{r}_1 - \dddot{r}_2)}{|\dddot{r}_1 - \dddot{r}_2|}$$ \hspace{1cm} (8.8.2)
8.9 Color confinement

9 Het begrip tijd
9.1 Echte tijd
De range van de echte tijd komt overeen met de range van de opgeslagen tijdstempels. Waarnemers kunnen alleen informatie ontvangen van gebeurtenissen die opgeslagen zijn met tijdstempels die in hun verleden liggen.

Het begrip tijd betekent in het Hilbert Boek model alleen iets in verband met de opgeslagen tijdstempels. Dit betekent dat er voor het eerste echte tijdstip wel degelijk nog dingen konden plaatsvinden. Dat omvat onder andere de voorbereiding en de opslag van de dynamisch geometrische gegevens van de elementaire deeltjes.

9.2 Kloksnelheid
De juiste tijd tikt met een minimale stap. Dat betekent echter niet dat deze minimum stap in het hele universum hetzelfde is. Het kan afhangen van de lokale expansie snelheid van het universum en van het feit dat de lokale expansiesnelheid varieert met het nabijgelegen optreden van vervorming. Dus, het doorkruisen van een gesloten pad door een vervormde regio kan resulteren in een verschil in klokstand op het terugkeerpunt tussen de reiziger en het object dat op die locatie achterbleef omdat de reiziger een andere expansiesnelheid ervaart van het deel van het universum dat de reiziger doorkruist. Tijdens zijn reis liep de klok van de reiziger op een andere snelheid dan de klok van het blijvende object. Deze effecten zijn inderdaad met accurate klokken gemeten.

De beeldspraak dat het Hilbert Book Model door het universum stapt met universumwijde progressiestappen blijft geldig maar de paginadiktes in deze metafoor kunnen op vloeiende wijze van plaats tot plaats verschillen.
9.3 Zichzelf scheppend model

Door het begrip echte tijd op een dergelijk straffe wijze in te perken wordt het mogelijk om het Hilbert Book Model als een zichzelf scheppend model te classificeren. Het is nu mogelijk om een voorbereidingsfase in te lassen, waarin de aanmaak en opslag van de dynamisch geometrische gegevens van de elementaire modules geregeld wordt. Pas na deze fase kunnen waarnemers over informatie beschikken. Zij krijgen deze informatie via het veld dat hen inbedt.

9.4 In het begin

Voordat de stochastische processen hun actie begonnen, was de inhoud van het universum leeg. Het werd vertegenwoordigd door een vlak veld dat in zijn ruimtedeel gelijk was aan de parameterruimte van de functie die het veld beschrijft. In het begin, startten een groot aantal van deze stochastische processen met het triggeren van het dynamische veld dat het universum vertegenwoordigt. Vanaf dat moment begon het universum om te expanderen. Dit gebeurde niet op één enkel punt. In plaats daarvan gebeurde het op een groot aantal locaties die willekeurig verspreid lagen over het ruimtelijke deel van de parameterruimte van de quaternionische functie die dit dynamische veld beschrijft.

Dicht bij de aanvang van de tijd, waren alle afstanden gelijk aan de afstanden in de vlakke parameterruimte. Spoedig, werden de eerste eilanden bereikt door uitzettend volume dat op nabijgelegen locaties werd uitgezonden. Deze uitstroming leidde tot groeiende afstanden tussen de benutte locaties. Na enige tijd werden alle locaties in de parameterruimte door de gegenereerde schokgolven bereikt. Vanaf dat moment begon het universum te handelen als een overal expanderend continuüm dat hier en daar vervormingen bevatte die tevoren zeer klein waren. Waar deze vervormingen groeiden,
groeiden de afstanden sneller dan in de omgeving. Een meer eenvormige expansie lijkt de regel en de lokale vervormingen vormen eerder een uitzondering. Vervormingen maken het informatiepad langer en geven het idee dat de tijd in de gedeformeerde en geëxpandeerde regio's langzamer tikt. Dit correspondeert met de rood-verschuiving van fotonen door de invloed van gravitatie.

De samengestelde modules werden pas gegenereerd nadat voldoende van de van elementaire modules aanwezig waren. De generatie van fotonen die de signatuur van atomen weerspiegelen begon pas na de aanwezigheid van deze compact samengestelde modules. Echter, de verstrooiide eendimensionale schokfronten kunnen vanaf het begin gegenereerd worden.

Dit beeld verschilt aanzienlijk van de populaire scène van de big bang die op één enkele locatie begon.

De expansie verloopt het snelst in gebieden waar bolvormige pulsresponsies worden gegenereerd. Om die reden is het niet verwonderlijk dat de gemeten Hubbleconstante van plaats tot plaats verschilt.
10 Leven van een elementaire module

Een elementaire module is een ingewikkelde constructie. Op de eerste plaats bevindt het deeltje zich op een privé quaternionische separabele Hilbertruimte die een geselecteerde versie van het quaternionische getallensysteem gebruikt om de inwendige producten van paren van Hilbert vectoren en de eigenwaarden van operatoren te specificeren. De vectoren behoren tot een onderliggende vectorruimte. Alle elementaire modules delen dezelfde onderliggende vectorruimte. De geselecteerde versie van het getallensysteem bepaalt de privé parameterruimte die beheerd wordt door een specifieke referentieoperator. De coördinatensystemen die volgorde van de elementen van de parameterruimte aangeven bepalen de symmetrie van de Hilbertruimte en de elementaire module erf deze symmetrie. De privé parameterruimte zweeft over een achtergrondparameterruimte die tot een achtergrondplatform behoort. Het achtergrondplatform is een separabele Hilbertruimte die ook dezelfde onderliggende vectorruimte benut. Het verschil in de symmetrie tussen de privé parameterruimte en de achtergrondparameterruimte geeft aanleiding tot een symmetrie-gerelateerde (elektrische) lading en een gerelateerde kleurlading. Een elektrische lading die ongelijk aan nul is leidt tot een overeenkomstige symmetrie-gerelateerd veld. De overeenkomstige bron of put lokalisert op het geometrische centrum van de privé parameterruimte.

De eigenruimte van een toegewijde voetspooroperator bevat de dynamische geometrische gegevens die na ordening van de tijdstempels het volledige levenverhaal van de elementaire module weergeven. Een deelruimte van de onderliggende vectorruimte fungeert als een venster dat de privé Hilbertruimte scant als een functie van een progressieparameter die met de gearchiveerde
tijdstempels correspondeert. Deze deelruimte synchroniseert alle elementaire modules die in het model bestaan.

Elementaire deeltjes zijn elementaire modules. En samen vormen deze elementaire modules alle modules en modulaire systemen die in het universum bestaan.

De ingewikkelde structuur van elementaire modules suggereert dat deze deeltjes nooit sterven. Dit sluit niet uit dat de elementaire modules over de progressieparameter kunnen zigzaggen. Waarnemers zullen de progressie reflectie momenten waarnemen als paarcreatie en paarannihilatiegebeurtenissen. De zigzag zal alleen zichtbaar worden in de zienswijze van de schepper. Zo wordt alleen de voetafdruk van de elementaire module opnieuw aangemaakt. Het onderliggende platform blijft bestaan.

Waarschijnlijk beantwoorden de zigzag-gebeurtenissen aan een georganiseerde vervanging van quaternionen door twee complexe getallen of de omkering van deze vervanging zoals die beschreven wordt in de Cayley-Dickson verdubbeling [77].

Een privé stochastisch proces zal de voetafdruk van de elementaire module op een cyclische wijze regenereren. Tijdens één enkele cyclus genereert het huppelpad van de elementaire module een coherent huppellandingslocatiezwerm. Een locatiedichtheidsverdeling beschrijft deze zwerm. Deze locatiedichtheidsverdeling is gelijk aan de Fourier-getransformeerde van de karakteristieke functie van het stochastische proces dat de huppellandingslocaties genereert. De locatiedichtheidsverdeling is identiek aan het kwadraat van de modulus van de golffunctie van het deeltje. Dit stochastische proces imiteert het mechanisme dat de schepper toegepaste toen hij de elementaire module schiep. Het stochastische proces vertegenwoordigt ook de inbedding van de eigenruimte van de voetspooroperator in de continuüm eigenruimte van een operator die resideert in de niet-separabele metgezel van het
achtergrondplatform. Deze continuüm eigenruimte vertegenwoordigt het universum.

De verschillen tussen de symmetrie van de privé parameterruimte en de achtergrondparameterruimte geven aanleiding tot een symmetrie-gerelateerde lading die in het geometrische centrum van de particuliere parameterruimte gelokaliseerd is. Deze ladingen leiden tot symmetrie-gerelateerde velden. Via het geometrische centrum van het platform koppelen de symmetrie-gerelateerde velden aan het veld dat het universum vertegenwoordigt.

De kinetische energie van het platform wordt verkregen uit de energie-uitwisseling met eendimensionale schokfronten. In veel gevallen, worden deze energiepakketten in fotonen gecombineerd.

10.1 Causaliteit
Voor het gebruik van een stochastisch proces voor het genereren van de inhoud van de eigenruimte van de voetafdrukoperator is geen causale reden aan te geven omdat er geen gebeurtenis aan deze actie voorafgaat. Wel is het mogelijk om de zin van deze aanpak in te zien. Op deze wijze wordt namelijk voorkomen dat deadlock of race condities de voortgang van de dynamiek kunnen stoppen. Het stochastische proces implementeert een herhaaldelijke vernieuwing van de huppelandingslocatiezwerm. Dit impliceert een automatisch waakhond mechanisme zoals dat in een RTOS toegepast wordt.

10.2 Structuurhiërarchie
Het Hilbert Book Model kiest een orthomodulair tralie als zijn fundament. Dit tralie ontwikkelt naar de structuur van een separabele Hilbertruimte. Daarbij wordt een onderliggende vectorruimte toegevoegd en wordt een getallenstelsel gekozen. Onder invloed van de ondersteunende wiskunde beperkt de relatie tussen het fundament en de daaruit voortvloeiende structuur de keuze van het gebruikte getallenstelsel tot een associatieve delingsring. De meest uitgebreide associatieve delingsring is het

Stochastische processen die over een karakteristieke functie beschikken, regelen de voetafdruk van alle massieve objecten. Voor samengestelde objecten regelen zij de binding van de componenten. De Hilbertruimten archiveren de acties van deze stochastische processen.

Een van de separabele Hilbertruimten fungeert als achtergrondplatform. Elke gebruikte separabele Hilbertruimte onderhoudt een parameterruimte die bestaat uit elementen van de gebruikte versie van het getallensysteem. Het geometrische midden van de parameterruimte van de privé separabele Hilbertruimte zweeft over de parameterruimte van het achtergrondplatform. De separabele Hilbertruimte van het achtergrondplatform heeft oneindig veel dimensies. Daardoor beschikt deze separabele Hilbertruimte over een niet-separabele compagnon Hilbertruimte die zijn metgezel volledig inbedt. Daardoor maakt deze compagnon Hilbertruimte ook deel uit van het achtergrondplatform. Door zijn niet separabele natuur levert de compagnon operatoren die continuüm eigenruimtes bieden en daardoor continue velden kunnen
archiveren. Een van deze velden is het universum. Dit dynamische veld beschrijft dynamisch de interactie met puntvormige artefacten die veldexcitaties opleveren. Een ander type veld hangt samen met de symmetrie van de privé parameterruimten van de elementaire deeltjes. Elk elementair deeltje dat zulk een symmetrie-gerelateerd veld bezit vertoont een daarmee corresponderende bron of put in het geometrisch centrum van de privé parameterruimte. Op elke progressiestap levert of slokt dit puntvormige artefact een stroompje dat overeenkomt met een deel van de aanwezige symmetrie-gerelateerde lading.

Het platform van het elementaire deeltje bezit een real-time klok die zijn tijdrichting kan omkeren. Die verandering schakelt de bron in een put of de put in een bron. Dus de ladingen veranderen van teken. Ook de spin verandert zijn teken.

Het tweede soort stochastische proces past oscillaties toe om de componenten van samengestelde modules te binden. Oscillaties helpen bij het samenbinden, maar zij zijn niet voldoende voor een degelijke koppeling. Zwaartekracht aantrekking moet helpen om de componenten in een compact conglomeraat te koppelen. De gravitatie aantrekking baseert zich op het bestaan van het vervormingsveld. Op zijn beurt is dit gebaseerd op de stabiel terugkerende regeneratie van de elementaire deeltjes en op het feit dat deze componenten als één eenheid samen bewegen. Als extra hechtmiddel kunnen de elektrische velden van de elementaire deeltjes de koppeling versterken.
11 Relationele structuren
De tralietheorie van is een tak van wiskunde [66].

In het Engels heten tralies lattices. In het Duits heten ze Verbände. In het Frans treillis.

11.1 Tralie
Een tralie is een verzameling elementen a, b, c, \ldots die gesloten is voor de verbindingen \cap en \cup. Deze verbindingen gehoorzamen:

- De set is **gedeeltelijk geordend**.
 - Dit betekent dat met elk paar elementen a, b een element c behoort, zodanig dat $a \subset c$ en $b \subset c$.

- De set is een \cap **halftralie**.
 - Dit betekent dat met elk paar elementen a, b een element c bestaat, zodanig dat $c = a \cap b$.

- De set is een \cup **halftralie**.
 - Dit betekent dat met elk paar elementen a, b een element c bestaat, zodanig dat $c = a \cup b$.

- De set is een **tralie**.
 - Dit betekent dat de set zowel een \cap halftralie en een \cup halftralie is.

De volgende relaties gelden in een tralie:

$$a \cap b = b \cap a \quad (11.1.1)$$

$$ (a \cap b) \cap c = a \cap (b \cap c) \quad (11.1.2)$$

$$a \cap (a \cup b) = a \quad (11.1.3)$$

$$a \cup b = b \cup a \quad (11.1.4)$$

$$ (a \cup b) \cup c = a \cup (b \cup c) \quad (11.1.5)$$

$$a \cup (a \cap b) = a \quad (11.1.6)$$

Het tralie heeft een **partiële ordeningsinclusie** \subset:
\[a \subset b \iff a \cap b = a \]

(11.1.7)

11.2 De types van een tralie

Een **complementair tralie** bevat twee elementen \(n \) en \(e \), en met elk element \(a \) bevat het een complementair element \(a' \) zodat [67]:

\[
\begin{align*}
 a \cap a' &= n \quad (11.2.1) \\
 a \cap n &= n \quad (11.2.2) \\
 a \cap e &= a \quad (11.2.3) \\
 a \cup a' &= e \quad (11.2.4) \\
 a \cup e &= e \quad (11.2.5) \\
 a \cup n &= a \quad (11.2.6)
\end{align*}
\]

Een **orthocomplemented tralie** bevat twee elementen \(n \) en \(e \), en met elk element \(a \) bevat het een element \(a'' \) zodanig dat [68]:

\[
\begin{align*}
 a \cup a'' &= e \quad (11.2.7) \\
 a \cap a'' &= n \quad (11.2.8) \\
 \left(a'' \right)'' &= a \quad (11.2.9)
\end{align*}
\]

\[a \subset b \iff b'' \subset a'' \]

(11.2.10)

\(e \) is het **eenheidselement**; \(n \) is het **nullelement** van het tralie

Een **distributief tralie** ondersteunt de distributieve wetten [69]:

\[
\begin{align*}
 a \cap (b \cup c) &= (a \cap b) \cup (a \cap c) \quad (11.2.11) \\
 a \cup (b \cap c) &= (a \cup b) \cap (a \cup c) \quad (11.2.12)
\end{align*}
\]

Een **modulair tralie** ondersteunt [70]:

\[(a \cap b) \cup (a \cap c) = a \cap (b \cup (a \cap c)) \]

(11.2.13)

Elk distributief tralie is modulair.

69
Een **orthomodulair tralie** ondersteunt in plaats daarvan [71]:

Er bestaat een element \(d\) zodanig dat

\[
a \subset c \iff (a \cup b) \cap c = a \cup (b \cap c) \cup (d \cap c) \tag{11.2.14}
\]

waarbij \(d\) gehoorzaamt aan:

\[
(a \cup b) \cap d = d \tag{11.2.15}
\]

\[
a \cap d = n \tag{11.2.16}
\]

\[
b \cap d = n \tag{11.2.17}
\]

\[
(a \subset g) \land (b \subset g) \iff d \subset g \tag{11.2.18}
\]

In een **atomair tralie** geldt [72]

\[
\exists \{ p \in L \} \forall \{ x \in L \} \{ x \subset p \Rightarrow x = n \} \tag{11.2.19}
\]

\[
\forall \{ a \in L \} \forall \{ x \in L \}
\[
\left\{ (a \subset x \subseteq (a \cap p) \Rightarrow [(x = a) \lor (x = a \cap p)]) \right\} \tag{11.2.20}
\]

\(p\) is een atoom

11.3 Bekende tralies

Booleaanse Logica, ook wel klassieke logica genoemd, heeft de structuur van een orthocomplementair distributief en atomair tralie [73] [74].

Kwantumlogica heeft de structuur van een orthocomplementair zwak modulair en atomair tralie [75].

Het wordt ook wel een **orthomodulair tralie** genoemd [71].
12 Quaternionen
Quaternionen werden in 1843 ontdekt door Rowan Hamilton [77] [76]. Later, in de twintigste eeuw, vielen quaternionen in de vergetelheid.

Hilbertruimten kunnen alleen omgaan met getallensystemen waarvan de leden een associatieve delingsring vormen [14]. Quaternionische getallensystemen vertegenwoordigen de meest veelzijdige associatieve delingsring. Quaternionische getallensystemen bestaan in vele versies die verschillen in de manier waarop coördinatensystemen de getallen kunnen ordenen. Quaternionen kunnen een combinatie van een scalaire tijdstempel en een driedimensionale ruimtelijke locatie bevatten. Aldus, zijn zij ideaal geschikt als containers voor dynamische geometrische gegevens.

In dit document representeren wij quaternion q door een reëel eendimensionaal deel q_r en een driedimensionaal imaginair deel \bar{q}. De sommatie is commutatief en associatief.

De volgende quaternionische vermenigvuldigingsregel toont de meeste rekenkundige eigenschappen van de quaternionen.

$$c = c_r + \bar{c} = ab = (a_r + \bar{a})(b_r + \bar{b}) = a_r b_r - \langle a, b \rangle + a_r \bar{b} + \bar{a} b_r \pm \bar{a} \times \bar{b}$$

Het \pm teken wijst op de vrijheid van keuze van de links- en rechtshandigheid van de productregel die bij het selecteren van een versie van het quaternionische getallensysteem bestaat.

Een quaternionische conjugatie bestaat als

$$q^* = (q_r + \bar{q})^* = q_r - \bar{q} \quad (12.1.2)$$

$$(ab)^* = b^* a^* \quad (12.1.3)$$

De norm $|q|$ is gelijk aan
\[|q| = \sqrt{q^2 + \langle \tilde{q}, \hat{q} \rangle} \] \hspace{1cm} (12.1.4)

\[q^{-1} = \frac{1}{q} = \frac{q}{|q|^2} \] \hspace{1cm} (12.1.5)

\[q = |q| \exp \left(q \varphi \frac{\tilde{q}}{|\tilde{q}|} \right) \] \hspace{1cm} (12.1.6)

\[\frac{\tilde{q}}{|\tilde{q}|} \] is the spatial direction of \(q \).

Een quaternion en zijn inverse kunnen een deel van een derde quaternion roteren. Het imaginaire deel van het geroteerde quaternion dat loodrecht staat op het imaginaire deel van het eerste quaternion wordt gedraaid over een hoek die gelijk is aan tweemaal de hoek van het argument \(\varphi \) tussen het reële deel en het imaginaire deel van het eerste quaternion. Dit maakt het mogelijk om het imaginaire deel van het derde quaternion naar een andere dimensie te verplaatsen. Om dat te bereiken moet \(\varphi = \pi / 4 \).

Elk quaternion \(c \) kan worden geschreven als een product van twee complexe getallen \(a \) en \(b \) waarvan de imaginaire basisvectoren onderling loodrecht staan

\[c = (a_r + a_i i)(b_r + b_i j) \]

\[= a_r b_r + (a_i + b_i) i + (a_r + b_r) j + a_i b_j k \] \hspace{1cm} (12.1.7)

\[= c_r + c_i i + c_j j + c_k k \]

Waarbij \(k = i \times j \)
Het quaternionische getallensysteem bestaat in velerlei versies die onderling verschillen in de wijze waarop coördinaatsystemen hun elementen rangschikken. Omdat alle separabele Hilbertruimten dezelfde onderliggende vectorruimte gebruiken, benut het Hilbert Book Model alleen die versies waarbij de Cartésische coördinaatsystemen onderling evenwijdige assen vertonen. Alleen op die wijze kan het model onderscheid maken tussen de verschillende symmetrieën van de versies van het getallensysteem.
13 Quaternionische Hilbertruimten

Rond de overgang van de negentiende eeuw in de twintigste eeuw ontwikkelden David Hilbert en anderen het type vectorruimte dat later de naam van Hilbert kreeg [12].

De Hilbertruimte is een specifieke vectorruimte, omdat het voor elk paar van haar vectoren een inwendig product definieert [13].

Dat inwendige product kan waarden aannemen van een getallensysteem waarvoor elk niet-nul-lid eigenaar is van een unieke inverse [14]. Deze eis kenmerkt het getallensysteem als een associatieve delingsring [14].

Er bestaan slechts drie geschikte associatieve delingsringen:

- De reële getallen
- De complexe getallen
- De quaternionen

Hilbertruimten kunnen niet overweg met bi-quaternionen of octonionen

13.1 Bra en Ket

Paul Dirac introduceerde een handige formulering voor het inwendig product dat een bra en een ket toepast [78].

De bra $\langle f \mid$ is een covariante vector en de ket $\mid g \rangle$ is een contravariante vector. Het inwendige product $\langle f \mid g \rangle$ fungeert als een metriek.

Voor bra-vectoren geldt

$$\langle f \rangle + \langle g \rangle = \langle g \rangle + \langle f \rangle = \langle f + g \rangle$$ \hspace{1cm} \text{(13.1.1)}

$$(\langle f + g \rangle) + \langle h \rangle = \langle f \rangle + (\langle g + h \rangle) = \langle f + g + h \rangle$$ \hspace{1cm} \text{(13.1.2)}

Voor ket vectoren geldt analoog

$$\mid f \rangle + \mid g \rangle = \mid g \rangle + \mid f \rangle = \mid f + g \rangle$$ \hspace{1cm} \text{(13.1.3)}

$$(\mid f + g \rangle) + \mid h \rangle = \mid f \rangle + (\mid g + h \rangle) = \mid f + g + h \rangle$$ \hspace{1cm} \text{(13.1.4)}
Voor het inwendige product geldt de conjugatie

$$\langle f \mid g \rangle = \langle g \mid f \rangle^*$$ \hspace{1cm} (13.1.5)

Voor quaternionische getallen α en β gelden

$$\langle \alpha f \mid g \rangle = \langle g \mid \alpha f \rangle^* = (\langle g \mid f \rangle \alpha) = \alpha^* \langle f \mid g \rangle$$ \hspace{1cm} (13.1.6)

$$\langle f \mid \beta g \rangle = \langle f \mid g \rangle \beta$$ \hspace{1cm} (13.1.7)

$$\langle (\alpha + \beta) f \mid g \rangle = \alpha^* \langle f \mid g \rangle + \beta^* \langle f \mid g \rangle$$

$$= (\alpha + \beta)^* \langle f \mid g \rangle$$ \hspace{1cm} (13.1.8)

Dus

$$\alpha \langle f \rangle$$ \hspace{1cm} (13.1.9)

$$\langle \alpha f \rangle = \alpha^* \langle f \rangle$$ \hspace{1cm} (13.1.10)

$$\langle \alpha g \rangle = |g\rangle \alpha$$ \hspace{1cm} (13.1.11)

We hebben een keuze gemaakt. Een andere mogelijkheid zou zijn $\langle \alpha f \rangle = \alpha \langle f \rangle$ en $\langle \alpha g \rangle = \alpha^* |g\rangle$

In de wiskunde wordt een topologische ruimte *separabel* genoemd als het een aftelbare dichte subset bevat. Dat betekent, dat er een reeks elementen $\{ |f_i\rangle \}_{i=0}^\infty$ van deze ruimte bestaat zodanig dat elke niet-lege open subset van deze ruimte ten minste één element van de reeks bevat [11] [79].

De waarden op deze aftelbare dichte subset bepalen elke continue functie op de separabele Hilbertruimte \mathcal{H} [80].

De Hilbertruimte \mathcal{H} is separabel. Dat betekent dat een aftelbare rij elementen $\{ |f_i\rangle \}$ bestaat die de hele ruimte opspant.

Als $\langle f_m \mid f_n \rangle = \delta(m,n)$ [1 als $n = m$; anders 0], dan is $\{ |f_i\rangle \}$ een orthonormale basis van de Hilbertruimte \mathcal{H}.

Een ket basis $\{ |k\rangle \}$ van \mathcal{H} is een minimaal aantal ket-vectoren $|k\rangle$ die de volledige Hilbertruimte opspant \mathcal{H}.

75
Elke ket vector $|f\rangle$ in \mathcal{H} kan worden geschreven als een lineaire combinaatie van elementen van $\{|k\rangle\}$.

$$|f\rangle = \sum_k |k\rangle \langle k | f\rangle$$ \hspace{1cm} (13.1.12)

Een bra basis $\{|b\rangle\}$ van \mathcal{H}^\dagger is een minimale set van bra-vectoren $\langle b|$ die de volledige Hilbertruimte \mathcal{H}^\dagger opspant.

Elke bra vector $\langle f|$ in \mathcal{H}^\dagger kan worden geschreven als een lineaire combinaatie van elementen van $\{\langle b|\}$.

$$\langle f| = \sum_b \langle f | b\rangle \langle b|$$ \hspace{1cm} (13.1.13)

Meestal selecteert een basis vectoren zodanig dat hun norm gelijk aan 1 is. Een dergelijke basis heet een orthonormale basis.

13.2 Operatoren

Operatoren bewerken een subset van de elementen van de Hilbertruimte.

