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Abstract  

A class of second order linear variable differential equations which may exhibit elementary 

function solutions is developed in this paper. It is shown that this class includes as special 

case the equation record in Kamke’s book as equation 2. 80. 

Theory  

Consider the second order linear harmonic oscillator equation 
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By using the nonlocal transformation [1] 
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The following theorem may be proved.  

Theorem 1 

Consider equation (1). Then by applying the nonlocal transformation (2), to equation may be 

mapped into    
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Proof. Using (2) one may compute the first derivate 
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In this way the second derivative 
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Substituting (5) into (1) and using (2) leads to obtain immediately (3). 
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Theorem 2 

If xxf )( , and ),()( xhnxg  where 0)( xh , then  equation (3) reduce to  
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Equation (6) is recorded in Kamke’s book [2] as equation (2. 80). 
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