Proof of \[\sum_{n=1}^{\infty} (-1)^n = -\frac{1}{2} \]

July 29, 2019
Yui Masuda
(y_masuda0208@yahoo.co.jp)

First, \(\pm \infty \) is constant at any observation point (position). If a set of real numbers is \(\mathbb{R} \), then,
\[
\begin{align*}
R \times (\pm \infty) &= \pm \infty \\
R + (\pm \infty) &= \pm \infty \\
(-1) \times (\pm \infty) &= \mp \infty
\end{align*}
\]
On the other hand, when \(x (\in \mathbb{R}) \) is taken on a number line, the absolute value \(X \) becomes larger toward \(\pm \infty \) as the absolute value \(X \) is expanded. Similarly, as the size decreases, the absolute value \(X \) decreases toward 0. Furthermore, \(\times (-1) \) represents the reversal of the direction of the axis.

Next, \(\pm \infty \) is constant at any observation point (position). If a set of real numbers is \(\mathbb{R} \), then,
\[
\begin{align*}
R \times (\pm \infty) &= \pm \infty \\
R + (\pm \infty) &= \pm \infty \\
(-1) \times (\pm \infty) &= \mp \infty
\end{align*}
\]
On the other hand, when \(x (\in \mathbb{R}) \) is taken on a number line, the absolute value \(X \) becomes larger toward \(\pm \infty \) as the absolute value \(X \) is expanded. Similarly, as the size decreases, the absolute value \(X \) decreases toward 0. Furthermore, \(\times (-1) \) represents the reversal of the direction of the axis.

Second, we consider the figure below.

From the figure above, I got the following equation.

\[
\theta = \arcsin \left(\frac{1}{2} \right)
\]

Here, when take \(\pm \infty \) to the consideration,
\[
\tan \theta = \frac{x+1}{2x(x+1)} = i \left((-1) \cdot (\pm \infty) = \frac{1}{\pm \infty} \right)
\]
\[
\therefore x = \frac{1}{2} (-1 + i)
\]

Here, when we consider the figure above,
\[
\frac{x^2}{(x+1)^2} = -1
\]

So, when we put \(x = (-1+i)/2 \), \(1/(x^2) = 2i = -2i \).

Here, from Fig.1, \(i + (\pm \infty) = 0 \).

\[
\begin{align*}
-2i + 2 \cdot (-1) + (-2i) + 2 \cdot (-1) + (-2i) + \cdots &= i + (\pm \infty) = 0 \\
-2i \cdot (1 - 2 + 2 - 2 + 2 - 2 + \cdots) &= i + (\pm \infty) = 0 \\
1 - 2 + 2 - 2 + 2 - 2 + \cdots &= -\frac{1}{2} \left(1 + (\pm \infty) \right) = -\frac{1}{2} \left(-1 - (-1) \right) = 0 \\
1 + 2((-1) + 1 + (-1) + 1 + (-1) + \cdots) &= 0 \\
\frac{1}{2} + \sum_{n=1}^{\infty} (-1)^n &= 0
\end{align*}
\]
\[
\therefore \sum_{n=1}^{\infty} (-1)^n = -\frac{1}{2}
\]