Een operator L is lineair wanneer voor alle vectoren $|f\rangle$ en $|g\rangle$ waarvoor L gedefinieerd is en voor alle quaternionische getallen α en β geldt

$$L|\alpha f\rangle + L|\beta g\rangle = L|f\rangle \alpha + L|g\rangle \beta = L(|f\rangle \alpha + |g\rangle \beta)$$

$$= L(|\alpha f\rangle + |\beta g\rangle)$$ \hspace{1cm} (13.2.1)

De operator B is colinear wanneer voor alle vectoren $|f\rangle$ waarvoor B gedefinieerd is en voor alle quaternionische getallen α er een quaternionisch getal γ bestaat zodanig dat

$$\alpha B|f\rangle = B|f\rangle \gamma \alpha^{-1} = B|\gamma \alpha^{-1} f\rangle$$ \hspace{1cm} (13.2.2)

Als $|a\rangle$ een eigenvector van de operator A met quaternionische eigenwaarde α is, zodat

$$A|a\rangle = |a\rangle \alpha$$ \hspace{1cm} (13.2.3)
Dan is $|\beta a\rangle$ een eigenvector van A met quaternionische eigenwaarde $\beta^{-1}\alpha\beta$.

$$A|\beta a\rangle = A|a\rangle \beta = |a\rangle \alpha\beta = |\beta a\rangle \beta^{-1}\alpha\beta \quad (13.2.4)$$

A^\dagger is de toegevoegde van de normale operator A

$$\langle f | Ag \rangle = \langle fA^\dagger | g \rangle = \langle g | A^\dagger f \rangle^* \quad (13.2.5)$$

$$A^{\dagger\dagger} = A \quad (13.2.6)$$

$$(A + B)^\dagger = A^\dagger + B^\dagger \quad (13.2.7)$$

$$(AB)^\dagger = B^\dagger A^\dagger \quad (13.2.8)$$

Als $A = A^\dagger$ dan is A een zelf-toegevoegde operator.

Een lineaire operator L is normaal als LL^\dagger bestaat en $LL^\dagger = L^\dagger L$

Voor de normale operator N geldt

$$\langle Nf | Ng \rangle = \langle NN^\dagger f | g \rangle = \langle f | NN^\dagger g \rangle \quad (13.2.9)$$

Dus

$$N = N_r + \tilde{N} \quad (13.2.10)$$

$$N^\dagger = N_r - \tilde{N} \quad (13.2.11)$$

$$N_r = \frac{N + N^\dagger}{2} \quad (13.2.12)$$

$$\tilde{N} = \frac{N - N^\dagger}{2} \quad (13.2.13)$$

$$NN^\dagger = N^\dagger N = N_r N_r + \langle \tilde{N}, \tilde{N} \rangle = |N|^2 \quad (13.2.14)$$

N_r is het Hermitische deel van N.

\tilde{N} is het anti-Hermitische deel van N.

Voor twee normale operatoren A en B geldt
\[AB = A_r B_r - \langle \tilde{A}, \tilde{B} \rangle + A_r \tilde{B} + \tilde{A} B_r \pm \tilde{A} \times \tilde{B} \] \hspace{1cm} (13.2.15)

Voor een unitaire transformatie \(U \) geldt
\[\langle U f \vert U g \rangle = \langle f \vert g \rangle \] \hspace{1cm} (13.2.16)

De sluiting van separabele Hilbertruimte \(\mathcal{H} \) betekent dat convergerende rijen van vectoren van \(\mathcal{H} \) convergeren naar een vector in \(\mathcal{H} \).

13.2.1 De bouw van een operator \(\vert f \rangle \langle g \vert \) is een geconstrueerde operator.
\[\langle g \vert f \rangle = (\vert f \rangle \langle g \vert)^\dagger \] \hspace{1cm} (13.2.17)

Voor de orthonormale basis \(\{ \vert q_i \rangle \} \) bestaande uit eigenvectoren van de referentieoperator, geldt
\[\langle q_n \vert q_m \rangle = \delta_{nm} \] \hspace{1cm} (13.2.18)

De omgekeerde bra-ket methode maakt het mogelijk om nieuwe operatoren te specificeren die door quaternionische functies worden gedefinieerd.
\[\langle g \vert F \vert h \rangle = \sum_{i=1}^{N} \left(\langle g \vert q_i \rangle F(q_i) \langle q_i \vert h \rangle \right) \] \hspace{1cm} (13.2.19)

Het symbool \(F \) wordt gebruikt voor zowel de operator \(F \) en de quaternionische functie \(F(q) \). Hierdoor ontstaat het kortschrift
\[F \equiv \vert q_i \rangle F(q_i) \langle q_i \vert \] \hspace{1cm} (13.2.20)

Het is duidelijk dat
\[F^\dagger \equiv \vert q_i \rangle F^*(q_i) \langle q_i \vert \] \hspace{1cm} (13.2.21)

Voor referentieoperator \(\mathcal{R} \) geldt
\[\mathcal{R} = \vert q_i \rangle q_i \langle q_i \vert \] \hspace{1cm} (13.2.22)
Als \(|\{q\}\rangle\) bestaat uit alle rationale waarden van de versie van het quaternionische-getallensysteem dat \(\mathfrak{R}\) toepast dan vertegenwoordigt de eigenruimte van \(\mathfrak{R}\) de privé parameterruimte van de separabele Hilbertruijtem \(\mathfrak{R}\). Het is ook de parameterruimte van de functie \(F(q)\) die de operator \(F\) in het Formule (13.2.20) bepaalt.

13.3 Niet-separabele Hilbertruijtem

Elke oneindig dimensionale separabele Hilbertruijtem \(\mathfrak{R}\) bezit een unieke niet-separabele metgezel Hilbertruijtem \(\mathcal{H}\). Dit wordt bereikt door de sluiting van de eigenruimtes van de referentieoperator en de gedefinieerde operatoren. In deze procedure, verliest de notie van de dimensie van de deelruimtes in veel situaties zijn zin.

Gelfand Triple en rigged Hilbertruijtem zijn andere namen voor de algemene niet-separabele Hilbertruijtem [81].

In de niet-separabele Hilbertruijtem, schakelt de omgekeerde bra-ket methode voor operatoren met continuüm eigenruimtes van optelling om naar integratie.

\[
\langle g | F | h \rangle \equiv \iiint \left\{ \langle g | q \rangle F(q) \langle q | h \rangle \right\} dVd\tau
\]

Hier hebben we de opsomming van subscripties die werden gebruikt voor de aftelbare basis van de separabele Hilbertruijtem weggelaten.

Voor operator \(F\) is de verkorte schrijfwijze nu

\[
F \equiv |q\rangle F(q)\langle q| \quad (13.3.2)
\]

Voor eigenvectoren \(|q\rangle\), wordt de functie \(F(q)\) gedefinieerd door

\[
F(q) = \langle q | Fq \rangle = \iiint \left\{ \langle q | q' \rangle F(q') \langle q' | q \rangle \right\} dV' d\tau' \quad (13.3.3)
\]

De referentieoperator \(\mathcal{R}\) die de continuüm achtergrond-parameterruimte als eigenruimte onderhoudt, volgt uit

\[
\langle g | \mathcal{R}h \rangle \equiv \iiint \left\{ \langle g | q \rangle q \langle q | h \rangle \right\} dVd\tau \quad (13.3.4)
\]
Het overeenkomstige kortschrift is

\[R \equiv |q\rangle q \langle q| \] \hspace{1cm} (13.3.5)

De referentieoperator is een speciaal soort gedefinieerde operator. Via de quaternionische functies die de gedefinieerde operatoren specificeren wordt duidelijk dat elke oneindigdimensionale separabele Hilbertruimte behoort bij een unieke niet-separabele metgezel Hilbertruimte. Van deze Hilbertruimte kan aangenomen worden dat hij zijn separabele metgezel omsluit.

De omgekeerde bra-ket methode combineert Hilbertruimte operator technologie met quaternionische functietheorie en indirect met quaternionische differentiaal- en integraaltechnologie.
14 Quaternionische differentiaalrekening

De quaternionische functieanalyse wordt niet zo goed geapprecieerd als complexe functieanalyse [29]

14.1 Differentiaalvergelijkingen

Op vergelijkbare wijze passen de quaternionische partiële differentiaalvergelijkingen de quaternionische nabla toe. De vergelijkingen zijn niet afgeleid van de resultaten van experimenten. In plaats daarvan benutten de formules het feit dat de quaternionische nabla zich als een quaternionische vermenigvuldigingsoperator gedraagt. De betreffende formules bevatten geen fysieke eenheden. Deze benadering veroorzaakt essentiële verschillen tussen de veldvergelijkingen van Maxwell en quaternionische partiële differentiaalvergelijkingen.

De quaternionische partiële differentiaalvergelijkingen vormen een volledige en zelf-consistente reeks. Ze gebruiken de eigenschappen van de driedimensionale ruimtelijke nabla. Dit staat bekend als de del-operator.

De overeenkomstige formules zijn afkomstig uit Bo Thidé's EMTF boek., sectie aanhangsel F4 [31].

Een andere online bron is Vector calculus identiteiten [32].

De quaternionische differentiaalvergelijkingen spelen in een Euclidische setting die wordt gevormd door een continuüm quaternionische parameterruimte en een quaternionische doelruimte. De parameterruimte is de eigenruimte van de referentieoperator van een quaternionische niet-separabele Hilbertruimte. De doelruimte is eigenruimte van een gedefinieerde operator die zich in diezelfde Hilbertruimte bevindt. De gedefinieerde
operator wordt gespecificeerd door een quaternionische functie die het veld volledig definieert. Elk basisveld is eigenaar van een eigen definiërende quaternionische functie. Alle basisvelden die in dit hoofdstuk worden behandeld, worden op deze manier door quaternionische functies gedefinieerd.

waarnemer fungeert. Het informatiepad vervormt zich samen met zijn draagveld en dit feit beïnvloedt de overgedragen informatie. In dit hoofdstuk behandelen we alleen wat er op het waargenomen evenement gebeurt. Dus, we negeren de Lorentz-coördinatentransformatie en we worden nog niet beïnvloed door de vervormingen van het informatiepad.

Het Hilbert Book Model archiveert alle dynamische geometrische gegevens van alle discrete objecten die in het model bestaan in eigenruimtes van separabele Hilbertruimten waarvan de privéparameterruimten over de achtergrondparameterruimte zweven. De achtergrondparameterruimte is de privé parameterruimte van de niet-separabele Hilbertruimte. Elementaire deeltjes bevinden zich op een particulier zwevend platform dat door een privé-separabele Hilbertruimte wordt geïmplementeerd.

Kwantumnatuurkundigen gebruiken Hilbertruimten voor het modelleren van hun theorie. Echter, de meeste kwantum natuurkundigen passen op complexe getallen gebaseerde Hilbertruimten toe. Quaternionische kwantummechanica lijkt echter een meer natuurlijke keuze te vertegenwoordigen. Quaternionische Hilbertruimtes slaan de dynamische geometrische gegevens in Euclidische formaat op in quaternionische eigenwaarden die bestaan uit de reële waarde van een scalaire tijdstempel en een ruimtelijke, driedimensionale locatie die het imaginaire deel van het quaternion vertegenwoordigt.

In het Hilbert Book Model, is het moment van opslag van de gebeurtenisgegevens irrelevant zolang dat moment samenvalt met of voorafgaat aan de opgeslagen tijdstempel. Zo kan het model alle gegevens opslaan op een moment, dat voorafgaat aan alle opgeslagen tijdstempelwaarden. Dit wijst het Hilbert Book Model aan als schepper van het heelal waarin de waarneembare gebeurtenissen en de waarnemers bestaan. Aan de andere kant, is het mogelijk om het moment van archivering van het evenement te plaatsen op het moment van het evenement zelf. Het zal dan samenvallen met de
gearchiveerde tijdstempel. In beide Interpretaties zal na het rangschikken van de tijdstempels de bewaarplaats het levensverhaal vertellen van de discrete objecten die in het model gearchiveerd zijn. Dit verhaal beschrijft de voortdurende inbedding van de separabele Hilbertruimten in de niet-separabele Hilbertruimte. Voor elke zwevende separabele Hilbertruimte gebeurt deze inbedding stap voor stap en wordt gecontroleerd door een privé stochastisch proces, dat eigenaar is van een karakteristieke functie. Het resultaat is een stochastisch huppelpad dat door de privé parameterruimte van het platform loopt. Een coherente steeds terugkerende en telkens opnieuw genereerde huppellandingslocatiezwerm kenmerkt het overeenkomstige elementaire object.

Elementaire deeltjes zijn elementaire modules. Samen vormen zij alle andere modules die in het model voorkomen. Sommige modules vormen modulaire systemen. Een toegewijd stochastisch proces regelt de binding van de componenten van de samengestelde module. Dit proces bezit een karakteristieke functie die gelijk is aan een dynamische superpositie van de karakteristieke functies van de stochastische processen die de componenten besturen. Deze superpositie gebeurt dus in de Fourier-ruimte. De superpositiecoëfficiënten fungeren als gauge-factoren die de verplaatsingsgeneratoren implementeren, die de interne locaties van de componenten controleren. Met andere woorden, de superpositiecoëfficiënten kunnen interne oscillaties van de componenten installeren. Deze oscillaties worden door differentiaalvergelijkingen beschreven.

14.2 Velden
In het Hilbert Book Model zijn continue velden eigenruimtes van operatoren die zich in de quaternionische niet-separabele Hilbertruimte bevinden. De continue of meestal continue functies definiëren deze operatoren. Afgezien van enkele discrepante regio's zijn de eigenruimtes van deze operatoren continuums. Deze discrepante regio's kunnen verkleinen tot discrepante puntvormige artefacten. De parameterruimte van deze functies wordt gevormd
door een geselecteerde versie van het quaternionische
getallensysteem. Bijgevolg zijn de met reële getallen weergegeven
coefficiënten van deze parameters wederzijds onafhankelijk, en de
differentiële verandering kan worden uitgedrukt in termen van een
lineaire combinatie van partiële verschillen. Nu is de totale
differentiële verandering df van veld f gelijk aan

$$
df = \frac{\partial f}{\partial \tau} d\tau + \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz
$$

(14.2.1)

In deze vergelijking zijn de partiële verschillen $\frac{\partial f}{\partial \tau}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
quaternionen.

De quaternionische nabla ∇ veronderstelt de *speciale
voorwaarde* dat partiële verschillen langs de assen van het
Cartesische coördinaatsysteem leiden. Dus

$$
\nabla = \sum_{i=0}^{4} \vec{e}_i \frac{\partial}{\partial x_i} = \frac{\partial}{\partial \tau} + i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}
$$

(14.2.2)

Het Hilbert Book Model veronderstelt dat de quaternionische velden
dusdanig gelijkmatig veranderen, dat alleen al de eerste- en tweede-
orde partiële differentiaalvergelijkingen het model beschrijven. Deze
vergelijkingen kunnen velden beschrijven waarvan de continuïteit
door puntvormige artefacten verstoord wordt. Bolvormige
pulsresponsies, eendimensionale puls responses, en Greense
functies beschrijven de reactie van het veld op dergelijke
verstoringen.

14.3 Veldvergelijkingen

Algemene veldvergelijkingen gelden voor alle basisvelden. Algemene
veldvergelijkingen passen het beste in een quaternionische setting.

Quaternionen bestaan uit een met een reëel getal gekenmerkt skalair
deel en een driedimensionale ruimtelijke vector die het imaginaire
deel vertegenwoordigt.
De vermenigvuldigingsregel van quaternionen geeft aan dat verschillende onafhankelijke onderdelen het product vormen.

\[c = c_r + \bar{c} = ab = \left(a_r + \bar{a} \right) \left(b_r + \bar{b} \right) \]
\[= a_r b_r - \left\langle a, \bar{b} \right\rangle + a_r \bar{b} + \bar{a} b_r \pm a \times \bar{b} \]

Het ± teken geeft aan dat quaternionen in rechtshandige en linkshandige versies bestaan.

De formule kan worden gebruikt om de volledigheid te controleren van een reeks vergelijkingen die uit de toepassing van de productregel volgen.

We definiëren de quaternionische nabla als

\[\nabla \equiv \left\{ \frac{\partial}{\partial \tau}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\} = \nabla_r + \tilde{\nabla} \]

\[\tilde{\nabla} \equiv \left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\} \]

\[\nabla_r \equiv \frac{\partial}{\partial \tau} \]

\[\phi = \phi_r + \tilde{\phi} = \nabla \psi = \left(\frac{\partial}{\partial \tau} + \tilde{\nabla} \right) (\psi_r + \tilde{\psi}) \]
\[= \nabla_r \psi_r - \left\langle \nabla, \tilde{\psi} \right\rangle + \nabla_r \tilde{\psi} + \tilde{\nabla} \psi_r \pm \tilde{\nabla} \times \tilde{\psi} \]
\[\phi_r = \nabla_r \psi_r - \left\langle \nabla, \tilde{\psi} \right\rangle \]
\[\tilde{\phi} = \tilde{\nabla} \tilde{\psi} + \tilde{\nabla} \psi_r \pm \tilde{\nabla} \times \tilde{\psi} = -\tilde{E} \pm \tilde{B} \]

Verder

\(\tilde{\nabla} \psi_r \) is de gradiënt van \(\psi_r \)

\(\left\langle \nabla, \tilde{\psi} \right\rangle \) is de divergentie van \(\tilde{\psi} \)

\(\tilde{\nabla} \times \tilde{\psi} \) is de rotatie van \(\tilde{\psi} \)
De verandering $\nabla \psi$ verdeelt in vijf termen die elk een afzonderlijke betekenis hebben. Om deze reden krijgen deze termen in Maxwellvergelijkingen verschillende namen en symbolen. Elk basisveld biedt deze termen!

$$\tilde{E} = -\nabla, \tilde{\psi} - \nabla \psi,$$

(14.3.8)

$$\tilde{B} = \nabla \times \psi$$

(14.3.9)

Het is ook mogelijk om hogere-orde vergelijkingen te construeren. Bijvoorbeeld

$$\tilde{J} = \nabla \times \tilde{B} - \nabla, \tilde{E}$$

(14.3.10)

De vergelijking (14.3.6) heeft geen equivalent in de Maxwellvergelijkingen. In plaats daarvan wordt het rechterdeel als een gauge gebruikt.

Twee speciale tweede-orde partiële differentiaalvergelijkingen gebruiken de termen $\frac{\partial^2 \psi}{\partial \tau^2}$ en $\left\langle \nabla, \tilde{\nabla} \right\rangle \psi$

$$\phi = \left\{ \frac{\partial^2}{\partial \tau^2} - \left\langle \nabla, \tilde{\nabla} \right\rangle \right\} \psi$$

(14.3.11)

$$\rho = \left\{ \frac{\partial^2}{\partial \tau^2} + \left\langle \nabla, \tilde{\nabla} \right\rangle \right\} \psi$$

(14.3.12)

De vergelijking (14.3.11) is het quaternionische equivalent van de golfvergelijking [35].

De vergelijking (14.3.12) kan onderverdeeld worden in twee eerste-orde partiële differentiaalvergelijkingen.

$$\chi = \nabla^* \phi = \nabla^* \nabla \psi = \nabla \nabla^* \psi = \left(\nabla, + \tilde{\nabla} \right) \left(\nabla, - \tilde{\nabla} \right) \left(\psi, + \tilde{\psi} \right)$$

$$= \left(\nabla, \nabla, + \left\langle \nabla, \tilde{\nabla} \right\rangle \right) \psi$$

(14.3.13)

Dit vormt een samenstelling van $\chi = \nabla^* \phi$ en $\phi = \nabla \psi$
Het bewijs van (14.3.13) past de gelijkheid
\[\mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{\ddot{a}}) = \mathbf{\nabla} \langle \mathbf{\nabla}, \mathbf{\ddot{a}} \rangle - \langle \mathbf{\nabla}, \mathbf{\nabla} \rangle \mathbf{\ddot{a}} \] (14.3.14)
toe, zodat
\[\mathbf{\nabla} (\mathbf{\nabla} \times \mathbf{\ddot{a}}) = \mathbf{\nabla} \langle \mathbf{\nabla}, \mathbf{\ddot{a}} \rangle - \langle \mathbf{\nabla}, \mathbf{\ddot{a}} \rangle + \mathbf{\nabla} \mathbf{\ddot{a}} = \mathbf{\nabla} \mathbf{\nabla} \times \mathbf{\ddot{a}} - \mathbf{\nabla} \langle \mathbf{\nabla}, \mathbf{\ddot{a}} \rangle - \langle \mathbf{\nabla}, \mathbf{\nabla} \rangle \mathbf{\ddot{a}} = \mathbf{\nabla} \mathbf{\nabla} \times \mathbf{\ddot{a}} - \mathbf{\nabla} \langle \mathbf{\nabla}, \mathbf{\ddot{a}} \rangle - \mathbf{\nabla} \langle \mathbf{\nabla}, \mathbf{\ddot{a}} \rangle - \langle \mathbf{\nabla}, \mathbf{\nabla} \rangle \mathbf{\ddot{a}} = -\langle \mathbf{\nabla}, \mathbf{\nabla} \rangle \mathbf{\ddot{a}} \] (14.3.15)

\[\Box = \frac{\partial^2}{\partial t^2} - \langle \mathbf{\nabla}, \mathbf{\nabla} \rangle \] is het quaternionische equivalent van de d'Alembert operator.

De operator \(\frac{\partial^2}{\partial t^2} + \langle \mathbf{\nabla}, \mathbf{\nabla} \rangle \) heeft nog geen geaccepteerde naam.

De Poisson-vergelijking is gelijk aan
\[\rho = \langle \mathbf{\nabla}, \mathbf{\nabla} \rangle \psi \] (14.3.16)

Een zeer bijzondere oplossing van deze vergelijking is de Greense functie \(\frac{1}{q - \dot{q}} \) van het betreffende veld
\[\mathbf{\nabla} \frac{1}{|q - \dot{q}|} = -\frac{(q - \dot{q}^t)}{|q - \dot{q}|^3} \] (14.3.17)

\[\langle \mathbf{\nabla}, \mathbf{\nabla} \rangle \frac{1}{|q - \dot{q}|} = \langle \mathbf{\nabla}, \mathbf{\nabla} \frac{1}{|q - \dot{q}|} \rangle = -\langle \mathbf{\nabla}, \mathbf{\nabla} \frac{(q - \dot{q}^t)}{|q - \dot{q}|^3} \rangle = 4\pi\delta(q - \dot{q}^t) \] (14.3.18)

De ruimtelijke integraal over de Greense functie is een volume.
Vergelijking (14.3.11) biedt als oplossing een bolvormig schokfront dat een dynamisch equivalent van de Greense functie is. Het schokfront kan worden geschreven als

\[\psi = \frac{f\left((\vec{q} - \vec{q'}) - c(\tau - \tau')\right)}{|\vec{q} - \vec{q'}|} \]
(14.3.19)

Een eendimensionaal type van de schokfrontoplossingen is

\[\psi = \tilde{f}\left((\vec{q} - \vec{q'}) - c(\tau - \tau')\right) \]
(14.3.20)

De vergelijking (14.3.11) is beroemd om zijn golftype oplossingen

\[\nabla_r \nabla_r \psi = \left(\nabla, \nabla\right) \psi = -\omega^2 \psi \]
(14.3.21)

De periodieke harmonische actuatoren veroorzaken het verschijnen van golven.

De vlakke en de bolvormige golven vormen de eenvoudigere golfloplossingen van deze vergelijking.

\[\psi(\vec{q}, \tau) = \exp\left\{i\left(\vec{k} \cdot (\vec{q} - \vec{q_0}) - \omega \tau + \varphi\right)\right\} \]
(14.3.22)

\[\psi(\vec{q}, \tau) = \frac{\exp\left\{i\left(\vec{k} \cdot (\vec{q} - \vec{q_0}) - \omega \tau + \varphi\right)\right\}}{|\vec{q} - \vec{q_0}|} \]
(14.3.23)

De Helmholtzvergelijking behandelt de quaternionische functie die het veld als separabel defineert [36].

\[\psi(\vec{q_r}, \vec{q}) = A(\vec{q})T(\vec{q_r}) \]
(14.3.24)

\[\left(\nabla, \nabla\right) A = \frac{\nabla_r \nabla_r T}{T} = -k^2 \]
(14.3.25)

\[\left(\nabla, \nabla\right) A = -k^2 A \]
(14.3.26)

\[\nabla_r \nabla_r T = -k^2 T \]
(14.3.27)
Voor driedimensionale isotrope bolvormige condities, hebben de oplossingen de vorm

\[
A(r, \theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left\{ (a_{ln} j_l (kr)) + b_{ln} Y_l^m (\theta, \varphi) \right\}
\]

(14.3.28)

Hier \(j_l \) en \(y_l \) zijn de sferische Bessel-functies en zijn \(Y_l^m \) de sferische harmonischen. Deze oplossingen spelen een rol in de spectra van atomaire modules [38] [39].

Een meer algemene oplossing is een superpositie van deze basistypes.

Formule (14.3.12) biedt een dynamisch equivalent van de Greense functie, dat een sferische schokfront voorstelt. Het kan worden beschreven met

\[
\psi = \frac{f \left(\vec{q} - \vec{q}' + c(\tau - \tau') \right)}{\left| \vec{q} - \vec{q}' \right|}
\]

(14.3.29)

Een eendimensionaal type van de schokfront oplossing is

\[
\psi = \vec{f} \left(\vec{q} - \vec{q}' + c(\tau - \tau') \right)
\]

(14.3.30)

Vergelijking (14.3.12) biedt geen golven als onderdeel van haar oplossingen.

Tijdens voortbewegen behouden de amplitude en de zijdelingse richting \(f \) van de ééndimensionale schokfronten een vaste waarde.

De longitudinale richting loopt langs \(\vec{q} - \vec{q}' \).

De schokfronten die door puntvormige actuatoren teweeggebracht worden zijn de kleinste veldexcitaties die er bestaan. De actuator moet aan belangrijke beperkende eisen voldoen. Bijvoorbeeld, kan alleen een perfect isotrope actuator leiden tot een bolvormig
schokfront. De actuator kan een quaternion zijn dat tot een andere versie van het quaternionische getallensysteem behoort dan de versie, die het achtergrondplatform toepast. De symmetriebreking moet isotroop zijn. Elektronen vervullen deze vereiste. Neutrino’s breken de symmetrie niet, maar hebben andere redenen waarom ze een geldige trigger veroorzaken. Quarks breken de symmetrie, maar niet op een isotrope manier.
15 Lijn-, oppervlakte- en volume-integralen

15.1 Lijnintegralen
De rotatie kan worden gepresenteerd als een lijnintegraal [85]

\[
\langle \nabla \times \vec{\psi}, \vec{n} \rangle \equiv \lim_{A \to 0} \left(\frac{1}{A} \oint_C \langle \vec{\psi}, d\vec{r} \rangle \right)
\]

(15.1.1)

15.2 Oppervlakte-integralen
Met betrekking tot een lokaal deel van een gesloten grens die loodrecht op vector \(\vec{n} \) is georiënteerd de hebben partiële verschillen betrekking op

\[
\nabla \psi = -\langle \nabla, \vec{\psi} \rangle + \nabla \psi, \pm \nabla \times \vec{\psi} \Leftrightarrow \vec{n} \psi
\]

\[
= -\langle \vec{n}, \vec{\psi} \rangle + \vec{n} \psi, \pm \vec{n} \times \vec{\psi}
\]

(15.2.1)

Dit wordt geëxploiteerd in de oppervlakte-volume integrale vergelijkingen die bekend staan als stellingen van Stokes en van Gauss [43] [44].

\[
\iiint \nabla \psi dV = \iiint \vec{n} \psi dS
\]

(15.2.2)

\[
\iiint \langle \nabla, \vec{\psi} \rangle dV = \iiint \langle \vec{n}, \vec{\psi} \rangle dS
\]

(15.2.3)

\[
\iiint \nabla \times \vec{\psi} dV = \iiint \vec{n} \times \vec{\psi} dS
\]

(15.2.4)

\[
\iiint \nabla \psi, dV = \iiint \vec{n} \psi, dS
\]

(15.2.5)

Dit resultaat zet termen in de differentiële continuïteitsvergelijking om in een reeks overeenkomstige integrale balansvergelijkingen.

De methode is ook van toepassing op andere partiële differentiaalvergelijkingen. Bijvoorbeeld

\[
\nabla \times \left(\nabla \times \vec{\psi} \right) = \nabla \left(\nabla \psi \right) - \left(\nabla, \nabla \right) \vec{\psi} \Leftrightarrow \nabla \times \left(\nabla \times \vec{\psi} \right)
\]

\[
= \vec{n} \langle \vec{n}, \vec{\psi} \rangle - \langle \vec{n}, \vec{n} \rangle \vec{\psi}
\]

\[
\iiint \left\{ \nabla \times \left(\nabla \times \vec{\psi} \right) \right\} dV = \iiint_{\mathcal{S}} \left\{ \nabla \langle \nabla, \vec{\psi} \rangle \right\} dS - \iiint_{\mathcal{S}} \left\{ \langle \nabla, \nabla \vec{\psi} \rangle \right\} dS
\]

(15.2.7)
Bij een dimensie minder, bestaat een soortgelijke relatie.

\[\iint_S \left(\langle \nabla \times a, \tilde{n} \rangle \right) dS = \oint_C \langle a, d\tilde{l} \rangle \] \hspace{1cm} (15.2.8)

15.3 Gebruik van volume-integraal om symmetrie-gerelateerde ladingen te bepalen

In zijn eenvoudigste vorm, waarin geen verstoringen in het integratie-domein \(\Omega \) voorkomen loopt de algemene stelling van Stokes volgens

\[\int_{\Omega} d\omega = \int_{\partial \Omega} \omega = \oint \omega \] \hspace{1cm} (15.3.1)

We scheiden alle puntvormige discontinuïteiten van het domein \(\Omega \) door ze in een extra grens te vatten. De symmetriecentra vertegenwoordigen bolvormige of kubusvormige gesloten parameterruimte regio's \(H_n^x \) die op een achtergrondparameterruimte \(\mathfrak{R} \) zweven. De grenzen \(\partial H_n^x \) scheiden de regio's van het domein \(H_n^x \).

De regio's \(H_n^x \) vormen platforms voor lokale discontinuïteiten in basisvelden. Deze velden zijn continu in domein \(\Omega - H \).

\[H = \bigcup_{n=1}^{N} H_n^x \] \hspace{1cm} (15.3.2)

De symmetriecentra \(G_n^x \) zijn ingekapseld in regio's \(H_n^x \), en de inkapselingsgrens \(\partial H_n^x \) maakt geen deel uit van de losgekoppelde grens, die alle continue delen van het quaternionische manifold \(\omega \) dat in het quaternionische model bestaat inkapselt.

\[\int_{\Omega-H} d\omega = \int_{\partial \Omega - \partial H} \omega = \int_{\partial \Omega} \omega - \sum_{k=1}^{N} \int_{\partial H_k^x} \omega \] \hspace{1cm} (15.3.3)

In feite is het voldoende dat \(\partial H_n^x \) de huidige locatie van de elementaire module omringt. Wij zullen een grens selecteren, die de vorm van een kleine kubus heeft waarvan de kanten door een gebied van de parameterruimten lopen waar de manifolds continu zijn.

Als we overal op de grens de eenheids-normaalvector naar buiten laten wijzen, dan is dit de omgekeerde richting van de normaal.
op ∂H_n^x die de bijdrage aan de integraal aftrekt. Zo worden in deze formule de bijdragen van de grenzen $\{\partial H_n^x\}$ afgetrokken van de bijdragen van de grens $\partial \Omega$. Dit betekent dat $\partial \Omega$ ook de regio's $\{\partial H_n^x\}$ omringt.

Dit feit maakt de integratie gevoelig voor de rangschikking van elementen in de deelnemende domeinen.

Domein Ω komt overeen met een deel van de achtergrond parameterruimte \mathcal{R}. Zoals eerder vermeld geven de symmetriecentra \mathcal{S}_n^x ingekapselde gebieden $\{\partial H_n^x\}$ weer die zweven op de achtergrondparameterruimte \mathcal{R}. De Cartesische assen van \mathcal{S}_n^x zijn evenwijdig aan de Cartesische assen van de achtergrondparameterruimte \mathcal{R}. Alleen de rangschikkingen langs deze assen kunnen verschillen.

Verder, wordt het geometrische centrum van het symmetriecentrum \mathcal{S}_n^x vertegenwoordigd door een zwevende locatie op parameterruimte \mathcal{R}.

Het symmetriecentrum \mathcal{S}_n^x wordt gekenmerkt door een privé symmetrieversie. Deze symmetrieversie heeft betrekking op de Cartesische ordening van deze parameterruimte. Met een vaste oriëntatie van de coördinaatassen, zijn acht onafhankelijke Cartesische ordeningen mogelijk.

Het gevolg van de verschillen in de symmetrieversie op de aftrekking kan het best worden begrepen wanneer de inkapseling ∂H_n^x wordt uitgevoerd door een *kubusvormige ruimte* die wordt uitgelijnd langs de Cartesische assen die op de achtergrondparameterruimte werken. Nu dragen de zes zijden van de kubus verschillend bij aan de effecten van de inkapseling. Bij het ordenen van H_n^x verschilt de Cartesische rangschikking van de referentieparameterruimte \mathcal{R}. Elke discrepantie-as komt overeen met een-derde van het oppervlak van de kubus. Dit effect wordt vertegenwoordigd door de *symmetrie-gerelateerde ladingen*, met inbegrip van de *kleurladingen* van het symmetriecentrum. Het is gemakkelijk te begrijpen met behulp van het algoritme dat hieronder is opgevoerd voor de berekening van de symmetrie-gerelateerde ladingen. Ook zal de relatie met de
kleurlading duidelijk zijn. *Zo koppelt dit effect de ordening van de lokale parameterruimten aan de symmetrie-gerelateerde lading van de ingekapselde elementaire module.* De verschillen met het ordenen van de omringende parameterruimte bepalen de waarde van de symmetrie-gerelateerde lading van het object dat binnen de inkapseling leeft!
15.4 Symmetrieversie

De Cartesische ordening van zijn privé parameterruimte bepaalt de symmetrieversie van het platform [18]. Om die reden wordt deze symmetrie vergeleken met de referentie-symmetrie, die gelijk is aan de symmetrie van de achtergrondparameterruimte. Vier pijlen geven de symmetrie van het platform aan. De achtergrond wordt vertegenwoordigd door:

Nu volgt de symmetrie-gerelateerde lading in drie stappen.

1. Tel het verschil van het ruimtelijke deel van de symmetrie van het platform met het ruimtelijke deel van de symmetrie van de achtergrondparameterruimte.
2. Wissel voor antideeltjes het teken van het resultaat.

<table>
<thead>
<tr>
<th>Symmetrieversie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordenen x y z τ</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Het neutrino en het antineutrino bezitten waarschijnlijk een abnormale handigheid.
De voorgestelde namen van de deeltjes die het symmetrietype aangeven zijn geleend van het Standaardmodel. In de tabel bestaan, in vergelijking met het Standaardmodel, sommige verschillen met de selectie van het anti-predicaat. Alle beschouwde deeltjes zijn elementaire fermionen. De keuzevrijheid in het polair coördinatenstelsel kan de spin bepalen [19]. Het azimut bereik is 2π radialen en het polaire hoekbereik is π radialen. Het breken van de symmetrie betekent een verschil tussen de platform symmetrie en de symmetrie van de achtergrond. Neutrino’s breken de symmetrie niet. In plaats daarvan, kunnen zij waarschijnlijk discrepanties met de links-rechts handigheid van de vermenigvuldigingsregel veroorzaken.

15.5 Afleiding van fysische wetten

De quaternionische equivalenten van de wet van Ampère zijn:

$$J \equiv \nabla \times \vec{B} = \nabla, \vec{E} \Leftrightarrow \tilde{J} \equiv \tilde{n} \times \vec{B} = \nabla, \vec{E}$$ (15.5.1)

$$\iint_S \langle \nabla \times \vec{B}, \tilde{n} \rangle dS = \oint_c \langle \vec{B}, d\vec{l} \rangle = \iint_S \langle \tilde{J} + \nabla, \vec{E}, \tilde{n} \rangle dS$$ (15.5.2)

De quaternionische equivalenten van de wet van Faraday zijn:

$$\nabla, \vec{B} = \nabla \times (\nabla, \vec{\psi}) = -\nabla \times \vec{E} \Leftrightarrow \nabla, \vec{B} = \tilde{n} \times (\nabla, \vec{\psi}) = -\nabla \times \vec{E}$$ (15.5.3)

$$\oint_c \langle \vec{E}, d\vec{l} \rangle = \iint_S \langle \nabla \times \vec{E}, \tilde{n} \rangle dS = -\iint_S \langle \nabla, \vec{B}, \tilde{n} \rangle dS$$ (15.5.4)

$$\tilde{J} = \nabla \times \left(\vec{B} - \vec{E} \right) = \nabla \times \vec{\phi} - \nabla, \vec{\phi} = \vec{v} \rho$$ (15.5.5)

$$\iint_S \langle \nabla \times \vec{\phi}, \tilde{n} \rangle dS = \oint_c \langle \vec{\phi}, d\vec{l} \rangle = \iint_S \langle \vec{v} \rho + \nabla, \vec{\phi}, \tilde{n} \rangle dS$$ (15.5.6)

De vergelijkingen (15.5.4) en (15.5.6) maken de afleiding van de Lorentzkracht mogelijk [82].

$$\nabla \times \vec{E} = -\nabla, \vec{B}$$ (15.5.7)

$$\frac{d}{d\tau} \iint_S \langle \vec{B}, \tilde{n} \rangle dS = \iint_{s\left(t_0\right)} \langle \vec{B}(\tau_0), \tilde{n} \rangle d\tau + \frac{d}{d\tau} \iint_{s\left(t\right)} \langle \vec{B}(\tau_0), \tilde{n} \rangle d\tau$$ (15.5.8)
De integraalvergelijking van Leibniz zegt [83]

\[
\frac{d}{dt} \int_{s(\tau)} \langle \dot{X}(\tau_0), \vec{n} \rangle dS = \int_{s(\tau_0)} \left(\dot{X}(\tau_0) + (\nabla \times \dot{X}(\tau_0)) \vec{v}(\tau_0), \vec{n} \right) dS - \oint_{c(\tau_0)} \langle \vec{v}(\tau_0) \times \dot{X}(\tau_0), d\vec{l} \rangle
\]

(15.5.9)

Met \(\vec{X} = \vec{B} \) en \(\langle \nabla \times \vec{B}, \vec{B} \rangle = 0 \) volgt

\[
\frac{d\Phi_B}{d\tau} = \frac{d}{d\tau} \int_{s(\tau)} \langle \dot{B}(\tau), \vec{n} \rangle dS = \int_{s(\tau_0)} \langle \dot{B}(\tau_0), \vec{n} \rangle dS - \oint_{c(\tau_0)} \langle \vec{v}(\tau_0) \times \dot{B}(\tau_0), d\vec{l} \rangle
\]

(15.5.10)

De elektromotorische kracht EMF \(\epsilon \) is gelijk aan [84]

\[
\epsilon = \oint_{c(\tau_0)} \left(\frac{\vec{F}(\tau_0)}{q} \right), d\vec{l} = -\frac{d\Phi_B}{d\tau} \bigg|_{\tau=\tau_0}
\]

(15.5.11)

\[
\epsilon = \oint_{c(\tau_0)} \langle \vec{E}(\tau_0), d\vec{l} \rangle + \oint_{c(\tau_0)} \langle \vec{v}(\tau_0) \times \dot{B}(\tau_0), d\vec{l} \rangle
\]

\[
\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}
\]

(15.5.12)
16 Polaire coördinaten

In polaire coördinaten levert de nabla operator verscheidene formules.

\[
\vec{\nabla} = \psi_0 + \psi_r \vec{r} + \psi_\theta \vec{\theta} + \psi_\phi \vec{\phi}
\]
(16.1.1)

\[
\vec{\nabla} \psi_0 = \frac{1}{r^2} \frac{\partial (r^2 \psi_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\psi_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \psi_\phi}{\partial \phi}
\]
(16.1.2)

\[
\langle \vec{\nabla}, \psi \rangle = \frac{1}{r^2} \frac{\partial (r^2 \psi_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\psi_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \psi_\phi}{\partial \phi}
\]
(16.1.3)

\[
\vec{\nabla} \times \psi = \frac{1}{r \sin \theta} \left(\frac{\partial (\psi_\theta \sin \theta)}{\partial \theta} - \frac{\partial \psi_\phi}{\partial \phi} \right) \vec{r}
\]
(16.1.4)

\[
\langle \vec{\nabla}, \vec{\nabla} \rangle = \frac{1}{r^2} \frac{\partial (r^2 \frac{\partial \psi_r}{\partial r})}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial (\sin \theta \frac{\partial \psi_\theta}{\partial \theta})}{\partial \theta} + \frac{1}{r^2 \sin \theta} \frac{\partial^2 \psi_\phi}{\partial \phi^2}
\]
(16.1.5)

In zuivere sferische omstandigheden reduceert de Laplaciaan tot:

\[
\langle \vec{\nabla}, \vec{\nabla} \rangle = \frac{1}{r^2} \frac{\partial (r^2 \frac{\partial \psi_r}{\partial r})}{\partial r}
\]
(16.1.6)

De Greense functie vervaagt de locatiedichtheidsverdeling van de huppellandingslocatiezwerm van een elementair deeltje. Als de locatiedichtheidsverdeling de vorm heeft van een Gaussische functie dan is vervaagde functie gelijk aan de convolutie van deze
locatiedichtheidsverdeling en de Greense functie. De Gaussische-verdeling is

\[
\rho(r) = \frac{1}{(\sigma\sqrt{2\pi})^3} \exp\left(-\frac{r^2}{2\sigma^2}\right)
\]

(16.1.7)

De vorm van de vervorming van het veld voor dit voorbeeld wordt gegeven door:

\[
\Xi(r) = \frac{\text{ERF}\left(-\frac{r}{\sigma\sqrt{2}}\right)}{4\pi r}
\]

(16.1.8)

In deze functie is elk spoor van de singulariteit van de Greense functie verdwenen. Het is te wijten aan de verdeling en het enorme aantal deelnemende hupelandingslocaties. Deze vorm is slechts een voorbeeld. Dergelijke extra potentialen voegen een lokale bijdrage toe aan het veld dat als leefruimte van modules en modulaire systemen fungeert. De getoonde extra bijdrage is te wijten aan de lokale elementaire module waarvan de zwerm de voetafdruk vormt. Samen, vormt een groot aantal van dergelijke bobbels de inhoud van de leefruimte.
De Lorentztransformatie

17.1 De transformatie

De schokfronten bewegen met snelheid c. In de quaternionische setting is deze snelheid gelijk aan 1.

$$x^2 + y^2 + z^2 = c^2 \tau^2 \quad (17.1.1)$$

Zwermen van bolvormige pulsresponstriggers bewegen met een lagere snelheid v.

Voor de geometrische centra van deze zwermen geldt nog steeds:

$$x^2 + y^2 + z^2 - c^2 \tau^2 = x'^2 + y'^2 + z'^2 - c^2 \tau'^2 \quad (17.1.2)$$

Als de locaties $\{x, y, z\}$ en $\{x', y', z'\}$ met een gelijkmatige relatieve snelheid v bewegen, dan geldt

$$ct' = ct \cosh(\omega) - x \sinh(\omega) \quad (17.1.3)$$

$$x' = x \cosh(\omega) - ct \sinh(\omega) \quad (17.1.4)$$

$$\cosh(\omega) = \frac{\exp(\omega) + \exp(-\omega)}{2} = \frac{c}{\sqrt{c^2 - v^2}} \quad (17.1.5)$$

$$\sinh(\omega) = \frac{\exp(\omega) - \exp(-\omega)}{2} = \frac{v}{\sqrt{c^2 - v^2}} \quad (17.1.6)$$

$$\cosh(\omega)^2 - \sinh(\omega)^2 = 1 \quad (17.1.7)$$

Dit is een hyperbolische transformatie die twee coördinatenstelsels betreft.

Deze transformatie kan betrekking hebben op twee platforms P en P' waarop hopelandingslocatiezwermen verblijven en die met eenparige relatieve snelheid bewegen.

Het kan echter ook betrekking hebben op de opslaglocatie P met een tijdstempel τ en een ruimtelijke locatie $\{x, y, z\}$ naast een platform P' dat de coördinaattijd t en de locatie $\{x', y', z'\}$ heeft.
Op deze manier, heeft de hyperbolische transformatie betrekking op twee individuele platforms waarop de privé hoplandingslocatiezwermen van individuele elementaire deeltjes wonen.

Het kan ook betrekking hebben op de opgeslagen gegevens van een elementair deeltje en het waargenomen formaat van deze gegevens voor het elementaire deeltje dat met snelheid \(v \) ten opzichte van de achtergrondparameterruimte beweegt.

De Lorentztransformatie converteert een Euclidisch coördinaatsysteem bestaande uit een Locatie \(\{x, y, z\} \) en de echte tijd stempels \(\tau \) in het waargenomen coördinatenstelsel dat bestaat uit de ruimtecoördinaten \(\{x', y', z', ct'\} \) waarin \(t' \) de rol speelt van de echte tijd. De uniforme snelheid \(v \) veroorzaakt tijddilatatie \(\Delta t' = \frac{\Delta \tau}{\sqrt{1 - \frac{v^2}{c^2}}} \) en lengtecontractie \(\Delta L' = \Delta L \sqrt{1 - \frac{v^2}{c^2}} \).

17.2 Minkowski metriek
Het ruimte-tijdcontinuüm wordt door de Minkowski metriek beheerd.

In vlakke veldomstandigheden, wordt de echte tijd \(\tau \) gedefinieerd door

\[
\tau = \pm \sqrt{c^2 \tau^2 - x^2 - y^2 - z^2} / c
\]

(17.2.1)

En in vervormde velden, geldt nog steeds

\[
ds^2 = c^2 d\tau^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2
\]

(17.2.2)

Hier is \(ds \) het ruimte-tijdcontinuüm-interval en \(d\tau \) is het echte tijdsinterval. \(dt \) is het coördinaattijdsinterval.
17.3 Schwarzschild metriek

Met polaire coördinaten wordt de Minkowski-metriek geconverteerd naar de Schwarzschild-metriek. Het echte tijdsinterval $d\tau$ gehoorzaamt [89] [90]

$$c^2 d\tau^2 = \left(1 - \frac{r_s}{r}\right)c^2 dt^2 - \left(1 - \frac{r_s}{r}\right)^{-1} dr^2 - r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2\right) \quad (17.3.1)$$

Onder zuiver isotrope voorwaarden, verdwijnt de laatste term aan de rechterkant.

Volgens de reguliere fysica, staat in de omgeving van een zwart gat, het symbool r_s voor de Schwarzschild radius.

$$r_s = \frac{2GM}{c^2} \quad (17.3.2)$$

De variabele r is gelijk aan de afstand tot het massacentrum van massa M.

Het Hilbert Book model vindt een andere waarde voor de grens van een bolvormig zwart gat. Die straal is een factor twee kleiner.
18 Zwarte gaten
Zwarte gaten zijn regio's waaruit niets, zelfs geen foton kan ontsnappen. Er bestaat dus geen informatie over het interieur van een zwart gat. Er is alleen iets bekend over de directe omgeving van het zwarte gat [86]. In deze sectie, proberen we de bevindingen van mainstream fysica over zwarte gaten te volgen.

18.1 Geometrie
Mainstream fysica kenmerkt de eenvoudigste vorm van zwarte gaten door een Schwarzschild radius [87] [88]. Dit wordt verondersteld de straal te zijn waar de ontsnappingssnelheid van massieve voorwerpen de lichtsnelheid evenaart. De gravitatie-energie U van een massief object met massa m in een gravitatieveld van een voorwerp met massa M op afstand r is

$$U = -\frac{GMm}{r} \quad (18.1.1)$$

In niet-relativistische omstandigheden volgt de ontsnappingssnelheid van de initiële energie $\frac{1}{2}mv^2$ van het object met massa m en snelheid v. Op de grens van het zwarte gat wordt de kinetische energie volledig door de gravitatie-energie gecompenseerd.

$$\frac{1}{2}mv_0^2 - \frac{GMm}{r_0} = 0 \quad (18.1.2)$$

Dit resulteert in ontsnappingssnelheid v_0

$$v_0 = \sqrt{\frac{2GM}{r_0}} \quad (18.1.3)$$

Het lijkt alsof de Schwarzschild-straal verkregen kan worden door de snelheid van het licht te nemen als de ontsnappingssnelheid. Afgezien van het feit dat deze opzet nooit experimenteel kan worden getest, schendt dit de niet-relativistische omstandigheden die de opgezette theorie aannam. Als we $\frac{1}{2}mv^2$ vervangen door het
energie-equivalent van de rest massa $m c^2$, dan resulteert de verkeerde formule voor de Schwarzschild-straal.

18.2 De grens van het zwarte gat
Om te beginnen, beschouwen wij wat gebeurt als een bolvormige pulsrespons het bijbehorende geometrisch volume in het gebied van het zwarte gat injecteert.

Het HBM veronderstelt dat het geometrische centrum van een elementaire module niet binnen de regio van het zwarte gat kan liggen. Dit betekent dat een deel van de actieve regio van het stochastische proces dat de voetafdruk van de elementaire module produceert over de regio van het zwarte gat kan zweeven. In deze overlappende regio kunnen de pulsen volume in het zwarte gat injecteren. Op een andere wijze kan het stochastische proces geen volume in het zwarte gat injecteren.

Volgens de HBM, bevat de zwarte gat regio ongestructureerd geometrische volume. Binnen die bol bestaan geen modules.
Een alternatieve verklaring

Binnen de discrete locatieverzameling, is een oscillatie niet meer mogelijk en schokfronten komen daar niet voor. De elementaire deeltjes kunnen zich in dat gebied niet ontwikkelen. De pulsen expanderen de regio van het zwarte gat, maar ze doen dat niet op dezelfde wijze zoals de pulsen het veld in de vrije ruimte expanderen. In beide gevallen kunnen de pulsen de massa van de regio uitbreiden. Maar in de zwarte gat regio, is de toename van de massa evenredig aan de straal van de bol, terwijl in vrije ruimte de massa in verhouding staat tot het geïnjecteerde volume. Ook deze tweede benadering geeft geen goede verklaring voor de verschillende toename van het volume van het zwarte gat gebied met de toename van de massa.

In het volgende hoofdstuk, wordt een meer begrijpelijke verklaring gegeven. Dat hoofdstuk introduceert gemengde velden. Deze velden bevatten gesloten gebieden, die geen continuüm bevatten, maar in plaats daarvan een compacte verzameling van discrete elementen die geen verdere eigenschappen bezitten.

19 Gemengde velden

Meestal, is een dynamisch veld een continuümeigenruimte van een normale operator die zich in een quaternionische niet-separabele
Hilbertruimte bevindt. In een quaternionische separabele Hilbertruimte is het veld aftelbaar en is het een bemonsterd veld dat alleen bestaat uit de rationele doelwaarden van de quaternionische functie die de eigenruimte van de operator definieert. Deze functie gebruikt de eigenruimte van de referentieoperator als parameterruimte.

Als een dichte reeks rationele getallen uit een versie van het quaternionische getallensysteem convolueert met de Greense functie van een quaternionisch veld, dan resulteert een overeenkomstig continuüm van quaternionische getallen. Dus, het toevoegen van het geometrische volume van de Greense functie rondom een rationeel getal zet zijn omgeving om in een continuüm. Omgekeerd, zal het wegzuigen van het volume van de Greense functie in de omgeving van een rationeel getal dat is ingebed in een continuüm het rationele getal omzetten in zijn naakte waarde. Dit kan alleen gebeuren op een grens die het continuüm scheidt van een discrete verzameling. Het zal het rationele getal van het continuüm naar de discrete verzameling overbrengen.

Het is mogelijk om functies te definiëren die in het grootste deel van de parameterruimte continu zijn, maar die in een of meer gesloten gebieden alleen discrete waarden bezitten. In de niet-separabele Hilbertruimte correspondeert het gesloten gebied met een deelruimte die een separabele Hilbertruimte omsluit. Het oppervlak dat de gesloten regio omsluit, moet een continuüm zijn. Echter, het interieur bevat slechts een discrete set. Elke convergerende reeks van elementen van deze set moet, als de limiet bestaat, deze limiet in de het omsluitende oppervlak hebben. Dit oppervlak heeft een minimale grootte die overeenkomt met het geometrische volume van de omheinde regio. We kunnen de omzetting van een rationeel getal van een discrete set naar een nabijgelegen continuüm interpreteren als de inbedding van een separabele Hilbertruimte in
een niet-separabele Hilbertruimte. Het omgekeerde van deze procedure is ook mogelijk.

Een mechanisme dat een geometrisch volume in deze regio injecteert moet dit volume stelen van het omringende continuüm. Als dit mechanisme puntvormige pulsen toepast, dan voegt de injectie een rationeel getal toe en neemt het bijbehorende geometrische volume toe. Dit ingebrachte geometrische volume relateert aan het volume van de Greense functie van het continuüm. We gebruiken het woord "relateert aan" in plaats van "is evenredig met", omdat de relatie geen evenredigheid betreft. Dit wordt verklaard door de Stelling van Birkhoff [89] [90].

In zijn eenvoudigste vorm, is de regio een bol, en de straal van de bol is evenredig met de massa van het gebied. Op flinke afstand heeft de gravitatiepotentiaal zijn eenvoudigste vorm en deze komt overeen met de vorm van de Greense functie van het continuüm.

Schokfronten en golven kunnen de grens van de omheinde regio niet passeren en kunnen in deze regio niet bestaan.

De bijgevoegde regio vervormt het continue deel van het veld. Deze vervorming heeft betrekking op het geometrische volume van de bijgevoegde regio en heeft dus betrekking op het aantal geïnjecteerde rationele getallen. De vervorming correpondeert met de massa van het omheinde gebied. Volgens vergelijking (8.4.1), bepaalt de massa M de energie van de gravitatiepotentiaal van de massa m die zich op (grote) afstand r van het centrum van de regio bevindt.

$$U(r) \approx \frac{GMm}{r}$$ \hspace{1cm} (19.1.1)

Als gevolg van de stijgende gravitatiepotentiaal, zal een foton dat vanuit een verre locatie startte en de regio nadert, zijn energie verliezen. Fotonen zijn ketens van op gelijke onderlinge afstand bewegende eendimensionale schokfronten. Op een enorme afstand
van het centrum van het zwarte gat, is de energie van het eendimensionale schokfront gelijk aan het massa-energie-equivalent $E_0 = mc^2$. Bij de grens van het zwarte gat, vermindert de energie van de gravitatiepotentiaal de totale energie van het energiepakket tot nul.

$$E = mc^2 - \frac{mMG}{r} = 0$$ \hspace{1cm} (19.1.2)

De equivalente massa m speelt verder geen rol in de berekening van de straal van het zwarte gat. Dus wordt de grens van een eenvoudig zwarte gat gegeven door

$$r_{bh} = \frac{GM}{c^2}$$ \hspace{1cm} (19.1.3)

Bij deze grens, zijn de energiepakketten niet meer in staat om nog kinetische energie over te dragen.

De energie van de standaard energiepakketten verandert met afstand r van het centrum van het zwarte gat volgens

$$E = E_0 \left(1 - \frac{MG}{c^2r}\right) = E_0 \left(1 - \frac{r_{bh}}{r}\right)$$ \hspace{1cm} (19.1.4)

Voor fotonen is de aanvankelijke energie $E_0 = h\nu_0$. De foton energie verandert evenredig met de energie van de ééndimensionale schokfronten.

$$E = E_0 \left(1 - \frac{r_{bh}}{r}\right) = h\nu_0 \left(1 - \frac{r_{bh}}{r}\right)$$ \hspace{1cm} (19.1.5)

Mainstream fysica ziet de grens van het zwarte gat als de Schwarzschild-radius r_s. Deze is een factor twee groter dan r_{bh}.

$$r_s = \frac{2GM}{c^2}$$ \hspace{1cm} (19.1.6)
19.1 Open vragen
Het Hilbert Book Model gebruikt een andere straal voor de grens van een zwart gat dan de Schwarzschild-straal die mainstream fysica gebruikt. Het verschil is een factor 2.

Het is mogelijk dat het continuüm wordt omgeven door een continue grens die het scheidt van een discrete regio. Deze discrete regio kan een reeks regio's bevatten die omgeven zijn door een continue grens die een continuüm bevatten. Op deze manier, kan een multiversum worden samengesteld.

Binnen de discrete gebieden, wordt informatieoverdracht geblokkeerd.

19.2 De omhulling van zwarte gaten
De continuüm omhulling van de discrete gebieden zijn oppervlakken die op een twee-dimensionale wijze kunnen interageren met punt-vormige artefacten. Zo kunnen in deze omhulling twee-dimensionale pulsresponsies bestaan. Het vel transformeert pulsen in een-dimensionale vibraties in het omliggende continuüm.
19.3 De Bekenstein-grens

De Bekenstein-grens relateert het oppervlak van de rand van het zwarte gat aan zijn entropie.

\[S \leq \frac{\kappa ER}{hc} \Rightarrow S = \frac{\kappa ER}{hc} = \frac{2\kappa GM^2}{hc} \] \hspace{1cm} (19.3.1)

Dit geeft aan dat de entropie \(S \) evenredig is met het oppervlak van het zwarte gat. Dit geldt slechts voor de entropie bij de grens van het zwarte gat.
Materiaal dat door veld doordrongen wordt

20.1 Veldvergelijkingen

De basisvelden kunnen homogene gebieden van materiaal binnendringen. Binnen deze regio's worden de velden verfrommeld. Bijgevolg vermindert de gemiddelde snelheid van bolvormige schokfronten, eendimensionale fronten, en golven of deze vibraties worden gewoon weg gedempt. Het basisveld dat we hier beschouwen is een gladde versie \(\tilde{\psi} \) van het oorspronkelijke veld \(\psi \) dat in het materiaal doordringt.

\[
\begin{align*}
\phi &= \nabla \psi + \nabla \cdot \nabla \psi \pm \nabla \times \psi = -E \pm B \\
\tilde{\phi} &= \nabla \tilde{\psi} + \nabla \cdot \nabla \tilde{\psi} \pm \nabla \times \tilde{\psi} = -\tilde{E} \pm \tilde{B}
\end{align*}
\] (20.1.1)

De eersteorde partiële differentiaalvergelijking verandert niet veel. De afzonderlijke termen in de eerste-orde differentiaalvergelijkingen moeten door een materiaal-afhankelijke factor gecorrigeerd worden en er verschijnen extra materiaal-afhankelijke termen.

Deze extra termen komen overeen met de polarisatie \(\rho \) en de magnetisatie \(M \) van het materiaal, en de extra factoren betreffen de permissiviteit \(\epsilon \) en de permeabiliteit \(\mu \) van het materiaal. Dit resulteert in correcties in het \(\tilde{E} \) veld en het \(\tilde{B} \) veld. Bovendien vermindert de gemiddelde snelheid van eendimensionale schokfronten en golven van 1 tot \(\frac{1}{\sqrt{\epsilon \mu}} \).

\[
\begin{align*}
D &= \epsilon \tilde{E} + \tilde{P} \\
\tilde{H} &= \frac{1}{\mu} \tilde{B} - \tilde{M} \\
\rho_b &= -\langle \nabla \cdot \psi \rangle \\
\rho_f &= -\langle \nabla \cdot \tilde{\psi} \rangle \\
\bar{J}_b &= \tilde{\nabla} \times \tilde{M} + \nabla \times \tilde{P} \\
\bar{J}_f &= \nabla \times \tilde{H} - \nabla \times \tilde{D}
\end{align*}
\] (20.1.3-20.1.8)
\[\rho = \frac{1}{\varepsilon} \left\langle \nabla, \mathbf{E} \right\rangle = \rho_b + \rho_f \]

(20.1.9)

\[\mathbf{J} = \frac{1}{\mu} \nabla \times \mathbf{B} - \frac{\varepsilon}{\mu} \nabla_r \mathbf{E} = \mathbf{J}_b + \mathbf{J}_f \]

(20.1.10)

\[\mathbf{\phi} = \mathbf{E} - \mathbf{\mathbf{B}} = \frac{1}{\varepsilon} \left(\mathbf{D} - \mathbf{P} \right) - \mu \left(\mathbf{H} + \mathbf{M} \right) \]

(20.1.11)

Het subscript \(b \) betekent begrensd. Het subscript \(f \) betekent vrij.

De homogene tweede-orde partiële differentiaalvergelijkingen gelden voor het gladde veld \(\varphi \).

\[\left\{ \nabla_r \nabla_r \pm v^2 \left\langle \nabla, \nabla \right\rangle \right\} \varphi = 0 \]

(20.1.12)

20.2 Poyntingvector

De **Poyntingvector** vertegenwoordigt de directionele energiefluxdichtheid (de snelheid van de energie-overdracht per oppervlakte-eenheid) van een basisveld. Het quaternionische equivalent van de Poyntingvector wordt gedefinieerd als:

\[\mathbf{S} = \mathbf{E} \times \mathbf{H} \]

(20.2.1)

\(u \) is de elektromagnetische energiedichtheid voor lineaire, niet-dispersieve materialen en wordt gegeven door

\[u = \frac{\left\langle \mathbf{E}, \mathbf{B} \right\rangle + \left\langle \mathbf{B}, \mathbf{H} \right\rangle}{2} \]

(20.2.2)

\[\frac{\partial u}{\partial \tau} = -\left\langle \nabla, \mathbf{S} \right\rangle - \left\langle \mathbf{J}_f, \mathbf{E} \right\rangle \]

(20.2.3)

Het pad van het geometrische centrum van het symmetriecentrum volgt het principe van de kleinste werking. Dit is niet het huppelpad waarlangs het overeenkomstige deeltje gedetecteerd kan worden.

De coherente locatie zwerm $\{a_i^x\}$ correspondeert ook met een pad, dat pad is wel een huppelpad. De samenhang betekent dat de zwerm eigenaar is van een continue locatiedichtheidsverdeling die deze zwerm kenmerkt. Een verder reikende coherentievereiste is dat de continue locatiedichtheidsverdeling die de zwerm kenmerkt een Fourier-getransformeerde heeft. In eerste benadering, beweegt de zwerm als één eenheid. Dit betekent dat de zwerm eigenaar is van een verplaatsingsgenerator. Deze feiten hebben veel invloed op het huppelpad en op de beweging van het onderliggende symmetriecentrum. De verplaatsingsgenerator die een deel van het dynamische gedrag van het symmetriecentrum kenmerkt, wordt vertegenwoordigd door de impulsoperator \hat{p}. De

We veronderstellen dat de impuls \tilde{p} tijdens de deeltjesgeneratie cyclus constant blijft. We gebruiken $\tilde{n} = \tilde{p} / |\tilde{p}|$. Elke huppelsprong geeft een bijdrage aan het pad. Deze bijdragen kunnen in drie stappen per huppelsprongbijdrage onderverdeeld worden:

1. Ga van de configuratieruimte naar de Fourier-ruimte. Dit beheelst het inwendig product $\langle \tilde{a}_i | \tilde{p} \rangle$

2. Evolueer tijdens een minieme progressie stap naar de toekomst.
 a. Vermenigvuldig met de overeenkomstige verplaatsingsgenerator \tilde{p}
 b. De in de configuratie ruimte gegenereerde stap is $(\tilde{a}_{i+1} - \tilde{a}_i)$.
 c. De actiebijdrage in de Fourier-ruimte is $\langle \tilde{p}, \tilde{a}_{i+1} - \tilde{a}_i \rangle$.
 d. Dit combineert in een unitaire factor $\exp(n \langle \tilde{p}, \tilde{a}_{i+1} - \tilde{a}_i \rangle)$

3. Ga terug naar de configuratieruimte. Dit impliceert inwendig product $\langle \tilde{p} | \tilde{a}_{i+1} \rangle$
 a. De gecombineerd term levert een factor $\langle \tilde{a}_i | \tilde{p} \rangle \exp(n \langle \tilde{p}, \tilde{a}_{i+1} - \tilde{a}_i \rangle) \langle \tilde{p} | \tilde{a}_{i+1} \rangle$.

Twee opvolgende stappen geven samen:

$$\langle \tilde{a}_i | \tilde{p} \rangle \exp(n \langle \tilde{p}, \tilde{a}_{i+1} - \tilde{a}_i \rangle) \langle \tilde{p} | \tilde{a}_{i+1} \rangle \langle \tilde{a}_{i+1} | \tilde{p} \rangle \exp(n \langle \tilde{p}, \tilde{a}_{i+2} - \tilde{a}_{i+1} \rangle) \langle \tilde{p} | \tilde{a}_{i+2} \rangle$$

(21.1.1)

De termen in het midden veranderen in de factor 1. De andere termen vallen ook samen.
\[
\langle \tilde{a}_i | \tilde{p} \rangle \exp(\tilde{n} \langle \tilde{p}, \tilde{a}_{i+1} - \tilde{a}_i \rangle) \exp(\tilde{n} \langle \tilde{p}, \tilde{a}_{i+2} - \tilde{a}_{i+1} \rangle) \langle \tilde{p} | \tilde{a}_{i+2} \rangle = \langle \tilde{a}_i | \tilde{p} \rangle \exp(\tilde{n} \langle \tilde{p}, \tilde{a}_N - \tilde{a}_i \rangle) \langle \tilde{p} | \tilde{a}_N \rangle
\]
(21.1.2)

Over een volledige cyclus van de deeltjesgeneratie met N stappen resulteert dit in:

\[
\prod_{i=1}^{N-1} \langle \tilde{a}_i | \tilde{p} \rangle \exp(\tilde{n} \langle \tilde{p}, \tilde{a}_{i+1} - \tilde{a}_i \rangle) \langle \tilde{p} | \tilde{a}_{i+1} \rangle = \langle \tilde{a}_i | \tilde{p} \rangle \exp(\tilde{n} \langle \tilde{p}, \tilde{a}_N - \tilde{a}_i \rangle) \langle \tilde{p} | \tilde{a}_N \rangle
\]
(21.1.3)

\[
L d \tau = \sum_{i=2}^{N} \langle \tilde{p}, \tilde{a}_{i+1} - \tilde{a}_i \rangle = \langle \tilde{p}, d\tilde{q} \rangle
\]
(21.1.4)

\[
L = \langle \tilde{p}, \dot{\tilde{q}} \rangle
\]
(21.1.5)

\(L\) staat bekend als de Lagrangiaan.

De vergelijking (21.1.5) geldt voor de bijzondere voorwaarde dat \(\tilde{p}\) constant is. Als \(\tilde{p}\) niet constant is, dan varieert de Hamiltoniaan \(H\) met de locatie.

\[
\frac{\partial H}{\partial q_i} = -\dot{p}_i
\]
(21.1.6)

\[
\frac{\partial H}{\partial p_i} = \dot{q}_i
\]
(21.1.7)

\[
\frac{\partial L}{\partial q_i} = \dot{p}_i
\]
(21.1.8)

\[
\frac{\partial L}{\partial \dot{q}_i} = -\dot{p}_i
\]
(21.1.9)

\[
\frac{\partial H}{\partial \tau} = -\frac{\partial L}{\partial \tau}
\]
(21.1.10)
Hier gebruikten we de echte tijd τ in plaats van coördinaattijd t.

Deze procedure leidt de Lagrangiaan en de Hamilton vergelijkingen af van het stochastische huppelpad. Elke term in de serie toont aan dat de verplaatsingsgenerator de combinatie van termen dwingt om op het platform dat het elementaire deeltje draagt een gesloten huppelpad te genereren. De enige term die overblijft is de verplaatsingsgeneratie van de totale huppellandinglocatiezwerm. Die term beschrijft de beweging van het hele platform.

Mainstream fysica past de Lagrangiaan als basis van de padintegraal toe. In het Hilbert Book Model, is de Lagrangiaan het resultaat van de analyse van de huppelpad.
22 Diracvergelijking

22.1 De Diracvergelijking in het originele formaat

In zijn oorspronkelijke vorm, is de Diracvergelijking een complexe vergelijking die gebruikmaakt van spinors, matrices, en partiële afgeleiden.

Dirac was op zoek naar een splitsing van de Klein-Gordonvergelijking in twee eerste-orde differentiaalvergelijkingen.

\[
\frac{\partial^2 f}{\partial t^2} - \frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} - \frac{\partial^2 f}{\partial z^2} = -m^2 f \tag{22.1.1}
\]

\[
\Box f = (\nabla \cdot \nabla - \langle \vec{\nabla}, \vec{\nabla} \rangle) f = -m^2 f \tag{22.1.2}
\]

Hierin is \(\Box = (\nabla \cdot \nabla - \langle \vec{\nabla}, \vec{\nabla} \rangle)\) de d'Alembert operator.

Dirac gebruikte een combinatie van matrices en spinors om dit resultaat te bereiken. Hij paste de Pauli-matrices toe om het gedrag van vectorfuncties onder differentiatie te simuleren [93].

De eenheidsmatrix \(I\) en de Pauli-matrices \(\sigma_1, \sigma_2, \sigma_3\) worden gegeven door

\[
I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \tag{22.1.3}
\]
Hier \(i = \sqrt{-1} \). Voor een van de mogelijke ordeningen van het quaternionische-getallensysteem, implementeren de Pauli-matrices samen met de eenheidsmatrix \(I \) de quaternionische basisvectoren \(1, i, j \) en \(k \)

\[
1 \rightarrow I, i \rightarrow i\sigma_1, j \rightarrow i\sigma_2, k \rightarrow i\sigma_3
\]

(22.1.4)

Dit resulteert in de vermenigvuldigingsregels

\[
\sigma_1\sigma_2 - \sigma_2\sigma_1 = 2i\sigma_3, \sigma_2\sigma_3 - \sigma_3\sigma_2 = 2i\sigma_1, \sigma_3\sigma_1 - \sigma_1\sigma_3 = 2i\sigma_2
\]

(22.1.5)

\[
\sigma_1\sigma_1 = \sigma_2\sigma_2 = \sigma_3\sigma_3 = I
\]

(22.1.6)

De verschillende rangschikkingsmogelijkheden van het quaternionische getallensysteem corresponderen met verschillende symmetrieversies. De helft van deze mogelijkheden biedt een rechtshandig extern vectorproduct. De andere helft biedt een linkshandig extern vectorproduct.

Wij zullen regelmatig gebruikmaken van:

\[
i(\sigma, \vec{V}) = \vec{V}
\]

(22.1.7)

Met

\[
p_\mu = -i\vec{V}_\mu
\]

(22.1.8)

Volgen

\[
p_\mu \sigma_\mu = -ie_\mu \vec{V}_\mu
\]

(22.1.9)

\[
\langle p, \sigma \rangle = -i\vec{V}
\]

(22.1.10)

22.2 De formulering van Dirac

De originele Diracvergelijking maakt gebruik van 4x4 matrices \(\alpha \) en \(\beta \).

\(\alpha \) en \(\beta \) zijn matrices die het rekenkundige gedrag van bi-quaternionen met inbegrip van de mogelijke symmetrieversies van bi-quaternionische getallensystemen en continuuums implementeren.
\[
\alpha_1 = \begin{bmatrix} 0 & \sigma_1 \\ \sigma_1 & 0 \end{bmatrix} = -i \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \\
\alpha_2 = \begin{bmatrix} 0 & \sigma_2 \\ \sigma_2 & 0 \end{bmatrix} = -i \begin{bmatrix} 0 & j \\ -j & 0 \end{bmatrix} \\
\alpha_3 = \begin{bmatrix} 0 & \sigma_3 \\ \sigma_3 & 0 \end{bmatrix} = -i \begin{bmatrix} 0 & k \\ -k & 0 \end{bmatrix}
\]
(22.2.1)
(22.2.2)
(22.2.3)

\[
\beta = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]
(22.2.4)

\[
\beta\beta = 1
\]
(22.2.5)

De interpretatie van de Pauli-matrices als een vertegenwoordiging van een speciaal soort impulsmoment heeft geleid tot de half-integer eigenwaarde van de overeenkomstige spinoperator.

De selectie van Dirac leidt tot

\[
(p_r - \{\bar{\alpha}, \bar{p}\} - \beta mc)\{\varphi\} = 0
\]
(22.2.6)

\{\varphi\} is een vier-component spinor, die splitst in

\[
(p_r - \{\bar{\alpha}, \bar{p}\} - \beta mc)\varphi_A = 0
\]
(22.2.7)

en in

\[
(p_r - \{\bar{\alpha}, \bar{p}\} + \beta mc)\varphi_B = 0
\]
(22.2.8)

\(\varphi_A\) en \(\varphi_B\) zijn twee-component spinoren. Zo splitst de oorspronkelijke Dirac-vergelijking in:

\[
\left(\nabla_r - \bar{\nabla} - imc\right)\varphi_A = 0
\]
(22.2.9)

\[
\left(\nabla_r - \bar{\nabla} + imc\right)\varphi_B = 0
\]
(22.2.10)

Deze splitsing leidt niet gemakkelijk tot een tweede-orde partiële differentiaalvergelijking die er uitziet als de Klein-Gordonvergelijking.
22.3 Relativistische formulering

In plaats van de originele formulering van Dirac wordt meestal, de relativistische formulering gebruikt.

Die formulering past gamma matrices in plaats van de alfa- en bèta-matrices toe. Deze verschillende keuze beïnvloedt de vorm van de vergelijkingen die resulteren in de twee-component spinors.

\[
\begin{align*}
\gamma_1 &= \begin{bmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{bmatrix} = -i \begin{bmatrix} 0 & \bar{i} \\ -i & 0 \end{bmatrix} \\
\gamma_2 &= \begin{bmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{bmatrix} = -i \begin{bmatrix} 0 & \bar{j} \\ -j & 0 \end{bmatrix} \\
\gamma_3 &= \begin{bmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{bmatrix} = -i \begin{bmatrix} 0 & \bar{k} \\ -k & 0 \end{bmatrix} \\
\gamma_0 &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\end{align*}
\]

(22.3.1)

(22.3.2)

(22.3.3)

(22.3.4)

Dus

\[
\begin{align*}
\gamma_\mu &= \gamma_0 \alpha_\mu; \mu = 1,2,3 \\
\gamma_0 &= \beta
\end{align*}
\]

(22.3.5)

Verder

\[
\gamma_5 = i\gamma_0 \gamma_1 \gamma_2 \gamma_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

(22.3.6)

De matrix \(\gamma_5\) anti-commuteert met alle andere gammamatrices.

Verschillende sets van gammamatrices zijn mogelijk. De keuze boven leidt tot een "Diracvergelijking" van de vorm

\[
(i\gamma^\mu \nabla_\mu - mc) \{\varphi\} = 0
\]

(22.3.7)

Meer uitgebreid:
\[
\left(\gamma_0 \frac{\partial}{\partial t} + \gamma_1 \frac{\partial}{\partial x} + \gamma_2 \frac{\partial}{\partial y} + \gamma_3 \frac{\partial}{\partial z} - \frac{m}{i \hbar} \right) \{ \varphi \} = 0 \quad (22.3.8)
\]

\[
\left(\gamma_0 \frac{\partial}{\partial t} + \langle \vec{\gamma}, \vec{\nabla} \rangle - \frac{m}{i \hbar} \right) \{ \varphi \} = 0 \quad (22.3.9)
\]

\[
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array} \right] \frac{\partial}{\partial t} + \left[\begin{array}{cc}
0 & \langle \vec{\sigma}, \vec{\nabla} \rangle \\
-\langle \vec{\sigma}, \vec{\nabla} \rangle & 0
\end{array} \right] - \frac{m}{i \hbar} \left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right] \left[\begin{array}{c}
\varphi_A \\
\varphi_B
\end{array} \right] = 0 \quad (22.3.10)
\]

\[
\left[\begin{array}{cc}
i & 0 \\
i & -1
\end{array} \right] \frac{\partial}{\partial t} + \left[\begin{array}{cc}
0 & \vec{\nabla} \\
0 & -\vec{\nabla}
\end{array} \right] + \frac{m}{\hbar} \left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right] \left[\begin{array}{c}
\varphi_A \\
\varphi_B
\end{array} \right] = 0 \quad (22.3.11)
\]

\[
i \frac{\partial}{\partial t} \varphi_A + \vec{\nabla} \varphi_B + \frac{m}{\hbar} \varphi_A = 0 \quad (22.3.12)
\]

\[
i \frac{\partial}{\partial t} \varphi_B + \vec{\nabla} \varphi_A - \frac{m}{\hbar} \varphi_B = 0 \quad (22.3.13)
\]

Ook, deze splitsing leidt niet gemakkelijk tot een tweede-orde partiële differentiaalvergelijking die er uitziet als de Klein-Gordonvergelijking.

22.4 Een betere keuze

Een andere interpretatie van de Dirac-aanpak vervangt \(\gamma_0 \) door \(\gamma_5 \):

\[
\left(\gamma_5 \frac{\partial}{\partial t} + \gamma_1 \frac{\partial}{\partial x} + \gamma_2 \frac{\partial}{\partial y} + \gamma_3 \frac{\partial}{\partial z} - \frac{m}{i \hbar} \right) \{ \varphi \} = 0 \quad (22.4.1)
\]

\[
\left(\gamma_5 \frac{\partial}{\partial t} + \langle \vec{\gamma}, \vec{\nabla} \rangle - \frac{m}{i \hbar} \right) \{ \varphi \} = 0 \quad (22.4.2)
\]

\[
\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right] \frac{\partial}{\partial t} + \left[\begin{array}{cc}
0 & \langle \vec{\sigma}, \vec{\nabla} \rangle \\
-\langle \vec{\sigma}, \vec{\nabla} \rangle & 0
\end{array} \right] - \frac{m}{i \hbar} \left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right] \left[\begin{array}{c}
\varphi_A \\
\varphi_B
\end{array} \right] = 0 \quad (22.4.3)
\]

\[
\left[\begin{array}{cc}
i & 0 \\
i & -1
\end{array} \right] \frac{\partial}{\partial t} + \left[\begin{array}{cc}
0 & \vec{\nabla} \\
0 & -\vec{\nabla}
\end{array} \right] + \frac{m}{\hbar} \left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right] \left[\begin{array}{c}
\varphi_A \\
\varphi_B
\end{array} \right] = 0 \quad (22.4.4)
\]
Deze versie leidt tot de splitsing van de vier-component spinor-vergelijking in twee vergelijkingen voor twee-component spinors:

\[
\begin{align*}
&\left(\frac{i}{\hbar} \frac{\partial}{\partial t} + \vec{\nabla}\right) \varphi_B = -\frac{m}{\hbar} \varphi_A \\
&\left(\frac{i}{\hbar} \frac{\partial}{\partial t} - \vec{\nabla}\right) \varphi_A = -\frac{m}{\hbar} \varphi_B
\end{align*}
\]
\[(22.4.7)\]

\[(22.4.8)\]

Dit ziet er veel meer veelbelovend uit. We kunnen het rechterdeel van de eerste vergelijking in het linker gedeelte van de tweede vergelijking invoegen.

\[
\begin{align*}
&\left(\frac{i}{\hbar} \frac{\partial}{\partial t} - \vec{\nabla}\right)\left(\frac{i}{\hbar} \frac{\partial}{\partial t} + \vec{\nabla}\right) \varphi_A = \frac{m^2}{\hbar^2} \varphi_A \\
&\left(\frac{\partial^2}{\partial t^2} + \langle\vec{\nabla}, \vec{\nabla}\rangle\right) \varphi_A = -\frac{m^2}{\hbar^2} \varphi_A \\
&\left(\frac{i}{\hbar} \frac{\partial}{\partial t} + \vec{\nabla}\right)\left(\frac{i}{\hbar} \frac{\partial}{\partial t} - \vec{\nabla}\right) \varphi_B = \frac{m^2}{\hbar^2} \varphi_B \\
&\left(\frac{\partial^2}{\partial t^2} + \langle\vec{\nabla}, \vec{\nabla}\rangle\right) \varphi_B = -\frac{m^2}{\hbar^2} \varphi_B
\end{align*}
\]
\[(22.4.9)\]

\[(22.4.10)\]

\[(22.4.11)\]

\[(22.4.12)\]

Dit is wat Dirac wilde bereiken. De twee eerste-orde differentiaalvergelijkingen koppelen in een tweede-orde differentiaalvergelijking, maar die vergelijking is niet gelijk aan de Klein-Gordonvergelijking. Het is gelijk aan de vergelijking (4.2.1).

De nabla operator handelt verschillend op de twee-component spinors \(\varphi_A \) en \(\varphi_B \).
22.5 De Dirac nabla

De Dirac nabla \mathcal{D} verschilt van de quaternionische nabla ∇.

\[
\nabla = \left\{ \frac{\partial}{\partial \tau}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\} = \nabla_r + \tilde{\nabla} \tag{22.5.1}
\]

\[
\nabla^* = \nabla_r - \tilde{\nabla} \tag{22.5.2}
\]

\[
\nabla \nabla^* = \nabla^* \nabla = \nabla_r \nabla_r - \langle \tilde{\nabla}, \tilde{\nabla} \rangle \tag{22.5.3}
\]

\[
\mathcal{D} = \left\{ \frac{i}{\partial \tau}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\} = i \nabla_r + \tilde{\nabla} \tag{22.5.4}
\]

\[
\mathcal{D}^* = i \nabla_r - \tilde{\nabla} \tag{22.5.5}
\]

\[
\mathcal{D} \mathcal{D}^* = \mathcal{D}^* \mathcal{D} = -\nabla_r \nabla_r - \langle \tilde{\nabla}, \tilde{\nabla} \rangle = -\nabla^2 \tag{22.5.6}
\]
23 Lage dosis beeldvorming
De auteur begon zijn carrière in de hightechindustrie in de ontwikkeling van beeldversterkerapparaten. Zijn taak was om te helpen de beeldkwaliteit van deze beeldversterkerapparaten te optimaliseren. Dit betrof zowel beeldversterkers voor nachtzichttoepassingen als Röntgen-beeldversterkers die gericht waren op medische toepassingen. Beide types van apparaten doelen op toepassing bij lage dosis. Deze apparaten bereiken beeldintensivering op heel verschillende manieren. Beide types kunnen als lineair werkend worden beschouwd. De hier beschreven kwalificatie van de beeldversterkerondersteunde beeldherkenning is mogelijk omdat de menselijke visuele waarneming voor lage dosis condities geoptimaliseerd is.

Bij lage dosis waarden heeft de auteur nooit golven in de geïntensiveerde beelden waargenomen. Op zijn hoogst zag hij hagelstormen van binnenvallende discrete deeltjes en de daarmee overeenkomstige detectiepatronen kunnen interferentiepatronen simuleren. De conclusie is dat de golven die in het waargenomen beeld aanwezig kunnen zijn waarschijnlijkheidsgolven zijn. Individuele fotonen worden waargenomen als gedetecteerde quanta. Ze worden nooit als golven gezien.

23.1 Geïntensiveerd beeld perceptie
Toen ik mijn nieuwe baan begon, confronteerde het hoofd van de afdeling me met een opmerkelijke relatie die waarnemers van geïntensiveerde beelden ontdek hadden en die hij gebruikte om de beeldkwaliteit van de beeldversterkerapparaten te optimaliseren. Het bleek dat waarnembaarheid stijgt wanneer de dosis stijgt. De waarnembaarheid steeg ook wanneer het oppervlak van het waargenomen detail toeneemt. Zoals verwacht, verbetert de waarnembaarheid wanneer het objectcontrast hoger is. Temporele integratie had ook een positief effect op de perceptie van relatief statische objecten. Fosforen die als scintillatoren worden toegepast
of als electron-naar-foton convertors veroorzaken een significante temporele integratie. De reden waarom de waarneembaarheid stijgt lijkt erop te wijzen dat de waargenomen kwanta gegenereerd worden door ruimtelijke Poisson-punt processen. Om die reden, zou het verhogen van het kwantum detectievermogen de belangrijkste doelstelling van de ontwikkelaar van de beeldversterkers moeten zijn. Echter, voor Röntgen-beeldversterking conflicteert toenemend gammakwantumdetectievermogen meestal met het behoud van voldoende beeldscherpte voor het waarnemen van kleine details. Zo is de tweede doelstelling voor de ontwikkeling van beeldversterkende apparaten het verbeteren van de beeldvormingsscherpte tot een aanvaardbaar niveau. De variantie van de kwantum versterkingsfactor vermindert de signaal-ruisverhouding. Ook dit effect moet worden gecompenseerd door het verhogen van de stralingsdosis. Dit is ongewenst. De kwantum versterkingsfactor moet hoog genoeg zijn om de beeldontvanger te activeren.

Een ander belangrijk feit is dat niet alleen het bestaan van een voorwerp door de ontvanger moet worden bepaald. Het
gedetecteerde object moet ook door de ontvanger worden herkend. Voor versterkte beeldherkenning worden sommige zeer ingewikkelde processen in het visuele traject van de waarnemer doorslaggevend. Het herkenningsproces vindt plaats in fasen en bij elke fase speelt de signaal-ruisverhouding een doorslaggevende rol. Als het niveau van de signaal-ruisverhouding te laag is, wordt de verdere signaaloverdracht geblokkeerd.

24 Menselijke waarneming
24.1 Informatie-codering

Met betrekking tot de visuele perceptie lijkt het menselijke visuele traject sterk op het visuele traject van alle gewervelde dieren. Dit werd ontdekt door Hubel en Wiesel [94]. Zij kregen voor hun werk een Nobelprijs.

maskers kunnen cirkelvormige vlekken onderscheiden. Via dergelijke maskers wordt het beeld gecodeerd voordat de informatie de vierde hersenschorslaag bereikt. Ergens in het traject kruist de informatie van het rechteroog de informatie die verwerkt is door het linkeroog. Het verschil wordt gebruikt voor het samenstellen van een driedimensionaal beeld. Kwantumruis kan het delicate codering proces gemakkelijk verstoren. Dat is de reden waarom de beslissingscentra hun informatie niet verder doorgeven wanneer de signaal-ruisverhouding onder een bepaald niveau blijft. Dat niveau wordt beïnvloed door de fysieke en mentale toestand van de waarnemer. Bij lage dosis, voorkomt deze signaal-ruisverhoudingsbarrière een psychotische weergave van de vergaarde informatie. De hogere niveaus van de hersenen ontvangen dus geen kopie van het beeld dat op het netvlies werd gedetecteerd. In plaats daarvan ontvangt deel van de hersenen een reeks van zeer betrouwbaar gecodeerde beeldgegevens die op een associatieve manier ontcijferd zullen worden. Verwacht wordt dat andere delen van de hersenen voor een deel op een soortgelijke ruis blokkerende manier handelen.

De ontwikkeling van de gewervelde dieren moet dit delicate visuele gegevensverwerkende subsysteem geïnstalleerd hebben in een periode waarin deze gewervelde dieren in tamelijk vage omstandigheden leefden, waarbij de visuele perceptie van lage-dosis beelden van vitaal belang was.

Dit geeft aan dat de signaal-ruisverhouding in het beeld dat bij de pupil van het oog aankomt een belangrijke invloed heeft op de perceptie van het lage-dosis beeld. Bij hoge dosis speelt de signaal-ruisverhouding nauwelijks een rol. In die situatie is de rol van de ruimtelijke onscherpte veel belangrijker.

Het is vrij eenvoudig om de signaal-ruisverhouding in het visuele kanaal te meten door een DC-meter en een RMS-meter toe te
passen. Echter, bij zeer lage dosis, kan de demping van beide meters problemen opleveren. Wat hier snel duidelijk wordt is de relatie van het signaal-ruisverhouding met het aantal van de kwanta die aan het signaal bijdragen. De gemeten relatie is typerend voor stochastische kwantumgeneratieprocessen die geclassificeerd worden als Poisson punt processen.

24.2 Onscherpste
De vervaging wordt veroorzaakt door de puntspreidingsfunctie. Deze functie is een ruimtelijk variërend binomiaal proces dat de efficiëntie van het originele Poisson-proces verzwakt. Hierdoor ontstaat een nieuw Poisson-proces met een ruimtelijk variërende efficiëntie. Verschillende componenten in de afbeeldingsketen kunnen aan de puntspreidingsfunctie bijdragen zodanig dat de effectieve puntspreidingsfunctie gelijk is aan de convolutie van de puntspreidingsfuncties van de componenten. Mathematisch kan men aantonen dat voor lineaire beeldverwerkers de optische overdrachtsfuncties een gemakkelijker toepasbaar kenmerk vormen dan de puntspreidingsfuncties omdat de Fouriertransformatie die de puntspreidingsfunctie omzet in de optische overdracht functie de convoluties omzet in eenvoudige vermenigvuldigingen.
De optische overdracht functie wordt door verschillende factoren beïnvloed. De voorbeelden zijn de kleurverdeling, de hoekverdeling en de fasehomogeniteit van de binnenvallende straling. Seidel aberraties en chromatische aberraties kenmerken de onvolkomenheden van de afbeeldende apparaten. Ook, versluierende verblinding kan de beeldkwaliteit belemmeren.

24.3 Detectieve kwantumefficiëntie
Het feit dat de signaal-ruisverhouding een doorslaggevende factor in het perceptie proces lijkt te zijn, heeft geleid tot een tweede manier om de relevante invloeden te karakteriseren. De detectieve kwantum efficiëntie (DQE) kenmerkt de efficiency van het gebruik van de beschikbare kwanta. Het vergelijkt de feitelijke situatie met de hypothetische situatie waarin alle gegenereerde kwanta in het informatiekanaal benut worden. De gemeten signaal-ruisverhouding wordt vergeleken met de ideale situatie waarin de stochastische generator een Poisson-proces is en geen binomiale processen dat primaire Poisson proces afzwakken. Dit betekent dat vervaging en temporele integratie geen rol moeten spelen bij de simulatie van de ideale referentiedetector die gebruikt wordt bij het specificeren van de DQE. Het gemeten apparaat zal worden vergeleken met kwantumdetectoren die alle beschikbare kwanta opvangen. Het betekent ook dat versterking van de processen geen extra relatieve variantie aan het signaal van de ideale detector toe mag voegen. De toepassing van microkanaalplaten zal zeker extra relatieve variantie toevoegen. Dit effect zal verrekend worden als een verslechtering van de detectie-efficiëntie en niet als een verandering van het stochastische proces van een Poisson-proces in een exponentieel proces. Mathematisch is dit een eigenaardige procedure, maar het is een geldige benadering wanneer de metingen worden gebruikt om de waarneembaarheid objectief te evalueren.
Het feit dat de objectieve kwalificatie van waarneembaarheid kan worden uitgevoerd door de optische overdracht functie in combinatie met de detectieve kwantum efficiëntie geeft aan dat de generatie van de kwanta wordt beheerst door een Poisson proces dat is gekoppeld aan een serie van binomiale processen en secundaire Poisson-processen, waarbij sommige van de binomiale processen geïmplementeerd worden door ruimtelijke puntspredingsfuncties en andere ruimtelijk uniforme signaalverzwakkers.

De processen die de primaire kwanta genereren, worden beschouwd als behorend tot de categorie van de inhomogene ruimtelijke Poisson-punt processen. Dit zijn processen die worden toegepast door mechanismen die de huppelocaties van elementaire deeltjes produceren, of het zijn processen die de verdeling van fotonen tijdens de uitzending van deze informatieboodschappers controleren.
25 Hoe de hersenen werken
25.1 Preprocessing
Een studie over hoe de omgeving waargenomen en geïnterpreteerd wordt moet beginnen met een onderzoek naar hoe de zintuigen en de hersenen samenwerken. Tussen de zintuigen en de hersenen bestaat een reeks van pre-processors die de inkomende signalen coderen en pre-interpreteren. Dit proces voert ook wat ruisfiltering uit. Dit gebeurt dusdanig dat de latere stadia van de verwerking niet door misinformatie gehinderd worden. Om die reden, fungeren de pre-processors als beslissingscentra waarbij de signaaloverdracht geblokkeerd wordt wanneer de signaal-ruisverhouding onder een bepaald niveau blijft. Bijvoorbeeld onder de waarde 2,3 (de wet van Crozier). Het niveau kan voor verschillende personen verschillen. Op deze wijze lopen de visuele trajecten via een cross-over naar de cortex. De cross-over codeert en voegt diepte-informatie toe. Na een reeks extra voorverwerkingsstappen arriveert het signaal in de vierde cortex-laag. Hier is ongeveer vier vierkante millimeters gewijd aan de directe omgeving van elke receptor die in de fovea voorkomt. In dit gebied wordt een volledige geometrische codering van de lokale geometrie en dynamiek van het waargenomen beeld gepresenteerd. Dit omvat het antwoord op de vraag of het gedetecteerde detail een lijn of een rand of een andere vorm is, in welke richting dat detail gepositioneerd is en of het detail beweegt. (Zie de papers van Hubel en Wiesel over het visuele traject en de visuele cortex voor meer gedetailleerde informatie) [94].

25.2 Verwerking
Zo werken de hersenen niet met een picturale kopie van het beeld dat op de fovea ontvangen wordt. In verdere stappen wordt de gecodeerde afbeelding geïnterpreteerd. Dat deel van de hersenen probeert om de details van de afbeelding met herinnerde en herkende aspecten te associëren. Wanneer dynamiek beschouwd
wordt dan moet ook in aanmerking genomen worden dat de ogen de input scene voortdurend scannen.

25.3 Beeldversterking

25.4 Kenmerken van beeldkwaliteit
Wanneer de afbeeldingsketen door een Poisson-proces gekenmerkt kan worden, dan kan de kwantum detectie efficiëntie kan worden gekenmerkt door de detectieve kwantum efficiëntie (DQE). De optische beeldkwaliteit kan worden gekenmerkt door de optische overdracht functie (OTF). Bij afbeelding met inhomogene licht is het voldoende om de modulus van de OTF, de modulatie overdracht functie (MTF) te gebruiken. De MTF van de afbeeldingsketen is het product van de MTF-fen van de componenten van de afbeeldingsketen.
25.5 De waarneming van ruisende beelden

De versterkingsfactor van beeldversterkers is dusdanig dat bij lage stralingsniveaus het uitgangsbeeld door grote aantallen afzonderlijke lichtpunten gevormd wordt die samen de indruk van een sneeuwvloed beeld geven. Het visuele traject bevat een opeenvolging van pre-processors die elk een deel van de codering van het object uitvoeren. Aan zijn ingang krijgt de visuele cortex een gecodeerd beeld in plaats van een optisch beeld van de waargenomen scène. Dit gecodeerde beeld wordt verder gecodeerd en geïnterpreteerd in kanalen die zich hogerop in de hersenen bevinden. Dit wordt gedaan door het associëren van de elementen van de gecodeerde afbeelding die in de visuele cortex aangeboden worden met daar al bestaande informatie. De samengevouwen visuele cortex biedt ongeveer vier vierkante millimeter voor het coderen van de omgeving van elke afzonderlijke receptor in de fovea. De pre-processors fungeren als beslissingscentra. Wanneer de aangeboden signaal-ruisverhouding te laag is, dan wordt de informatie niet doorgelaten. In het coderingsproces is dit een algemeen principe en regelt ook de associatie van gecodeerde gegevens in andere delen van de hersenen.

Het onderzoek resulteerde in een significante bijdrage van ons laboratorium aan de wereldnormen voor de meting van de OTF en de DQE.

25.6 Informatieassociatie

De associatieve aard van het proces is gemeenschappelijk voor alle soorten objecten en delen van objecten. Dat omvat ook onderwerpen die niet door één van de zintuigen binnentreed. Zo wordt bijvoorbeeld een huis niet in de hersenen opgeslagen als een compleet concept. Het wordt opgeslagen als een reeks details die met het concept geassocieerd kunnen worden. Als een voldoende aantal van deze gegevens vergaard zijn dan kan een passend beslissingscentrum in de hersenen besluiten dat het hele concept
aanwezig is. Op deze wijze kan niet alleen een bepaald huis herkend worden, het proces kan ook een reeks objecten die elk op het oorspronkelijke huis lijken herkennen. Het proces kan huizen classificeren. Door het toevoegen van details die kunnen worden geassocieerd met begrip huis kan het concept van een huis worden verbreed. De resulterende informatie, d.w.z. de informatie die het beslissingscentrum gepasseerd is, wordt voor verdere redenering gebruikt. Samen met andere details kunnen dezelfde details kunnen ook gebruikt worden om andere concepten door een andere associatie te detecteren. Wanneer de associatie nog te veel ruis produceert, wordt de informatie niet doorgelaten. Verdergaande verwerking wordt dan door dit feit is niet verstoord en niet veroorzaakt. Hoog genoeg in de hiërarchie kunnen individuen onderscheiden worden. De hersenen zijn niet statisch. Het netwerk van communicatiepaden en besluitvormingscentra wordt dynamisch aangepast aan gewijzigde behoeften.

25.7 Ruisfilter
Het beslissingsniveau voor de signaal-ruisverhouding kan van persoon tot persoon variëren. Als het niveau te laag wordt, dan kan de persoon beginnen te hallucineren. Verder kan het niveau worden beïnvloed door lichaamseigene signaalstoffen, door geneesmiddelen, door gifstoffen en door drugs.

25.8 Redenering
De hersenen zijn in staat tot gecompliceerde redeneringen. Echter het brein moet getraind worden om de redenering op een logische wijze uit te voeren. Bijvoorbeeld, moet het brein leren dat beginnen met een foutief uitgangspunt resulteert in een willekeurige conclusie, die waar of onwaar kan zijn. Wanneer een redeneringswijze nuttig blijkt, dan kan deze opgeslagen worden op een vergelijkbare manier als een observatie opgeslagen wordt. Niet de redenering zelf wordt opgeslagen, maar in plaats daarvan worden de details die deel uitmaken van de redeneringswijze opgeslagen. Ook hier spelen de

25.9 Andere diersoorten
Hubel en Wiesel deden hun experimenten op verschillende soorten gewervelde dieren, zoals goudvissen, katten en mensen. Hun belangrijkste doel was het visuele waarnemingssysteem. Waar de verwerking van de signalen van zintuigen in de hersenen voor alle gewervelde dieren vrij gelijkaardig is, is de werking van wijzen van het redeneren door mensen superieur in vergelijking met andere gewervelde dieren.

25.10 Mensen
De mensen hebben een voordeel over andere gewervelde dieren. Naast directe observatie kunnen de theorieën en de concepten van dingen ook door communicatie met andere partijen worden uitgewisseld. Dit gebeurt door onderwijs, discussie, het lezen van boeken, kranten of tijdschriften, het zien van films of video's of door surfen op het internet. Deze media kunnen ook als een referentiemedium fungeren dat de opslagcapaciteit van de hersenen uitbreidt.
Wetenschap
De wiskunde is een bijzonder nuttig hulpmiddel dat het vermogen van de hersenen uitbreidt om het redeneren op een logische en nauwkeurige manier uit te voeren. De fysica breidt dit vermogen verder uit met een focus op waarneembare zaken. Filosofie voegt zelfreflectie toe en richt zich op het waarom en hoe van het bestaan. Elke tak van de wetenschap draagt bij aan de capaciteiten van de individuen en aan de effectiviteit van de gemeenschap.

Fysische realiteit

Theorieën
Deze overwegingen leren dat theorieën een product van onze geest zijn. Zij kunnen als een kijkglas gebruikt worden dat bij de observatie en de interpretatie van de fysieke werkelijkheid helpt. Nochtans, is
het fout om de theorieën als of als deel van de fysieke werkelijkheid te interpreteren. Wanneer een theorie past, dan is het tot op zekere hoogte congruent met de fysieke werkelijkheid. Dat zegt niet dat wij als mens en met de omgeving van waaruit we onze waarnemingen doen geen deel uitmaken van de fysieke werkelijkheid. Het zegt dat wat onze hersenen produceren een ander ding is dan de fysieke werkelijkheid.

25.14 Uitvindingen van de menselijke geest
Oneindigheid is typisch een uitvinding die door de menselijke geest gedaan is. Er bestaan sterke aanwijzingen dat de natuur oneindigheid niet ondersteunt. In dezelfde zin is de onbeperkte precisie van de reële getallen in het fysieke universum verboden. We kunnen de resultaten van onze waarnemingen echter insluiten in een model dat oneindigheden en onbeperkte precisie omvat. Als voorbeeld zijn de klassieke mechanica en de veldentheorieën gebruiikers van deze concepten. Kwantummechanica toont ons dat we zodra we onbeperkte precisie introduceren onmiddellijk geconfronteerd worden met de introductie van het Heisenberg’s onzekerheidsbeginsel. We moeten oneindigheid en onbeperkte precisie invoeren om de paradoxen die anders in onze theorieën knijpen op te lossen. Wij gebruiken theorieën die in direct conflict met elkaar staan. Eén verbiedt oneindigheid; de andere theorie gebruikt en vereist het. Bovendien blijken er verschillende vormen van oneindigheid te bestaan. Dit zegt op zijn minst een ding; geen van de theorieën beschrijft de fysieke werkelijkheid correct. Dus, geen van de theorieën kan het concept van de fysieke werkelijkheid vervangen. Nog steeds het lijkt nuttig om alle zienswijzen naast elkaar te benutten. Het betekent dat grote zorg moet worden besteed aan de interpretatie van de theorieën.

25.15 Geschiedenis
De wiskundige theorieën en de fysieke theorieën vertonen de neiging om op de resultaten van andere exacte theorieën te bouwen. Na
enkele generaties ontstaat een zeer complex bouwwerk. Na een bepaalde tijd wordt het menselijkerwijs onmogelijk om te controleren of de bouwelementen correct zijn en of de samenstelling correct gedaan is. Dus, dienen alle gecompliceerde exacte theorieën op de proef gesteld worden.

25.16 Dromen
Wanneer we onze eigen dromen, fantasieën of theorieën bestuderen beschouwen we deze dromen, fantasieën en theorieën als onderdeel van de "fysieke werkelijkheid." Als de theorie congruent is met een deel van de fysieke werkelijkheid, dan wordt deze theorie nuttig als een zienswijze op de fysieke werkelijkheid.

25.17 Addendum
Ik heb het visuele traject slechts gemeten en berekend tot de vierde laag van de visuele cortex. Hubel en Wiesel deden hun metingen met operatief aangebrachte meetstiften. Wij deden perceptie experimenten en ontwikkelden en bouwden apparatuur die optimaal werkte met dat deel van het visuele traject. Tijdens dat onderzoek gebruikten we en ontwikkelden we verschillende disciplines die op dat moment (1970-1987) als gevorderd werden beschouwd. Bijvoorbeeld schreef ik samen met Wolfgang Wittenstein het grootste deel van de STANAG voor de meting van de optische overdracht functie (OTF) en zijn modulus de modulatie overdracht functie (MTF) van elektro-optische apparaten. Later nam ik deze NAVO-norm mee naar de ISO-normalisatiecommissie die de norm omzette naar een gelijkwaardige norm voor optische apparatuur. Vervolgens was ik ook betrokken bij het ontwikkelen van de overeenkomstige normen voor IEC en DIN. Parallel hieraan heb ik ook deelgenomen aan de ontwikkeling van de IEC-en DIN-normen voor de meting van de detectieve kwantum efficiëntie (DQE). Het onderzoek van de afbeeldingsketen die start bij de stralingsbron en eindigt in de visuele cortex resulteerde in een nuttig waarnemingsmodel dat we gebruikten om onze producten te verbeteren. De gestandaardiseerde
meetmethoden hebben ons in staat gesteld om de beeldkwaliteit van onze producten aan onze klanten op een betrouwbare en vertrouwde manier te communiceren.

Persoonlijk bood me deze periode een diep inzicht in de relatie tussen optica en kwantumfysica. Ik leerde Fouriertransformaties gebruiken in een omgeving waar de ideale Fouriertheorie niet past. De gemeten multidimensionale Fouriertransformatie heeft een beperkt geldigheidsbereik, niet alleen vanwege de ruimtelijke niet-uniformiteit van de afbeeldingseigenschappen. Het meetresultaat hangt ook af van de hoekverdeling en de chromatische verdeling van de gebruikte straling en van de homogeniteit van die straling. Een deel van de afbeeldingsketen bestond uit glazen lenzen. Een ander deel bevatte elektronenlenzen en glasvezelplaten. Tussenliggende afbeeldingsoppervlakken bestaan uit fosfore die gamma kwanta omzetten. Andere oppervlakken zijn bedekt met fotokathodelagen die te converteren gedetecteerde kwanta omzetten in elektronen. Deze elektronen worden met een elektro-optisch lenssysteem afgebeeld op een fosfor laag die op het uitgangsvenster aangebracht is. De onderzochte toestellen waren beeldversterkerbuizen voor nachtzichtdoeleinden en Röntgenbeeldversterkerbuizen die gebruikt worden in medisch diagnostische apparatuur. Op deze wijze kreeg ik een diep inzicht in het gedrag van kwanta en ervoor uit de eerste hand dat alle informatie naar ons toe komt in de vorm van een ruisende wolk van kwanta. Alleen in grote aantallen kunnen deze kwanta geïnterpreteerd worden als een continue stralingsgolf.
Fysiek scheppingsverhaal

De fundamentele beschouwing van de fysieke werkelijkheid leidt al gauw tot een scheppingsverhaal, waarin het hele verloop van de schepping van wat er in het heelal voorkomt, wordt verteld.

26.1 Motivatie

Mijn persoonlijke natuurkundige theorie over het universum en alles wat daarin voorkomt, gaat steeds meer lijken op een scheppingsverhaal. Nu moet je daar erg mee oppassen, want binnen de kortste keren word je verweten dat je je bezighoudt met religie en vooral natuurkundigen zijn al gauw wars van het vermengen van wetenschap met geloof. Toch heb ik het erop gewaagd om mijn theorie maar eens in de vorm van een scheppingsverhaal op te schrijven. Het is wel doorspekt met allerlei wiskundige en natuurkundige begrippen, want het blijft een natuurkundig en wetenschappelijk gezond verhaal. Ik ontkom er dan ook niet aan om uit te leggen wat je allemaal met Hilbertruimten kunt doen en wat getallensystemen daarbij betekenen. Zonder deze basis is het erg moeilijk om een sluitend scheppingsverhaal te maken. Want alles is door de schepper al aan het begin van de schepping in een opslagmedium gearchiveerd en dit boek kunnen de schepsels alleen nog maar lezen. In het opgeslagen scheppingsverhaal verandert niets meer! Dit zal alle vrijdenkers desillusioneren. Toch weet de schepper ons aardig voor de gek te houden en ons wijs te maken dat we zelf nog invloed kunnen uitoefenen. Hij doet dit door stochastische processen het universum te laten besturen. Bovendien kunnen we in het scheppingsverhaal alleen terugkijken. Alleen de schepper zelf heeft het totale overzicht over het verleden, het heden en de toekomst. Daarnaast blijkt de schepper een modulair ontwerper en een modulaire bouwer te zijn. In feite geeft hij aan zijn intelligente schepsels een duidelijk en zeer bruikbaar voorbeeld. Hij fungeert, als je dat wilt opmerken, als een prediker die aangeeft hoe je je zou moeten gedragen als je wilt dat jouw gemeenschap blijft
voortbestaan. De schepper blijkt in staat om via een klein aantal simpele grondregels uiteindelijk een aantal intelligente schepsels te creëren. Dat heeft dan wel meer dan dertien miljard jaar geduurd, maar recht voor onze ogen heeft hij dat resultaat bereikt.

26.2 Inleiding
Dit verhaal gaat niet over religie. Het gaat wel over de schepping van het universum. Als het woord schepper gebruikt wordt, dan betreft dit een scheppend abstract object en niet een scheppend individu.

Het heelal is een veld waarin wij leven. Het veld kan vervormen door de inbedding van massieve objecten en is drager van straling, waarvan een deel met het blote oog waargenomen kan worden.

De natuurkundige realiteit wordt vertegenwoordigd door dit veld en door wat er in dit veld gebeurt.

Wat er in dit veld voorkomt, is op het moment van de schepping opgeslagen in een abstract opslagmedium. Dit opslagmedium noemen we het Hilbertboekmodel. Het HBM bestaat uit een groot aantal afzonderlijke boeken die elk de geschiedenis van een elementair deeltje beschrijven, en uit een achtergrondplatform dat de geschiedenis van het heelal op een andere wijze archiveert. Elk deel van het model beschrijft het ontstaan, het verleden, het heden en de toekomst van het beschreven onderwerp. Het heden is een venster dat over alle boeken loopt.

26.3 Schepping
Deze geschiedschrijving geeft de mogelijkheid om over een scheppingsverhaal te spreken. In feite is het model zelf de schepper van de situatie.

Elementaire deeltjes worden beschreven in een wiskundig opslagmedium dat bekend staat als een quaternionische separabele Hilbertruimte. Een Hilbertruimte is een bijzondere vectorruimte, die voor elk paar vectoren een inwendig product biedt. Quaternionen
zijn rekenkundige getallen die uit een scalar en een driedimensionale vector samengesteld zijn. Daardoor zijn ze perfect geschikt om er een tiendtstempel en een driedimensionale locatie in op te slaan. De quaternionen verlenen de getalwaarde aan het inwendige product van het betreffende vectorpaar. De separabele Hilbertruimte bevat operatoren die de afbeelding van de Hilbertruimte op zichzelf beschrijven en daarbij rationale quaternionen in aan Hilbertvectoren verbonden opslagplaatsen kunnen opslaan. De betreffende getallen heten eigenwaarden en de bijbehorende vectoren heten eigenvectoren. De eigenwaarden vormen tezamen de eigenruimte van de operator.

Quaternionische getallensystemen bestaan in velerlei versies die onderling verschillen in de wijze, dat hun getallen door Cartesische en polaire coördinatensystemen gerangschikt zijn. Elke quaternionische separabele Hilbertruimte kiest een eigen versie van het getallensysteem en onderhoudt die keuze in de eigenruimte van een speciale referentieoperator. Op deze wijze beschikt de Hilbertruimte over een privé parameterruimte. De bij de elementaire deeltjes behorende separabele Hilbertruimtes zweven met het geometrische centrum van hun parameterruimte over de parameterruimte van het achtergrondplatform. Met behulp van deze parameterruimte en een set continue quaternionische functies, kan een serie nieuwe gedefinieerde operatoren gespecificeerd worden. De nieuwe operator maakt gebruik van de eigenvectoren van de referentieoperator en vervangt de bijbehorende parameters als eigenwaarde door de doelwaarden van de gekozen functie voor deze parameterwaarde. Deze nieuw gedefinieerde operator beschrijft een veld dat door de functie beschreven wordt. Het veld is een continuüm. De eigenruimtes van de operatoren zijn aftelbaar. Dus de eigenruimte van de nieuwe operator bevat de gesampelde waarden van het veld. In feite is ook de parameterruimte een gesampeld continuüm. De eigenruimte van de referentieoperator bevat alleen
de rationale elementen van de geselecteerde versie van het getallensysteem.

Niets voorkomt dat alle toegepaste separabele Hilbertruimten gebruikmaken van dezelfde onderliggende vectorruimte. We gaan ervan uit dat het achtergrondplatform een quaternionische separabele Hilbertruimte betreft die oneindig veel dimensies omvat. Deze bezit een unieke, niet-separabele partner Hilbertruimte die operatoren ondersteunt die continue eigenruimten bezitten. Die eigenruimten zijn dus volledige velden. Zulke eigenruimten zijn niet aftelbaar. Een van deze operatoren bezit een eigenruimte die het veld van het universum vertegenwoordigt. Dit veld wordt vervormd door de inbedding van de huppellandingen van de elementaire deeltjes. De locaties van de huppellandingen zijn opgeslagen in de eigenruimte van de voetafdrukoperator in de privé Hilbertruimte van het betreffende elementaire deeltje. De eigenruimte van de voetafdrukoperator beschrijft na sortering van de tijdstempels de hele levensloop van het elementaire deeltje als één voortdurend huppelpad. Dat huppelpad vormt keer op keer en steeds weerkerend een zwerm van huppellandingslocaties. Een locatie dichtheidsverdeling beschrijft de zwerm. Omdat het deeltje puntvormig is, is dit een detectiewaarschijnlijkheidsdichtheidsverdeling. Deze is gelijk aan het kwadraat van de modulus van de van wat natuurkundigen de golffunctie van het elementaire deeltje noemen. De huppellandingslocatiezwerm vertegenwoordigt het deeltje.

26.4 Dynamiek
Op het moment van de schepping laat de schepper een privé stochastisch proces de huppellandingslocaties van elk elementair deeltje bepalen. Dit proces is een combinatie van een Poisson-proces en een binomiaal proces. Een puntspreidingsfunctie bestuurt het binomiaal proces. Het stochastisch proces bezit een karakteristieke functie die ervoor zorgt dat er een samenhangende zwerm

De versie van het quaternionische getallensysteem die de privé Hilbertruimte van het elementaire deeltje kiest, bepaalt de symmetrie van de Hilbertruimte en van het elementaire deeltje. Dit kenmerkt zich door een elektrische lading die in het geometrische midden van de parameterruimte van het deeltjesplatform huist. De assen van alle Cartesische coördinaatsystemen moeten evenwijdig lopen of loodrecht op elkaar staan. Het geometrische midden mag wel verschillen en mag zelfs bewegen. Alleen de rangschikking langs de assen mag in teken verschillen. De elektrische lading blijkt een gevolg te zijn van het verschil tussen de symmetrie van het glijdende platform en de symmetrie van het achtergrondplatform. Omdat er maar een klein aantal versies van het quaternionische getallensysteem toegelaten worden, bestaan er ook maar weinig verschillende elektrische ladingen. Het gevolg is dat er elektrische ladingen kunnen voorkomen in de verhoudingen -3, -2, -1, 0, 1, 2, en 3.

De zwerm van huppellandingslocaties kan een zwerm van bolvormige pulsresponsies veroorzaken. Alleen een isotrope puls veroorzaakt een bolvormig schokfront. Dit schokfront integreert over tijd in de Greense functie van het veld. Deze functie heeft volume en de pulsrespons injecteert dit volume in het veld. Het schokfront spreidt dit volume vervolgens over het veld. Het gevolg is dat de initiële vervorming van het veld snel vervloeit. Om een significante en blijvende vervorming te bereiken, moet het stochastische proces pulsen blijven leveren. Om een indruk te krijgen van de vervorming moeten we de locatiedichtheidsverdeling van de huppellandingslocatiezwerm convolueren met de Greense functie van het veld. Convolueren vervaagt het beeld van de zwerm. Dit geeft nog geen correct beeld, want de overlapping van de bolvormige schokfronten is afhankelijk van de ruimtelijke dichtheid van de zwerm en van de tijd die de schokfronten nodig hebben om voldoende te overlappen. Ver van het geometrische centrum van de zwerm gaat de vervorming weer lijken op de vorm van de Greense functie. De beide functies verschillen daar nog in een factor van elkaar. Deze factor geeft de sterkte van de vervorming aan. De factor is evenredig met de massa van het deeltje. In feite is dit de methode waarop de geleerden de massa van een object bepalen.
De elementaire deeltjes gedragen zich als elementaire modules. Tezamen vormen zij alle andere modules die in het universum voorkomen. Sommige modules vormen modulaire systemen. De samengestelde modules en de modulaire systemen worden ook door een stochastisch proces beheerst. Dit is een ander type proces dan het type proces dat de voetafdruk van het elementaire deeltje regelt. Dit tweede type regelt de samenstelling van het object. Dit type stochastisch proces bezit eveneens een karakteristieke functie. Deze karakteristieke functie is een dynamische superpositie van de karakteristieke functies van de componenten van het samengestelde object. De superpositiecoëfficiënten fungeren als verplaatsingsgeneratoren. Zij bepalen de interne posities van de componenten. Bij de karakteristieke functie wordt een extra verplaatsingsgenerator toegevoegd die de verplaatsing van het module als geheel regelt. Dit betekent dat het module als één geheel beweegt. De binding van de componenten wordt nog versterkt door de vervorming van het inbeddende veld en door de aantrekking van de elektrische ladingen van de elementaire deeltjes.

die voor de waarnemer in het verleden ligt. Het gevolg is dat de informatie die in het opslagmedium in Euclidische vorm in een tijdstempel en een driedimensionale locatie opgeslagen is, door de waarnemer ontvangen wordt in ruimtetijd coördinaten. Een hyperbolische Lorentztransformatie beschrijft de omzetting van het Euclidische opslagcoördinatensysteem in de ruimtetijd coördinaten. De Lorentztransformatie voegt tijdinterval-dilatatie en lengtecompressie toe. De vervorming van het inbeddingsveld vervormt ook het pad waarlangs de informatie getransporteerd wordt. Dit beïnvloedt ook de getransporteerde informatie.

26.6 Illusie
De schepper vult op het scheppingsmoment de eigenruimtes van de voetafdrukoperatoren. De inhoud van deze opslag verandert daarna niet meer. Ook de latere gebeurtenissen in het inbeddingsveld hebben daarop geen invloed. Doordat de schepper stochastische processen gebruikt om de voetafdrukopslag te vullen, zullen intelligente waarnemers toch de indruk krijgen dat zij nog over een vrije wil beschikken. De inbedding van de voetafdrukken volgt via de opgeslagen tijdstempels de werking van de stochastische processen stap voor stap. De waarnemer moet niet fatalistisch worden en denken dat zijn gedrag er niet toe doet, doordat alles al vastligt. Het omgekeerde is waar. Het gedrag van elke module heeft gevolgen doordat elke waargenomen gebeurtenis de waarnemer beïnvloedt. Dit feit beïnvloedt de toekomst op nagenoeg causale wijze. De stochastische verstoring is relatief klein.

26.7 Oorzaak
De drijvende kracht achter de dynamiek van het heelal is de voortdurende inbedding van de huppellandingspunten van de elementaire deeltjes in het veld dat het heelal vertegenwoordigt.
Het lijkt alsof de voortdurende vervorming van het veld uit het niets lijkt te komen en dat de individuele vervormingen vervolgens snel verdwijnen door het wegvloeien van het ingebrachte volume.

De schokfronten spelen daarbij een essentiële rol, doordat de bolvormige fronten het ingebrachte volume over het veld verspreiden. De ééndimensionale schokfronten transporteren informatie en daarnaast nog extra bewegingsenergie. Zij verplaatsen de platforms waarop de elementaire deeltjes door het heelal reizen.

Van begin tot eind

Zwarte gaten zijn bijzondere verschijnselen. Zij zijn omrande gebieden waarin volume alleen nog kan worden toegevoegd door de omranding te verwijden. Geen enkel schokfront kan deze omranding

Dat volume komt overeen met opslagcapaciteit die niet langer meedoet aan het proces van modulair design en modulaire constructie van hogere orde modules. Binnen het zwarte gat kunnen geen samengestelde modules gevormd worden. De stochastische processen kunnen hoogstens bijdragen aan het toenemen van het volume van het zwarte gat.

Dit voorspelt wat er uiteindelijk met het universum zal gebeuren. Het universum wordt grotendeels overdekt door zwarte gaten die alles en ook elkaar opslokken. Hoogstens zullen aan de randen de elementaire deeltjes met hun platformen overblijven. Alle dynamiek zal uiteindelijk verdwijnen.

26.9 Lessen
De schepper is zeker geen goedertieren God. In feite is het model dat alles beschrijft zelf te beschouwen als de schepper. Het heeft geen zin om de schepper om goedgezindheid te smeken. De schepper is volledig neutraal en trekt zich niets aan van wat er met zijn schepsels gebeurt. Dit is de harde werkelijkheid die uit het natuurkundig scheppingsverhaal spreekt. Toch leert het scheppingsverhaal hoe intelligente schepsels zich zouden moeten gedragen. De les is dat niet het fitste individu overleeft, maar het moduletype dat het beste voor zijn leden zorgt en ook zorgdraagt voor de typegemeenschappen waarvan zij afhankelijk zijn. Het heeft zin om zorg te besteden aan de eigen leefgemeenschap.
De schepper is een modulaire ontwerper en een modulaire constructeur. Voor zijn intelligentie schepsels levert dit een belangrijk voorbeeld. Modulaire constructie gaat zeer zuinig om met haar bronnen en levert relatief snel bruikbare en betrouwbare resultaten op. Deze wijze van werken creëert zijn eigen regels. Het heeft zin om een groot aantal en een grote variëteit van passende modules bij de hand te hebben. Het heeft zelfs zin om gemeenschappen van moduletypes aan te leggen. Dat eist vervolgens om goed te zorgen voor de modulegemeenschappen waarvan men afhankelijk is. Dat geldt ook voor de gemeenschap waar men zelf lid van is. En het geldt zelfs voor de hele leefomgeving.

26.10 Model alternatieven.
Het onderliggende Hilbert Boek Model biedt keuzevrijheden die geen invloed hebben op de werking van het model. Zo kunnen de dynamisch geometrische gegevens van gebeurtenissen in het opslagmedium opgeslagen worden zolang zij nog niet gebeurd zijn. Zelfs als deze pas op het evenement zelf opgeslagen worden dan wordt het beeld dat waarnemers ontvangen niet verstoord. Dit betekent wel iets voor de interpretatie van hoe de schepper zich gedraagt. De schepper kan op dit moment nog rekening houden met smeekbeden van zijn schepsels en de toekomst van deze schepsels aanpassen door de stochastische processen die de volgende dynamisch geometrische gegevens bepalen te beïnvloeden. Dit betekent echter een uiterst ingewikkelde ingreep door een schepper die al zijn andere ingrepen op uiterst eenvoudige en economische wijze implementeerde. Het zou het beeld van een goedertieren God kunnen verenigen met een overigens hartvochtige schepper.

26.11 Stochastische processen
Stochastische processen spelen een zeer belangrijke rol in het Hilbertboekmodel. Vooral de processen die het huppelpad van een elementair deeltje bepalen, regeren het dynamische gedrag in het universum. Uit alles blijkt dat de schepper steeds de meest
eenvoudige weg kiest om zijn doel te verwezenlijken. Het is daarom interessant om de mogelijkheden van de realisatie van deze processen na te gaan. Het direct bepalen van het huppelpad lijkt erg ingewikkeld. Waarschijnlijk is eerst uitgegaan van een veld dat de karakteristieke functie van het proces regelt. Of beter nog het veld dat het ruimtelijk spectrum van deze functie bepaalt. De functie die dit veld beschrijft hebben we puntspreidingsfunctie genoemd. Laten we eens veronderstellen dat deze functie op een driedimensionale normale verdeling lijkt. De karakteristieke functie is dan een Gaussische verdeling. Het levenslange huppelpad kan nu gevormd worden door de rationele elementen in dit veld op willekeurige wijze te rangschikken. Dit kan verdeeld over de hele levenscyclus gebeuren, maar het kan ook beperkt worden tot een telkens weerkerende regeneratiecyclus die een volledige huppellandingslocatieworm aflevert.
27 Verhaal van een oorlog tegen software complexiteit

27.1 Samenvatting

Dit is de verantwoording en de uitleg van de loop van een project dat tot doel had om de efficiëntie van ingebedde softwaregeneratie met verscheidene grootteordes te verbeteren. Alle factoren die het succes van het project hebben bepaald, worden eerlijk en in detail behandeld.

Het verhaal toont aan dat ook de menselijke activiteit wordt beïnvloed door de manier waarop producten zijn ontworpen en gebouwd.

27.2 Prelude

In 1995 was de fysicus HvL een medewerker van een intern softwarehuis van een groot elektronica bedrijf. Zijn specialiteit was het creëren van wetenschappelijke software. Op dat moment kreeg hij de uitnodiging van een softwarestrateeg HdV om zich aan te sluiten bij de halfgeleider-afdeling om een snel opkomend probleem op te lossen. De kosten van complexe ingebedde software groeide exponentieel en dit zou in de naaste toekomst tot ernstige problemen leiden. De redenen waarom de kosten van softwaregeneratie exponentieel groeiden, zijn de groeiende omvang en de groeiende complexiteit van de ingebedde software die in high-tech apparatuur gebruikt wordt. Een van de redenen voor de niet-lineaire groei van de kosten is de onbeheersbare groei van de complexiteit. Toch wordt de exponentiële groei van de kosten voornamelijk veroorzaakt door het overtreffen van de beschikbare middelen, wat op haar beurt maatregelen vereist tegen verwachte interne en externe schadeclaims. In veel gevallen, werden softwareprojecten gestopt wanneer de kosten verwacht werden te exploderen, of wanneer de inspanningen het verwachte resultaat niet lijken te bereiken.
27.3 Analyse
Er bestaan verschillende mogelijke oplossingen voor dit dilemma. Eén ervan is om softwareontwikkeling naar lagelonenlanden te verplaatsen. Een ander is het toepassen van open-source software. Een derde mogelijkheid is het verhogen van de kwaliteit van het softwaregeneratieproces. Een manier om dit te doen is het verbeteren van de controle van het verloop van het generatie proces. Een andere manier is het verbeteren van de manier waarop software wordt gegenereerd. Het management van het elektronica bedrijf probeerde al deze mogelijkheden. Het verbeteren van de controle van de voortgang van het softwaregeneratieproces heeft weinig zin wanneer het generatieproces zelf ernstige tekorten heeft.

27.4 Instelling
Het elektronicaldrijf is succesvol in het genereren van hardware. Dit komt voor een groot deel, omdat de hardware via een modulaire aanpak gegenereerd wordt. Dit is een van de redenen dat het onderzoekslaboratorium van het bedrijf een speciale manier ontwierp om modulaire ingebetide software te creëren. Echter, dit was een vrij gesloten systeem, en het was gericht op de directe behoefte, het genereren van software voor de zelfgeproduceerde consumentenapparaten. Het is intuïtief te begrijpen dat een modulaire aanpak de effectiviteit van softwaregeneratie zal verbeteren. Er zijn ook veel objectieve redenen voor dit standpunt.

27.5 Geschiedenis
De elektronica firma was met zijn softwareprojecten niet erg succesvol. Veel softwareprojecten werden na het verbranden van honderden manjaren en miljoenen dollars gestopt. Daarbij werden de projectleiders, de systeemarchitecten, en de softwareontwerpers in wanhoop achtergelaten. Om die reden, werd verlichting gezocht in outsourcing van de softwaregeneratie. Een vorm daarvan is het gebruik van open-source software. Parallel daaraan werd de interne softwaregeneratie voor een belangrijk deel verhuisd naar
lagelonenlanden zoals India. Dit was slechts een kortetermijnoplossing. De exponentiële groei van de kosten nam daar ook zijn tol.

Ook de overstap naar open-source software was geen slimme beslissing. De elektronica firma had daardoor geen controle meer over de manier waarop zich de open-source software ontwikkelde en de open-source softwaregeneratie leed aan dezelfde slechte praktijken als het eerder gehanteerde commerciële softwaregeneratie proces. Commerciële softwaregeneratie en open-source softwaregeneratie werken beiden niet-modulair. Er bestaat geen gezonde en levendige softwaremodule markt die de diversiteit, de beschikbaarheid, de toegankelijkheid en de gunstige kwaliteit/prijs verhouding levert die de hardware modulemarkt kenmerkt en stimuleert. Zo wordt de hightech hardware apparatenindustrie nog steeds geconfronteerd met de negatieve aspecten van de huidige softwaregeneratie technologie. Het drijft hun kosten hoog en de kwetsbaarheid van de software wordt overgedragen aan de hardware producten die op de software draaien. De ineffectiviteit van de softwaregeneratie is van invloed op de betaalbaarheid en op de tijd die verloopt om de markt van de hardware-producten te bereiken.

27.6 Strategie

Een kleine groep van deskundigen, bestaande uit de softwarespecialist HvL, de softwarestrateeg HdV en een software marketingspecialist WR onderzocht de overblijvende mogelijkheden en concludeerde dat een drastische verandering in de manier waarop software wordt gegenereerd een veelbelovende oplossing van het probleem vormt. De manier waarop hardware gegenereerd wordt, is als voorbeeld genomen. Hardware wordt meestal op een modulaire wijze gegenereerd. Modularisatie vermindert de relationele complexiteit van het ontwerp- en bouwproces. Het maakt het ook
mogelijk het ontwerp en de bouwwerkzaamheden te verdelen en te delegeren. Het maakt zelfs een bloeiende modulemarkt mogelijk.

27.7 Aanpak

De groep probeerde om verkopers van generatiehulpmiddelen voor ingebedde software te interesseren om zich bij het project aan te sluiten. Het was duidelijk dat internationale normen een cruciale rol zouden spelen. Dus, de groep stimuleerde het management van de elektronicabedrijf om andere elektronicabedrijven en de OMG bij het project te betrekken. Al deze maatregelen leidden niet tot voldoende succes. De toolverkopers waren geïnteresseerd, maar gebruikten de gelegenheid om te controleren of hun huidige manier van werken in gevaar was. Ze hebben niet echt aan de ontwikkeling deelgenomen. De andere elektronicabedrijven kozen de rol van toeschouwer en vroegen om een overtuigende demo van het concept. OMG laat normen door de belanghebbende partijen creëren. Het is niet gebruikelijk dat de norm door een enkel bedrijf wordt ingevoerd.

Het project heeft geen oplossing gezocht voor de vereiste beveiliging van de in producten geïnvesteerde intelligentie die mogelijke diefstal van de ideeën die binnen het skelet van de modules worden toegepast voorkomt. Mogelijke oplossingen zijn encryptie van toegepaste software en het bestraffen van diefstal door hackers door ze uit te sluiten van systeemdiensten. Het hardware platform moet de vereiste software-encryptie en decryptie ondersteunen.

27.8 Wat er gebeurd is

De groep stuitte op ernstige weerstand tegen hun intenties van interne software-ontwikkelingsgroepen. Dit gebeurde omdat verwacht werd dat de generatie van de modules uitbesteed zou worden aan de toeleveranciers van de softwaromodulemarkt. Deze angst is reëel. Aan de andere kant werd het meer en meer duidelijk dat de interne softwaregeneratie mogelijkheden niet opwogen tegen de taak om grote en complexe ingebedde softwaresystemen te
creëren. Verscheidene dure debacles bewezen dit. Vooral managers, met inbegrip van de managers van softwaregroepen, toonden aan dat zij een juist gevoel misten voor de factoren die complexe softwaregeneratie beïnvloeden.

27.9Aanval
De groep besloot om een demonstratieversie van het modulaire systeem van de softwaregeneratie te bouwen. Dat systeem moest belangrijke delen van het uiteindelijk beoogde systeem omvatten. De demo omvat softwaremodule ontwikkelingsgereedschappen, systeemconfiguratiehulpmiddelen, online- en offlinebestanden op basis van bewaarplaatsen die fungeren als doorzoekbare uitwisselingsplaatsen voor machine en menselijk leesbare specificaties van modules en interfaces en centrale diensten die fungeren als een marktplaats voor softwaremodules. Het moduleontwikkelgereedschap kan skeletten van modules genereren, en het kan de interfacedefinities genereren op basis van specificaties die worden opgehaald uit online- en offline bewaarplaatsen. Het hulpprogramma helpt bij het vullen de skeletten met werkende code. Het configuratiehulpmiddel haalt specificaties van modules en interfaces uit de bewaarplaatsen op. Het kan de binaire bestanden van modules van de marktplaats of van een lokale opslag binnenhalen. Het maakt de meestal automatische assemblage van modules in doelstystemen mogelijk. Het voegt een toegewijde RTOS toe dat uit automatisch gegenereerde modules bestaat. De RTOS biedt automatische geheugen garbage collection. De centrale dienst verzamelt specificaties van de moduleontwikkelaars en distribueert deze naar de online bewaarplaatsen. De centrale dienst verzamelt ook de binaire codes van de modules en slaat de specificaties en de binaire codes op in zijn banken. De centrale dienst fungeert als een modulemarkt.
27.10 Set-back

27.11 Overblijfselen
De centrale dienst werkt gedeeltelijk. De ontwikkelingshulpmiddelen functioneren. Modules kunnen worden gegenereerd, en de configuratietool kan systemen uit deze modules assembleren en een servicelaag toevoegen die bestaat uit automatisch gegenereerde toegewijde modules. De servicelaag bevat geheugen garbage collection. Er worden verbindingsschema's en planningsschema's gebruikt waarmee de schakeling tussen systeemmodi dynamisch wordt gecontroleerd. Het gebouwde systeem bevat geen HAL, en het bevat geen interruptiediensten. In plaats daarvan berust de demo op de diensten van een virtuele machine of een POSIX OS. De demo is niet geschikt om bovenop de hardware te werken, maar de demo is goed genoeg voor de meeste demonstratiedoeleinden. De tools genereren software in C++, maar als een bonus, kan de demo ook C#-code leveren. Die code werkt bovenop een dotNet virtuele machine. De tools en de centrale diensten zijn in C# geschreven.

Afgezien van SW/SW interfaces, kunnen de modules ook HW/SW-interfaces bevatten. Streaming interfaces en notificatie-interfaces die interrupties kunnen verwerken waren gepland. Het skelet van de modules is gemodelleerd naar het model van Microsoft's component object model (COM), maar de IUnknown interface wordt vervangen door de IAccessor interface. Die interface vervangt de AddRef en de Release functies door een ResetInstance routine. In plaats van de ontwerper, is het systeem verantwoordelijk gemaakt voor de
geheugen garbage collection. Om die reden, wordt het nieuwe moduleskelet robuust component object model (RCOM) genoemd.

27.12 Doel
De demo was gepland om de mogelijkheid van de generatie van modulaire real-time ingebedde software aan te tonen. Dat doel is niet bereikt. In het nu voltooide deel van de demo worden echter veel aspecten van het beoogde doel weergegeven. Dat deel biedt vertrouwen in de haalbaarheid van het uiteindelijke doel.

27.13 Lessen
Het project leerde ook veel waardevolle lessen.

- De huidige leveranciers van software generatie tools zijn niet geïnteresseerd in een drastische verandering in de manier waarop software wordt gegenereerd.

- Hoewel ingebedde software grote problemen veroorzaakt, aarzelen de bedrijven die hightech apparatuur of hightech systemen produceren om samen te werken bij het verbeteren van het softwaregeneratieproces. Softwaregeneratie is niet hun kracht.

- Deze wereld is niet goed in het organiseren van acties die nogal ingewikkeld zijn. Daarom is het moeilijk om normen voor nieuwe ingewikkelde onderwerpen te regelen.

- Het is moeilijk om het management te motiveren om nieuwe wegen in te gaan wanneer de redenen niet erg eenvoudig zijn en inzicht in het betreffende onderwerp eisen.

- Managers van deze dagen zijn geïnteresseerd in korte termijn laag-risicooplossingen. Zij zijn zelfs wanneer dat hoge winsten belooft niet geïnteresseerd in lange termijn oplossingen.

- Hetzelfde geldt voor de beleggers van vandaag.
Hoewel de meeste betrokken mensen intuïtief zien dat een modulaire aanpak een betere en effectiever generatieproces en eenvoudiger supportmanagement oplevert, vergeten de meeste van deze mensen dat zonder een geschikte modulemarkt de modules te duur en te schaars zijn om de veronderstelling waar te maken.

Een modulaire systeemgeneratieaanpak heeft geen zin wanneer zij niet over een geïntegreerde en goed functionerende modulemarkt beschikt. Dit betekent dat daarbij ook een systeem van online en offline bewaarplaatsen die de specificaties van modules en specificaties bevatten betrokken moet worden.

Als genoeg middelen aanwezig zijn, kan zelfs een kleine groep van gemotiveerde software-experts een werkende versie van een modulair softwaregeneratiesysteem ontwerpen en bouwen dat alle essentiële onderdelen omvat.

27.14 Conclusies
Deze wereld is niet goed in het creëren van nieuwe normen. We zijn echter goed in het accepteren van standaarden. Grote elektronische bedrijven lijken niet in staat een geschikt softwaregeneratiesysteem te creëren. Begrijpelijk is dat de bestaande software-industrie niet bereid lijkt om de winst op te geven die zij uit de huidige betreurenswaardige manier van softwaregeneratie halen.

27.15 Uitweg
Er bestaat nog steeds een mogelijke manier om uit deze ellende te komen. Wanneer een kleine groep van enthousiaste softwareontwikkelaars en venturekapitaal investeerders starten met een project dat een werkende versie van een modulair softwaregeneratiesysteem bouwt dat alle ingrediënten bevat om een succesvol resultaat te krijgen, dan kan dat leiden tot een kiem die als
een oildruppel uit zal breiden en de huidige manier van softwaregeneratie zal smoren.

In een wereld waarin een dergelijk systeem bestaat worden de complexe softwareassemblages niet langer gemaakt door een geniale systeemarchitect en door besteding van honderden manjaren aan dure programmeurs, maar in plaats daarvan door een creatieve modulaire systeemassembleur die geautomatiseerde tools gebruikt om zijn doel te construeren in een fractie van de tijd, met een fractie van de middelen en met een fractie van de kosten ten opzichte van zijn huidige collega. Hij haalt zijn modules uit een modulemarkt, en hij kan ook een aantal ontbrekende modules ontwerpen en produceren. In een latere fase, kan hij besluiten om deze nieuwe modules op de markt aan te bieden.

Zijn huidige collega produceert softwaresystemen, waarvan de structuur lijkt op een gelaagde set van patchworkdekens. Zelfs de meest ingenieuze architect kan geen zicht houden op de details van deze complexe architectuur. Daarom kan het systeem niet volledig correct worden beschreven. Ook kan het systeem niet volledig worden getest. En niemand kan de goede werking ervan garanderen.

Modulaire systemen zijn inherent minder complex. Vooral hun systeemconfiguratie is ordes van grootte minder complex. Dit resulteert in een betere beheersbaarheid van de complexiteit en een hogere robuustheid. Op zijn beurt, resulteert dat in een betere kans om de goede werking van het systeem te garanderen.

27.16 Discussie

De modulemarkt is zeer democratisch. Iedereen die eigenaar is van een geschikt moduleontwikkelingsysteem kan deelnemen en vult een niche van de modulemarkt. De modulemarkt is een goede vervanging van de markt voor open-source software. Het heeft als voordeel dat de moduleontwikkelaars geld kunnen verdienen met het intellectuele eigendom dat zij in het ontwerp en de bouw van de
module hebben geïnvesteerd. Nog steeds blijven de producten dan nog zeer betaalbaar. In tegenstelling daarmee, is de open-source softwaregemeenschap niet democratisch. In veel gevallen, verbiedt deze gemeenschap de bijdragende softwareontwikkelaars om geld met hun investeringen in intellectueel eigendom te verdienen.
28 Management van het software generatie proces
Het huidige softwaregeneratieproces is verrot. Dit hoofdstuk analyseert waarom dat het geval is en wat er gedaan kan worden.

Het is geen geheim dat het genereren van complexe software grote problemen oplevert voor de producenten van de producten die deze software gebruiken. De kosten van de software groeien exponentieel met de omvang van de software en de tijd van concept tot aan afronding groeit eveneens. De resulterende producten zijn kwetsbaar en dwingen de verkopers om voldoende middelen te reserveren voor het omgaan met toekomstige garantie- en schadeclaims. Kopers van deze software zijn zich bewust van deze situatie, maar zonder een redelijk alternatief, zijn ze bereid om met de situatie te leven. De bron van de ellende is de complexiteit van de software, en deze complexiteit is vooral te wijten aan de relationele complexiteit van de samenstellende delen. Een radicale modulaire aanpak zoals wordt toegepast in de hardware systeem generatie zou het probleem kunnen genezen, maar dat vereist een heel andere manier van software generatie en software marketing.

28.1 Inleiding

28.2 Complexiteit beheren
28.2.1 Breekniveau
Het managen van eenvoudig project levert nauwelijks problemen op. Echter, een situatie waarin de complexiteit de grens overtreft, waarbij een korte weergave niet langer de potentiële problemen
onthult, vereist speciale methoden. Deze maatregelen compenseren of genezen het gebrek aan overzicht. Het niveau van de grens hangt af van het aantal onderwerpen die bij het proces betrokken zijn en van de aard van de relaties tussen deze onderwerpen.

28.2.2 Mate van complexiteit

Procedures zoals modularisatie van het systeem en categorisering en groepering van de relaties in interfaces verminderen de werkelijke complexiteit van het systeem ontwerp en de creatie aanzienlijk. Elk interface vertegenwoordigt een goed gedefinieerde groep van dynamisch relevante relaties. Bekende interfaces dragen beduidend bij tot de vermindering van ingewikkeldheid. Zij verminderen een reeks van interrelaties tot één enkele relatie. De modules kunnen in systemen worden geassembleerd door hen via compatibele interfaces te verbinden. Zowel de modules als de interfaces die deze
modules koppelen zijn van cruciaal belang voor het beheer van de complexiteit van systeemgeneratie.

28.2.3 Extreme complexiteit
Zeer hoge mate van complexiteit kan leiden tot secundaire effecten die de beheersbaarheid veel meer nadelig beïnvloeden dan verklaard kan worden door het aantal potentiële relaties die bestaan tussen de items die betrokken zijn bij het systeemgeneratieproces. Dit gebeurt wanneer het menselijk onmogelijk wordt om de activiteit van alle dynamisch relevante relaties correct te specificeren.

Het onvermogen om het product te specificeren impliceert het onvermogen om het te testen en daardoor, impliceert dit het onvermogen om de juiste functionaliteit van het systeem te waarborgen. De implicaties van het gebrek aan middelen die nodig zijn voor het omgaan met de complexiteit en het onvermogen om de situatie in voldoende detail te specificeren kan gemakkelijk de kosten op een exponentieel stijgende manier verhogen. Afgezien van het veroorzaken van onaanvaardbaar groeiende kosten, levert het systeemgeneratieproces fragiele resultaten. Het resulterende product kan zelfs de omgeving waar het wordt toegepast in gevaar brengen. Dit vereist het reserveren van middelen om de weerstand tegen toekomstige claims te waarborgen.

28.3 De modulaire aanpak
28.3.1 Modularisatie
De redenen waarom modularisatie de beheersbaarheid van het generatieproces aanzienlijk verbetert zijn gevarieerd. Bijvoorbeeld, kan het mogelijk zijn om het ontwerp of het creëren van modules aan andere partijen te delegeren. Potentieel hergebruik van bestaande modules of hun ontwerp is een andere belangrijke reden. Echter, de belangrijkste reden voor de toepassing van modulariteit is het feit dat een goede inkapseling van de modules en het gebruik van bekende interfaces het aantal dynamisch relevante relaties aanzienlijk verminderen.

165
Een eenvoudig voorbeeld kan dit verklaren. Een monolithisch systeem bestaande uit 1000 items bevat 999.000 potentiële relaties. Zijn relationele complexiteit kan door dit aantal gekenmerkt worden. Een vergelijkbaar modulair systeem dat bestaat uit tien modules bevat veel minder potentiële relaties. Laat de modules door bekende interfaces gekoppeld worden en laat een deel van de interfaces vergelijkbaar zijn. Niet elke module maakt verbinding met elke andere module. Laat de grootste module 200 items bevatten en laat het totale aantal interfaces tussen een paar modules minder dan 5 zijn. De grootste module heeft nu een potentiële relationele complexiteit van 39.800. De complexiteit van de andere modules is minder. Op deze wijze is de relationele complexiteit die door de moduleontwerpers ontmoet wordt minder dan 40.000, en voor de meeste modules, is de relationele complexiteit minder dan 10.000. Tussen modules, nemen de interfaces de rol van de relaties die de interne leden van deze interfaces vormen. De systeemontwerper wordt geconfronteerd met een relationele complexiteit die kleiner is dan 100. Ook moet rekening gehouden worden met de voordelen van het hergebruik van interfaces en de voordelen van het mogelijke hergebruik van modules. Dus vergeleken met de monolithische situatie, is er een toename van de beheersbaarheid met verscheidene ordes van grootte. Modularisatie van grotere systemen kan voordelen bieden die veel hoger liggen. De afnemende relationele complexiteit vertaalt direct in lagere menskosten en in een kortere tijd voor de totstandbrenging. Verder heeft het een zeer gezond effect op de robuustheid en betrouwbaarheid van het eindproduct.

28.3.2 Modulair systeemontwerp
De systeemontwerper krijgt het sterkste voordeel van de modularisatie. Modularisatie vereenvoudigt de systeemassemblage.
aanzienlijk. Dit opent de mogelijkheid om het systeeminTEGRatieproces te automatiseren.

Modularisatie bereikt zijn hoogste doeltreffendheid wanneer het ontwerp en het verwezenlijkingsproces de assemblage van modules uit andere modules toelaat. Op deze manier, bereikt de micro-elektronica-industrie de exponentiële groei van de mogelijkheden van geïntegreerde componenten die bekend staat als de wet van Moore.

28.3.3 Interfaces

Dynamisch relevante relaties zijn dragers van informatie- of controloSIGNALen. Afhankelijk van de richting van het controloSIGNAL behoort het overeenkomstige interface lid tot het vereisende deel van de interface of aan het verstrekende deel van de interface. In het eerste geval fungeert het als de afzender van de controloSIGNALen. Het vereisende deel van de interface bevat leden die behoren tot de huidige clientmodule. Als het interface-lid fungeert als de ontvanger van de controloSIGNALen, dan behoort het
interface-lid tot het verstrekkende deel van de interface. In ruil daarvoor zorgt het interface-lid ervoor dat de module de overeenkomstige diensten levert. Het verstrekkende gedeelte van de interface behoort tot de module die fungeert als de huidige server. Om actief te worden, moet een deel van de interface van de clientmodule worden aangesloten op het deel van de interface van de module die als de server fungeert.

Een module kan in een geval fungeren als een server, en het kan als een client in andere gevallen fungeren. In elk van zijn rollen, zal het de aangewezen verstrekkende of vereisende interfacedelen gebruiken. Multitasking modules kunnen parallelle acties bieden.

In de assemblage, kan de koppeling van het vereisende interfacedeel, en een overeenkomstige verstrekkend interfacedeel stationair zijn, of de koppeling kan tijdelijk zijn. Het verstrekkende interfacedeel van een interface kan één of meerdere andere interfaces bedienen. De dienst kan in parallel of in sequentiële volgorde gepresenteerd worden. De specificaties van het verstrekkende interfacedeel moeten minstens de vereisten van elk van zijn klanten aankunnen. Met betrekking tot de toelaatbare mogelijkheden, kan het verstrekkende interfacedeel meer bieden dan door een gekoppeld vereisend interfacedeel wordt gevraagd. De specificatie van het verstrekkend interfacedeel moet in overeenstemming met de specificatie van het vereisend interfacedeel zijn, maar dit geldt slechts voor het deel dat de diensten afhandelt die het vereisende interfacedeel kan eisen.

In veel gevallen zal de trigger van een interface-lid door een aangesloten interface lid niet alleen resulteren in het vereisen van een actie van de servermodule. Het kan ook leiden tot het terugzenden van een reactie via dezelfde verbinding. Het antwoord kan worden gebruikt voor synchronisatiedoeleinden en kan de gevraagde informatie bevatten.
In het algemeen kan een interface zowel een verstrekend onderdeel als een vereist onderdeel bevatten en kan de partitie dynamisch worden gewijzigd. Dit is moeilijk te begrijpen en het werken met dergelijke gemengde interfaces is niet simpel. Wanneer beheersbaarheid wordt nagedreven, dan moeten de gemengde interfaces vermeden worden. Hiervoor bestaat een uitzondering wanneer de communicatie een verbindingsopbouwprocedure vereist. Bij voorkeur dienen zuivere interfaces gebruikt worden. Een zuiver interface bevat ofwel een vereisend deel of een te verstrekend deel, maar niet beide. In het eenvoudigste geval, zal de specificatie van een vereisend interface nauw overeenkomen met de specificatie van de overeenkomstige verstrekend interface.

28.3.4 Juiste modules
Juiste modules zijn goed ingekapseld. Een goede module verbergt zijn binnenste. Het veiligstellen van het intelligentie eigendom dat in het ontwerp geïnvesteerd is, is een van de redenen voor deze strikte maatregel. Het voorkomen van ongewenste toegang tot de module is een andere reden. De juiste modules kunnen slechts door openbaar bekende en goed gespecificeerde interfaces worden benaderd. Een module is een onderdeel van een daadwerkelijk systeem, of het is ingericht om als een onderdeel van een of meer mogelijke toekomstige systemen te dienen. De juiste modules zorgen ervoor dat elke toegang via een interface de functionele integriteit van de module intact houdt. Een uitzondering kan zijn dat de module naar zijn omgeving signaleert dat het niet langer in een geldige staat verkeert. De omgeving kan dan beslissen om de module in toekomstige acties te negeren, of het kan de module in een geldige staat terugstellen.

Een juist module moet in staat zijn om een of meer acties uit te voeren. Deze acties kunnen worden geregeld via een of meer van
haar interfaces. Zuiver statische voorwerpen worden nooit als juiste modules beschouwd.

28.3.5 Eigenschappen en acties
Elke juist module heeft een reeks eigenschappen die tezamen zijn status beschrijven. Daarnaast, biedt elk juist module een reeks van mogelijke acties. Elke moduleinterface biedt indirecte toegang om de leden van een goed gedefinieerde en geordende subset van deze acties te controleren. De eigenschappen kunnen niet rechtstreeks worden benaderd. Met een bepaalde actie kan echter de waarde van een eigenschap worden gelezen of kan de directe of indirecte instelling van een of meer eigenschappen worden ingeschakeld.

28.3.6 Kosten van modularisatie
Modularisatie heeft zijn prijs. Het ontwerp en de productie van modules en de organisatie van compatibele interfaces is relatief duur. Alleen uitgebreid hergebruik van modules kan modularisatie economisch renderen. Hergebruik van modules en de beschikbaarheid van compatibele bekende interfaces tussen modules kunnen de beheersbaarheid van het ontwerp en de creatie van complexe systemen aanzienlijk verbeteren. Nochtans, impliceert hergebruik normalisatie, en het vraagt om acties die beschikbaarheid, toegankelijkheid, en diversiteit bevorderen. Deze vereisten worden het best verstrekt door een gezonde en levendige modulemarkt en media die de specificatie van de kenmerken van beschikbare modules en interfaces publiceren. Een open markt kan zorgen voor een gezonde prijs-kwaliteitverhouding. Het stimuleert ook de continue verbetering van de kwaliteit van de modules die beschikbaar komen. Voorbereiding van modules voor een open markt vereist het verbergen van de intellectuele eigendom die wordt geïnvesteerd in het ontwerp en de creatie van de module. Aan de andere kant moet de specificatie van de verstrekende interfaces openbaar bekend zijn. Het promoten van andere toepassingen van de verstrekende interfaces, en de vereisende van interfaces die in een bepaalde
module toegepast worden zal op zijn beurt het gebruik van die module bevorderen. Het zal de kans vergroten dat andere modules compatibel zullen worden met de betreffende module.

28.3.7 Misbruik

Modularisatie kan ook misbruikt worden. Verkeerde toegang tot een module kan zijn integriteit aantasten. In dat geval is de module niet meer betrouwbaar. Een goede modulariseringstechnologie moet oneigenlijke toegang tot modules voorkomen. Het betekent dat de toegang die de officiële interfaces van de module omzeilt voorkomen moet worden. Klanten van een module zijn systemen of andere modules. Tijdens zijn acties, kan een module door een opeenvolging van toestanden lopen. Een client van een module moet alleen toegang tot de module hebben, wanneer de module in een toestand verkeert waarvan bekend is dat deze toegang veilig is. Een goed gebouwd module zal dan zorgen dat zijn integriteit niet zal worden aangetast. Als de status van een module niet bekend is, kan de client besluiten om de module opnieuw in een bekende veilige toestand in te stellen.

Misbruik van modularisering wordt gestimuleerd door misbruik van de termen 'module' en 'component'. Het komt vaak voor dat een systeem deel "component" of "module" wordt genoemd terwijl het verre van behoorlijk ingekapseld is. Dergelijke systeemonderdelen zijn niet ontworpen om hun integriteit te behouden. Mensen die niet over voldoende deskundigheid beschikken kunnen in deze val trappen en kunnen denken dat door het assembleren van dergelijke oneigenlijke componenten een soortgelijke vermindering van de complexiteit bereikt kan worden, als met de juiste modules bereikt kan worden.
Het succes van modularisatie wordt op grote schaal aangetoond in het ontwerp en de productie van hardware. Elektronische apparaten, auto's, gebouwen, kleding, in feite, de meeste geassembleerde producten zijn niet betaalbaar zonder het feit dat ze zijn opgebouwd uit componenten. Veel van de samenstellende componenten worden zelf geassembleerd uit componenten. Belangrijker is dat de prijs, de kwaliteit, de diversiteit en de beschikbaarheid van deze componenten sterk afhankelijk zijn van de overeenkomstige levendige componentenmarkten. De gunstige effecten van de open markt hangen sterk af van de betrouwbare specificatie van de kenmerken van de componenten en van de media die rapporteren over de beschikbaarheid en kwaliteit van deze producten.

De toepassing van modularisatie in de software-industrie is verre van een groot succes. De juiste softwaremodules bestaan, maar hun toepassing is schaars. De huidige software ontwikkelingsgereedschappen bieden geen ondersteuning voor de assemblage van systemen uit modules. De softwarecomponenten zijn afhankelijk van de ondersteuning die wordt geboden door het besturingssysteem dat deze onderdelen inbedt. De meeste softwarecomponenten zijn ontworpen om als singles in een grotere niet-modulaire omgeving te opereren. In het algemeen, kunnen deze modules niet met andere modules koppelen. Momenteel biedt software-industrie geen technologie die het mogelijk maakt om modules uit andere modules samen te stellen.
28.3.9 Vereisten voor succes

Wanneer modularisatie correct wordt toegepast, kan dit het systeemontwerp en het verwezenlijkingsproces aanmerkelijk verbeteren. Sleutelwoorden zijn de standaardisatie, de diversiteit en de beschikbaarheid van modules en interfaces en het gemak van het systeemintegratieproces. Het bestaan van een levendige en effectieve modulemarkt is ook een zeer belangrijk aspect. Systeemintegratie kan worden geautomatiseerd, maar dit vereist de juiste afstemming van de component-specificatie, de systeemontwerpgereedschappen, en de overeenkomende componentenmarkt. De technologie moet de bouw van modules uit eenvoudigere modules toelaten. Met deze voorwaarden biedt de huidige micro-elektronica-industrie betrouwbare, zeer complexe en enorm capabele geïntegreerde schakelingen.

Met de installatie van een goede geautomatiseerde ontwerp- en assemblerageorganisatie, zal de modulaire systeemcreatie tijd krimpen tot een kleine fractie van de tijd die nodig is door de handmatige niet-modulaire equivalent. Waar handmatig ontwerp en assembleren van een complex monolithisch doel een genie als systeemarchitect vereist, kan een creatieve menselijke operator met gebruik van veel minder middelen een soortgelijk of zelfs beter resultaat bereiken met behulp van een passende geautomatiseerde modulaire aanpak. Automatisering van het systeemontwerp en het creatieproces stelt hoge eisen aan betrouwbare en machine-leesbaar specificaties van modules en interfaces.

28.3.10 Problemen van modularisatie

De eisen die door modularisatie gesteld worden zijn ook de redenen waarom modularisatie nooit een eenvoudige oplossing vormt.

28.3.10.1 Diversiteit

De eis van een hoge graad van diversiteit is in direct conflict met de vereiste van voldoende standaardisatie. Een interface heeft zowel statische als dynamische aspecten. De dynamische vereisten kunnen
om verschillende interfaces vragen die gelijkaardige statische kenmerken maar verschillend dynamisch gedrag bezitten. Milieueisen kunnen om speciaal aangepaste interfaces vragen. Interfaces kunnen door andere interfaces met een bredere reikwijdte of betere prestaties vervangen worden. Voor modules gelden gelijkaardige overwegingen.

Om de marktwinst te vergroten, de componentontdekking te vereenvoudigen en de systeemintegratie te vergemakkelijken, moet de diversiteit van gelijkaardige interfaces binnen verstandigegrenzen blijven. Hetzelfde geldt voor modules.

28.3.10.2 Compatibiliteit

Om succesvolle assemblage mogelijk te maken, moeten de geselecteerde modules wederzijds compatibel zijn. Dit vertaalt zich in de eis dat de interfaces die modules koppelen compatibel moeten zijn. Verstrekkende interfaces moeten betrekking hebben op de eisen van de gekoppelde vereisende interfaces. De vereisten omvatten zowel statische als dynamische kenmerken.

Voor het real-time gedrag van modules kan het nodig zijn maatregelen te nemen die deadlock en racecondities voorkomen of genezen. De ontwerphulpmiddelen moeten de installatie van deze maatregelen mogelijk maken. Andere maatregelen moeten voorkomen dat het systeem al zijn essentiële middelen verbruikt. De modules moeten worden ontworpen om ook deze maatregelen te ondersteunen. Wanneer alle relevante gegevens van de samenstellende modules bekend zijn, dan kunnen de systeemontwerpgereedschappen de systeemontwerper helpen om voldoende middelen te implementeren en de nodige maatregelen te nemen.

28.3.10.3 Platforms

Componenten kunnen worden ontworpen voor verschillende toepassingsgebieden. Bijvoorbeeld, software kan worden ontworpen
voor desktop doeleinden, voor servers of voor inbedding in elektronische apparaten. In elk van deze gevallen bestaat er een keuze uit hardware platforms. Elektronische hardware platforms vereisen aangepaste softwarecomponenten en dat zal zeker invloed hebben op de dynamische kenmerken van de interfaces van de softwarecomponenten. Mechanische modules kunnen gericht zijn op automotieve systemen, elektronische systemen, nautische systemen, stationaire instrumenten of andere mechanische systemen. Elk toepassingsgebied en ondersteunend platform kan zijn eigen gamma van modules en interfaces vereisen. Elk toepassingsgebied vraagt een aangepaste componentenmarkt en een aangepaste systeem assemblegrotechnologie.

28.3.10.4 Verbergen van intellectueel eigendom
In sommige toepassingsgebieden, word het verbergen van de intellectuele eigendom die in het ontwerp en de samenstelling van modules is ingebracht, geleverd door de fysieke vorm van de producten of door de marktomstandigheden, zoals een octrooisysteem. Sommige toepassingsgebieden hebben momenteel echter onvoldoende middelen om het ontwerp van de componenten te verbergen. Zonder het IP op de juiste wijze te verbergen, kan de schepper van een component nooit winst in een open componentenmarkt maken. In het verleden heeft dit feit zeker verhinderd dat de software-industrie een gezonde en levendige softwarecomponenten markt ontwikkelde. Dit zegt niet dat het onmogelijk is om een effectief IP-verbergsysteem voor software modules te genereren.

28.3.10.5 Beschikbaarheid
Beschikbaarheid is verzekerd wanneer voor populaire modules verschillende leveranciers bestaan. Een gemakkelijk toegankelijke publicatieorganisatie moet de ontdekking en de selectie van bestaande modules bevorderen en toelaten.
28.3.10.6 Specificatie

28.3.11 Hardware versus software
28.3.11.1 Geschiedenis
De hardware-industrie boekt veel meer succes met de toepassing van modularisatie dan de software-industrie. Gedeeltelijk is het vluchtige karakter van software voor dit feit verantwoordelijk. De verschillen in de ontwikkeling van de overeenkomstige ontwerp- en maaktechnologieën hadden echter meer invloed op het succes van de modularisatie.

Lang voor de geboorte van elektronische computers, nam modularisatie zijn positie in de hardware-industrie. Computer hardware werd door de verregaande toepassing van modularisatie betaalbaar. De vroege computerprogrammeurs gebruikten machinecode als taal om met de computers te communiceren. Al snel werd de last van het afzonderlijk invoeren van al deze codes verlicht door een assembler compiler die vertaalde assemblertermen in overeenkomstige machinecode zinnen vertaalde. Programmaonderdelen kunnen herbruikbare routines worden. De bibliotheken van deze routines werden producten die in
verschillende programmeringsprojecten toegepast zouden kunnen worden. De volgende stap was de introductie van de derde generatie talen. Deze tools boden een beter leesbaar en veel flexibeler codering van de functionaliteit die de programmeurs moesten schrijven. De krachtige compilers vertaalden de broncode en combineerden het met vooraf gecompileerde bibliotheekdelen die door het geschreven programma werden aangeroepen.

28.3.11.2 Basisarchitectuur trends
Tot nu toe was dit niet meer dan het versoepelen van het proces van het produceren van machine-code. De groeiende complexiteit van de programma's eiste softwareontwikkelingsgereedschappen die een beter overzicht van de architectuur van het ontwerp mogelijk maken. Op dit punt, werden twee trends ontwikkeld.

28.3.11.2.1 Functionele analyse
De eerste trend, die 'structurele analyse' genoemd werd creëerde een splitsing tussen de behandeling van eigenschappen en de afhandeling van de acties die invloed hebben op deze eigenschappen. De methodologie verzamelde eigenschappen in 'data stores', 'acties in processen', 'data berichten in datastromen' en controleberichten in 'control flows'. De grafische weergave van het resultaat van de analyse werd een 'data flow diagram' genoemd. Op voorhand bleek de aanpak zeer succesvol. Het leidde tot de introductie van verscheidene belangrijke softwareontwikkelingszaken zoals routine-bibliotheeken, bestandssystemen, communicatiesystemen, en databases. De meeste derde-generatie programmeertalen en de vroege softwareontwikkelingshulpmiddelen steunden de structurele analyse benadering.

28.3.11.2.2 Abstracte datatypen
De tweede tendens bevorderde de modulaire benadering. Het gebruikte 'abstracte data types' die door David Parnas als zijn
modules geïntroduceerd waren. In de ontwerpfase werd het 'abstracte datatyp ' als individu behandeld. Het was goed ingekapseld en kon alleen worden benaderd via een of meer interfaces. In de jaren zeventig van de vorige eeuw heeft de complexiteit van de meeste softwareprojecten nog geen modulaire aanpak opgelegd. Om die reden werd deze modulaire ontwerpmethodologie niet goed door programmeertalen en door overeenkomstige modulaire software ontwikkelingsgereedschappen ondersteund.

28.3.11.2.3 Object oriëntatie
In een latere fase steeg de complexiteit van het software ontwerp zodanig dat een meer modulaire aanpak noodzakelijk werd. In plaats van het nemen van de juiste modulaire aanpak die het 'abstracte data type' levert, draaide de belangrijkste softwareontwikkeling zich om objectoriëntatie. Hier lijken de objecten op 'abstracte data types', maar de objecten zijn niet goed ingekapseld. Toegang via interfaces is mogelijk, maar de cliënt van het object kan ook meer rechtstreeks toegang krijgen tot de acties van de objecten. Veel ernstiger is dat externe actoren vaak de interne eigenschappen van het object direct kunnen wijzigen. De mogelijkheid om functionaliteit van een object met een eenvoudiger ontwerp te erven kreeg veel meer aandacht. Het resultaat was de ontwikkeling van bibliotheken van klassen van objecten met een diepe erfenishierarchie.

Momenteel wordt objectoriëntatie goed ondersteund door softwaretalen en softwareontwikkelingsgereedschappen. Jammer genoeg, bevorderen de huidige object-georiënteerde softwareontwikkelingsgereedschappen niet het gebruik van populaire interfaces.

Object oriëntatie heeft een aantal ernstige nadelen. Zonder voldoende voorzorgsmaatregelen kunnen klassen die uit verschillende klassenbibliotheken worden genomen, niet in
programma's worden gecombineerd. Een klassenbibliotheek met een diepe verervingshierarchie kan overbodig worden wanneer de topklassen diensten bevatten die voor de huidige technologie niet meer actueel zijn.

28.3.11.2.4 Huidige softwarecomponenten

De ondersteuning voor COM in softwaretalen en in softwareontwikkelingsgereedschappen is klein. Het ontwerp van de architectuur van het COM-skelet voorkomt betrouwbaar geheugen garbage-collection-management in gevallen waarin de module dynamisch kan worden verwijderd. COM wordt op sommige embedded systemen ondersteund die gebruikmaken van UNIX of van een besturingssysteem dat POSIX ondersteunt.

Zowel de Java beans als de COM componenten zijn niet ontworpen om componenten uit componenten te construeren en beiden hebben de steun nodig van een werkend systeem of een virtuele machine.

Er bestaat een kleine open markt voor deze softwarecomponenten. De meesten van hen richten zich op desktoptoepassingen.

28.3.11.2.5 Stand van zaken
Op dit moment is modularisatie niet op een serieuze manier op de software-industrie van toepassing. Er bestaat geen theoretische reden waarom modularisatie in softwaresysteemgeneratie niet zo succesvol kan worden als de huidige modularisatie in hardwaresysteemgeneratie momenteel is. Efficiënte modulaire softwaregeneratie vraagt echter om een volledig verschillende
manier van softwaregeneratie dan door de huidige softwareontwikkelingsindustrie wordt verwezenlijkt.

Het implementeren van een goede modularisatie zal kansen bieden aan partijen die nu worden uitgesloten door de macht van bedrijven die de huidige softwareontwikkelingsgereedschappen en softwareontwikkelingsprocessen controleren. Met de juiste diensten op zijn plaats, kan iedereen die toegang heeft tot een software-componentontwikkelomgeving producten produceren die een marktbehoeften vervullen. Toekomstige instellingen die softwarecomponentontwikkeling en component-gebaseerde systeemassemblage ondersteunen zullen de componentontwikkelaar helpen bij het in de handel brengen van de gecreëerde componenten. In dat geval zullen de huidige machten in de software-industrie in gevaar komen om de marktcontrole te verliezen. Het is te verwachten dat zij zullen vechten om in controle te blijven.

28.3.12 Koppeling van de markt en het ontwerp en de creatie van software modules en interfaces

28.3.12.1 Normalisatie en marketing

De hulpmiddelen en de diensten moeten nauw samenwerken om het snelle en efficiënte ontwerp van interfaces, componenten, en
doelsystemen toe te laten. Tegelijkertijd moeten de diensten ervoor zorgen dat het intelligentie eigendom dat in de geüploade onderdelen wordt geïnvesteerd, verborgen blijft voor de openbare wereld. Het moet ook worden gegarandeerd dat de componentontwerpers hun rechtmatige vergoeding zullen krijgen. Het is zeer moeilijk om een goed controleerbare pay-per-copy van de binaire componenten te organiseren. Gesuggereerd wordt dat de klanten per project voor elke gebruikte binaire component betalen.

28.3.12.2 Ontwerpen en genereren van componenten
De componentontwerper verzamelt de vereiste interfaces van online of offline bewaarplaatsen, of hij ontwerpt een of meer nieuwe interfaces. Vervolgens ontwerpt en creëert hij een of meer componenten. Hij moet deze grondig testen. Wanneer hij klaar is gebruikt hij de componenten voor het lokale systeemontwerp, of hij pakt een of meer componenten in een pakket en stuurt dit samen met de juiste documenten naar het instituut dat zijn producten op de markt zal presenteren. Het instituut controleert de bijdragen, en na een positieve conclusie, zet het instituut de binaire componenten en documenten in haar banken. Het instituut zal de documenten in de juiste bewaarplaatsen opslaan waar ze dan openbaar toegankelijk worden. De gebruikers van de componenten kunnen de componenten van het instituut kopen. Het instituut zorgt voor de betaling van de ontwikkelaar die het product in de bank gezet heeft.

28.3.12.3 Versies en diversiteit
Versies en diversiteit van componenten belemmeren zowel als ondersteunen de beheersbaarheid van het systeemintegratieproces. Daarom moet het aantal versies beperkt worden. De diversiteit van componenten moet beheersbaar worden gemaakt door het aantal ondersteunde platforms te verminderen en het aantal ondersteunde omgevingen te beperken. Het ontwikkelen en creëren van nauwe kopieën van bestaande componenten moet worden vermeden. Het
breken van deze regels kan de voordelen van het modulaire systeemontwerp gemakkelijk vernietigen.

28.3.12.4 Verbergen van intelligentie eigendom
Het verbergen van intelligent bezit dat in het ontwerp van de component wordt geïnvesteerd is één van de moeilijkste punten van de softwarecomponententechnologie. Het kan door macht worden geregeld: klanten uitsluiten van toekomstig lidmaatschap wanneer zij inbreuk maken op de 'regels.' Of het kan worden verzekerd door een combinatie van encryptie en hercompilatie ondersteund door hardware-decryptie. Elk project krijgt dan zijn eigen encryptiesleutel. Er moet voor gezorgd worden dat een systeemontwerper nog steeds het onderdelen kan gebruiken dat hijzelf ontworpen en gemaakt heeft.

28.3.12.5 Systeemintegratie automatiseren

28.3.12.6 Publiceren
Publicaties die op modularisatie betrekking hebben omvatten specificaties, marktpromotiemedia, en productkwaliteits-
vergelijkingsslagen. De interne code van componenten is normaal verborgen. Als de instelling die de component ontwierp dit wil, is het mogelijk om deze code als onderdeel van de component-specificatie openbaar te maken.

28.3.13 Een volwaardige bedrijfstak voor softwareonderdelen

28.3.13.1 Schets

Er bestaat geen theoretische reden waarom een goede modularisatie niet kan worden bereikt voor software zoals het voor hardware is gedaan. De realisatie van een aantal aspecten zal gemakkelijker zijn, terwijl het bereiken van andere aspecten een stuk moeilijker zal zijn. Het is makkelijker om softwareproducten via het internet te versturen. Het is gemakkelijk om de documentbewaarplaatsen van de componenten opslagmedia te doorzoeken naar interessante componenten en compatibele interfaces. Met behulp van XML, wordt het haalbaar om het ontwerp en creatieproces dat gebruikmaakt van de online bewaarplaatsen die de machine-leesbare specificatie documenten die componenten en interfaces beschrijven bevatten te automatiseren. Een lokaal bestand op basis van het equivalent van een dergelijke bewaarplaats kan nieuwe ontwerpen opslaan of ophalen en bedient zowel de systeemontwerper als de ontwikkelaar van de componenten. De bewaarplaatsen bevatten een zoekmachine die zoekt naar categorisatietermen die de specificatie documenten voor specifieke toepassingsgebieden classificeren. Nieuwe ontwerpen kunnen worden geüpload naar een centrale dienst die de informatie zal controleren en opslaan in de wereldwijd toegankelijke bewaarplaatsen. Een webservice die fungeert als een toegewijde online shop kan de overeenkomstige modules aanbieden. Op de achtergrond van de webservice, zullen binaire banken de binaire vorm van de modules onderhouden. De webservice zal ter ondersteuning van het financiële deel van haar activiteit gebruikmaken van een toegewijde geldbank. Via de webservice kunnen de componentontwerpers hun resultaten uploaden naar de
centrale instelling die hun producten vervolgens op de markt brengt. Componentontwikkelingsgereedschappen en systeemassemblage hulpmiddelen interageren met de bewaarplaatsen en met de Webservices om een geïntegreerde ontwerp-, assemblage-, en marketingomgeving te implementeren.

28.3.13.2 De demo

Het voorgaande is een zeer schetsmatig beeld van een mogelijke implementatie van een geïntegreerde software-componenten creatie- en marketingsysteem. Om de haalbaarheid van dit schetsmatige beeld te onderzoeken, werd een demonstratiesysteem gebouwd dat werkende versies van alle belangrijke bestanddelen bevat.

Het demonstratiesysteem ondersteunt:

- Embedded software en desktop software\(^1\)
- Verstrekende Interfaces
- Vereisende interfaces\(^2\)
- Geheugen geadresseerde hardware-interfaces
- Streaming interfaces
- Notificatie interfaces\(^3\)
- Pakket van een samenhangend geheel van componenten\(^4\).
- Onderdelen die bestaan uit eenvoudigere componenten\(^5\).
- Automatische creatie van het ondersteunende besturingssysteem uit toegewijde modules\(^6\)
• Stapsgewijze systeemopbouw van een mix van skeletcomponenten, deels functionele componenten en volledig functionele componenten

• Automatisch geheugenbeheer

• Systeem modi

1In embedded software communiceert het gegenereerde systeem direct met de hardware. Het systeemassemblagehulpmiddel voegt de HAL toe.

2Vereisende interfaces worden geïmplementeerd als tijdelijke plaatsvervangers voor speciale typen die refereren aan een verstrekend interface.

3Notificatie interfaces accepteren hardware triggers.

4Een pakket is een bibliotheek van een samenhangend geheel van componenten. Een componentleverancier zal bij voorkeur zijn producten leveren in de vorm van pakketten. Een systeemontwerper zal zijn subsystemen in de vorm van pakketten bewaren.

5Een samengesteld onderdeel is een speciaal pakket, begeleid door een speciaal (vast) verbindingsschema en een speciaal (vast) planningsschema.

6In embedded software genereert het systeemintegratie tool de besturingssysteemmodules in C++ broncode. In desktopsoftware genereert het hulpprogramma voor systeem ontwerp een laag die samenwerkt met de virtuele machine. Deze laag wordt gegenereerd in de broncode die overeenkomt met die virtuele machine (C# of Java).

7Systeem modi worden gecontroleerd door verbindingsschema's en planningsschema's. Dynamische verwijdering of het aanmaken van
modules moet worden beperkt tot de situaties waarin de systeemmodus verandert. Geheugenbeheer is ook beperkt tot deze situaties.

Het demonstratiesysteem bestaat uit de volgende onderdelen:

- Een voorbeeld van een online bewaarplaats
 - Deze bewaarplaats bestaat uit een hiërarchie van directories die de volgende inhoud bevatten
 - XML-documenten, die gestructureerde specificaties bevatten. Elk document bevat een reeks categorisatie tags.
 - XSD-documenten, die de structuur van de specificaties bepalen
 - XSL-documenten, die XML-documenten helpen omzetten in menselijk leesbare documenten
 - De bewaarplaats heeft een hiërarchische structuur. Componenten en interfaces worden verzameld in afzonderlijke directories.
 - De bewaarplaats is openbaar toegankelijk. Met behulp van de XSL-bestanden zijn de XML-documenten menselijk leesbaar via een moderne webbrowser.
o De bewaarplaats bevat een zoekmachine die de bijgevoegde categorie-tags gebruikt om overeenkomstige documenten te vinden.

- Een voorbeeld van een bewaarplaats op basis van een lokaal bestand

o Deze basis van bestaat uit een hiërarchie van directories en heeft dezelfde structuur als de online bewaarplaats. Dit omvat zoekmogelijkheden.

o De lokale bewaarplaats bevat een grotere verscheidenheid aan documenten dan de online bewaarplaats.

o Het fungeert als een lokaal opslagmedium voor informatie die wordt opgehaald van een of meer online bewaarplaatsen.

o Het fungeert als een lokaal opslagmedium voor documenten die geschikt zijn om te worden verstuurd naar een algemeen Instituut dat deze documenten op een online bewaarplaats kan zetten.

o De XML-documenten specificeren:
 - Component
 - Interface
 - Vereisend
 - Verstrekend
 - SW/SW
- HW/SW
- Streaming
- Notificatie

- Typen
 - Gewoon type
 - Enum-type
 - Type interface
 - Type sequentie
 - Type structuur

- Beschrijving van het pakket
- Verbindingsschema
- Planningsschema
- Toestandsdiagram
- Beschrijving van het project

- Een voorbeeld van een webservice die kan fungeren als de vertegenwoordiger van een centraal instituut. Deze instelling bedient de gemeenschap die softwarecomponenten maakt of gebruikt. Componenten kunnen als pakketten van eenvoudigere componenten worden weergegeven.
 - Het instituut is eigenaar van een lokaal archief dat alle specificaties van interfaces bevat die in het domein van de webservice bestaan.
Het instituut is eigenaar van een binaire database die de binaire bestanden van alle beschikbare softwarecomponenten bevat.

Het instituut is eigenaar van een lokaal archief dat alle specificaties bevat van softwarecomponenten die bestaan in het domein van de webservice.

De webservice maakt gebruik van de binaire databases en de lokale bewaarplaatsen om de klanten van het instituut automatisch te bedienen. Klanten hebben geen directe toegang tot deze opslagmedia.

De webservice helpt partners van het Centraal Instituut om documenten te distribueren naar hun gespecialiseerde Online bewaarplaatsen.

De webservice helpt klanten bij het aanschaffen van softwarecomponenten en het ophalen van de overeenkomstige binaire bestanden van de binaire Bank.

De webservice helpt softwareontwikkelaars om de binaire bestanden en bijbehorende specificaties van hun producten te uploaden.

Het Centraal Instituut zorgt ervoor dat de ontwikkelaars van softwarecomponenten betaald krijgen voor producten die via de webservice worden gedownload.

- Een bewaarplaats browser tool
 - De tool helpt bij het zoeken naar lokale of online bewaarplaatsen voor bestaande interfaces en componenten. Geselecteerde documenten kunnen
worden overgedragen van de online bewaarplaats naar de lokale bewaarplaats.

- Een interface en component designtool
 - Het hulpprogramma helpt bij het opgeven van nieuwe interfaces. Dit omvat:
 - Software-software interfaces
 - Software-hardware interfaces
 - Streaming interfaces
 - Notificatie interfaces
 - Het hulpmiddel helpt bij het specificeren van andere ontwerpprocessen die in de bewaarplaatsen gaan.
 - De tool helpt bij het zoeken naar lokale of online bewaarplaatsen voor bestaande interfaces.
 - Het hulpmiddel helpt om het skelet van een softwarecomponent te ontwerpen en te creëren
 - De tool helpt bij het vullen van het skelet met een speciale code
 - De 'interne' code is normaal gesproken verborgen. Het is echter mogelijk om deze code openbaar te maken met de rest van de specificatie.

- Een systeem assemblage hulpmiddel
 - De tool helpt bij het zoeken naar lokale of online bewaarplaatsen voor bestaande softwarecomponenten.
o Helpt de overeenkomstige binaire bestanden van online of lokale binaire banken ophalen.

o De tool kan werken met componenten die nog steeds in skeletvorm staan.

o De tool kan controleren of componenten samen kunnen passen.

o De tool assembleert geselecteerde componenten en voegt een toegewijd component-gebaseerd besturingssysteem toe.

Sommige harde regels moeten gehoorzaamd worden.

- Alle componenten en alle interfaces hebben een globaal unieke identificatie.

- Om het even welke binair bestand en om het even welk specificatiedocument dat aan het centrale Instituut wordt geüpload en dat door dit instituut wordt goedgekeurd mag nooit worden veranderd of worden verwijderd.

- Nieuwe versies van een artikel zijn gerelateerd aan de vorige versie via een relatiedocument dat aan het specificatiedocument is gekoppeld.

- Het aantal nieuwe versies van een item mag 4 niet overtreffen.

- Nagenoeg gelijke kopieën van items die geen nieuwe versies zijn, worden niet geaccepteerd.

28.3.14 Code

De code is gratis toegankelijk op

http://www.scitech.nl/MyENHomepage.htm#software
29 Verwijzingen

G. Birkhoff en J. von Neumann, *De logica van de kwantummechanica*, Annalen van de wiskunde,
Vol. 37, pp. 823 – 843
[15] In de tweede helft van de twintigste eeuw bewezen Constantin Piron en Maria Pia Solèr, dat de getallensystemen die een separabele Hilbertruimte kan gebruiken deling ringen moeten zijn.
Zie: https://golem.ph.utexas.edu/category/2010/12/solers_theorem.html
[23] Quantum chromodynamica
https://en.wikipedia.org/wiki/Quantum_chromodynamics
Ook http://en.wikipedia.org/wiki/Yukawa_potential
[33] De functie van Dirac https://en.wikipedia.org/wiki/Dirac_delta_function
[34] http://www.physics.iitm.ac.in/~labs/dynamical/pedagogy/vb/3dpart2.pdf
[38] Sferische Bessel-functies https://en.wikipedia.org/wiki/Spherical_Bessel_Function
[40] Fotonen https://en.wikipedia.org/wiki/Photon

193
[51] Intelligentie https://en.wikipedia.org/wiki/Intelligence
[60] Potentiaal van een Gaussische ladingsdichtheid:
http://en.wikipedia.org/wiki/Poisson%27s_equation#Potential_of_a_Gaussian_charge_density
[62] "De oscillaties van neutrinos";
http://www2.warwick.ac.uk/fac/sci/physics/current/teach/module_home/px435/lec_oscillations.pdf .
[63] "op radicale pH-oplossing van nummer 3 puzzel en universeel patroon van SM grote hiërarchieën";
[64] https://en.wikipedia.org/wiki/Inertia
[65] Denis Sciama. (1953), over de oorsprong van inertie.

194
[70] Modulair tralie https://en.wikipedia.org/wiki/Modular_lattice
[74] Propositionele calculus https://en.wikipedia.org/wiki/Propositional_calculus
[75] Quantumlogica https://en.wikipedia.org/wiki/Quantum_logic#Differences_with_classical_logic
[78] Paul Dirac introduceerde de bra-Ket aantekening, die het gebruik van Hilbertruimten gepopulariseerd.
Dirac introduceerde ook zijn Delta functie, die een algemene functie is.
Ruimten van algemene functies boden continuums aan voordat de Gelfand Triple arriveerde.
In de jaren '60 introduceerden Israël Gelfand en Georgyi Shilov een manier om continuums te modelleren, via een uitbreiding van de separabele Hilbertruimte in een Zogenaamde Gelfand triple.

De Gelfand Triple krijgt vaak de naam opgetuigd Hilbertruimte. Het is een niet-separabele Hilbertruimte.

Afleiding van de Lorentz-kracht,

De integraalvergelijking van Leibniz,

https://en.wikipedia.org/wiki/Leibniz_integral_rule#Threedimensional.2C_time-dependent_case

Shaw, Justin (2014). Invariante vector calculus.

zwart gat https://en.wikipedia.org/wiki/Black_hole

Schwarzschild radius http://jila.colorado.edu/~ajsh/bh/schwp.html

Schwarzschild radius https://en.wikipedia.org/wiki/Schwarzschild_radius

Schwarzschild metriek https://en.wikipedia.org/wiki/Schwarzschild_metric

https://en.wikipedia.org/wiki/Birkhoff%27s_theorem_(relativiteit)

Dirac vergelijking wiskundige formulering

http://en.wikipedia.org/wiki/Dirac_equation#Mathematical_formulation

http://www.mathpages.com/home/kmath654/kmath654.htm; vergelijking (6)

http://en.wikipedia.org/wiki/Pauli_matrices

https://nl.wikipedia.org/wiki/Torsten_Wiesel
Het boek fungeert als een overzicht van het Hilbert boek model project. Het project betreft een gefundeerd, puur wiskundig model van fysische realiteit. Het project berust op de overtuiging dat de fysische werkelijkheid zijn eigen soort van wiskunde bezit en dat deze wiskunde de uitbreiding van het fundament tot meer gecompliceerde niveaus van de structuur en het gedrag van de fysische werkelijkheid begeleid en inperkt. Dit resulteert in een model dat meer en meer lijkt op de fysische werkelijkheid die mensen kunnen observeren.

Het boek is geschreven door een gepensioneerde fysicus.

Hans van Leunen MSc

Hij begon het Hilbert boek model project toen hij 70 jaar was.

Om zijn nieuwsgierigheid te voeden, dook Hans diep in de crypten van de fysische werkelijkheid. Hij bemerkte dat meer dan 80 jaar geleden, twee geleerden al een geschikte basis van een wiskundig model van de structuur en het gedrag van de fysische werkelijkheid ontdekten. Zij noemden hun ontdekking kwantumlogica. Het Hilbert boek model project onderzoekt dit fundament door deze structuur uit te breiden tot hogere niveaus van de structuur van het model en voegt dynamiek toe aan het Hilbert boek basismodel.

Deze benadering is onorthodox en onconventioneel. Het betreedt een gebied waar veel aspecten niet door experimenten geverifieerd kunnen worden en daarom met betrouwbare wiskundige methoden afgeleid moeten worden. Op deze manier ontdekte het project nieuwe wiskunde en nieuwe fysica.

Het Hilbert boek basismodel blijkt een zeer krachtige en flexibele modelleringsomgeving voor fysische theorieën te bieden.